Spelling suggestions: "subject:"espace dde modules"" "subject:"espace dee modules""
1 |
Complex structuresEzeddin, Leila January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Systèmes linéaires sur le champ algébrique des fibrés quasi-paraboliques sur une courbeGavioli, Francesca 10 February 2003 (has links) (PDF)
L'objet de cette thèse est d'étudier les systèmes linéaires sur le champ algébrique des fibrés quasi-paraboliques sur une courbe algébrique. Dans la première partie nous montrons que la puissance $\ell$-ième du fibré déterminant sur l'espace de modules des fibrés paraboliques semi-stables (au sens de Seshadri) est un système linéaire sans points de base, dès que $\ell$ est supérieur ou égal à un entier $\ell_0$, que nous déterminons et qui ne dépend que du rang des fibrés vectoriels sous-jacents. Ce résultat repose sur l'existence d'un analogue (quasi-)parabolique du schéma des quotients de Grothendieck. Dans la seconde partie nous étudions le lieu de base des systèmes linéaires sur le champ algébrique des fibrés quasi-paraboliques. Le théorème obtenu dans la première partie sur le fibré déterminant parabolique nous permet d'identifier ce lieu de base et le sous-champ fermé des fibrés quasi-paraboliques instables, pour un choix de poids déterminé par le système linéaire.
|
3 |
L'espace des modules des espaces complexes compacts hyperboliquesKHALFALLAH, Adel 26 October 2001 (has links) (PDF)
Dans ce travail, on étudie les espaces des modules dans le cadre de la géométrie hyperbolique complexe. L'espace des modules des variétés hyperboliques a été auparavant construit par Brody et Wright. On montre l'existence de l'espace des modules des espaces complexes hyperboliques, en considérant des déformations localement triviales et des déformations équisingulières et que ces dernières ne dépendent pas de la résolution choisie en utilisant le théorème de factorisation faible des applications birationelles entre variétés projectives. La construction utilise un critère de représentabilité des foncteurs analytiques par un espace de modules grossier, du à Schumacher et Kosarew-Okonek. Les deux ingrédients principaux de la construction sont l'existence d'une déformation semi-universelle et le théorème de stabilité sur les fibres proches de l'hyperbolicité à travers des morphismes propres. Enfin, en appliquant le même critère, on obtient l'espace des modules des variétés hyperboliquement plongées. Les objets des déformations sont des couples $(X,D)$ où $X$ est une variété compacte et $D$ un diviseur à croisement normaux dans $X$ tel que $X \setminus D$ soit hyperboliquement plongé dans $X$. Les déformations considérées ici sont les déformations logarithmiques.
|
4 |
Classification des composantes connexes des strates de l'espace des modules des différentielles quadratiquesLanneau, Erwan 05 December 2003 (has links) (PDF)
Dans cette thèse, nous étudions la dynamique du flot géodésique de Teichmüller. L'origine de cet intérêt provient de l'étude d'une classe très importante de systèmes dynamiques : celle des échanges d'intervalles. Dans des travaux classiques, Masur et Veech montrent en 1982 que la dynamique de ces échanges d'intervalles est reliée avec la dynamique du flot géodésique de Teichmüller sur l'espace des modules des courbes complexes. L'espace des phases de ce flot peut être vu comme l'espace des modules des différentielles quadratiques sur une surface. Ces espaces sont naturellement stratifiés par le type des singularités des formes. De plus ces strates sont préservées par l'action de ce flot. Des résultats classiques affirment que ces strates sont des orbifolds complexes et sont non-vides et non-connexes en « général ». La motivation du travail expliqué dans cette thèse est donnée par le résultat fondamental, démontré indépendamment par Masur et par Veech (1982), qui affirme que le flot géodésique de Teichmüller agit de façon ergodique sur chaque composante connexe de chaque strate (normalisée), par rapport à une mesure invariante de masse finie. Kontsevich et Zorich ont classifié les composantes connexes des strates de l'espace des modules Hg des différentielles abéliennes. Dans cette thèse, nous donnons une description précise des composantes des strates dans le cas complémentaire de celui de Kontsevich- Zorich, c'est-à-dire de l'espace des modules Qg des différentielles quadratiques qui ne sont pas globalement le carré de différentielles abéliennes. Par ailleurs, nous donnons une formule explicite pour le calcul de la structure spin d'une différentielle quadratique de Qg en termes uniquement des singularités de la strate. Ceci contredit une conjecture de Kontsevich-Zorich sur la classification des composantes connexes non-hyperelliptiques de Qg par cette structure spin. En utilisant cette formule, nous donnons une application dans le contexte des billards dans un polygone rationnel.
|
5 |
Espaces de modules de (G,h)-constellationsBecker, Tanja 21 October 2011 (has links) (PDF)
Nous construisons l'espace de modules M_θ(X) des (G,h)-constellations θ-stables sur X pour un groupe réductif G qui agit sur un schéma affine X sur C et pour une fonction de Hilbert h: Irr G → N_0. Cet espace de modules est une généralisation commune du schéma de Hilbert invariant d'après Alexeev et Brion et de l'espace de modules des G-constellations θ-stables pour un groupe fini G introduit par Craw et Ishii. Notre construction d'un morphisme M_θ(X) → X//G fait de cet espace de modules un candidat pour une résolution des singularités du quotient X//G. De plus, nous déterminons le schéma de Hilbert invariant de la fibre en zéro de l'application moment d'une action de Sl_2 sur (C²)⁶. C'est un des premiers exemples d'un schéma de Hilbert invariant avec multiplicités. Ceci nous amène à décrire une façon générale de procéder pour effectuer de tels calculs. En outre, nous démontrons que notre schéma de Hilbert invariant est lisse et connexe : Cet exemple est donc une résolution des singularités de la réduction symplectique de l'action.
|
6 |
La tour de Teichmüller--GrothendieckZOONEKYND, Vincent 22 June 2001 (has links) (PDF)
Nous commençons par développer la notion de groupe fondamental d'un champ algébrique, à l'aide de sa catégorie de revêtements étales. Cette définition coïncide avec celle, en termes de schémas simpliciaux, de T. Oda. Nous montrons aussi qu'elle permet de retrouver le groupe fondamental profini de l'orbifold analytique associé puis établissons une suite exacte reliant groupe fondamental géométrique et algébrique d'un champ algébrique sur un corps. Dans un deuxième chapitre, après avoir défini les notions d'espace tangent et de diviseur à croisements normaux dans le cadre des champs algébriques, nous généralisons celle de point base tangentiel, bien connue pour les schémas de carcatéristique nulle, aux champs algébriques en caractéristique quelconque. Dans un troisième chapitre, nous montrons que les strates ouvertes de la stratification de l'espace de modules de courbes stables de genre $g$ à $n$ points marqués peuvent se décrire à l'aide des espaces de modules de courbes lisses de dimension inférieure. Nous expliquons aussi comment un graphe en rubans permet de décrire un point-base tangenciel sur ces espaces de modules. Dans un dernier chapitre, nous détaillons certains liens entre la tour des groupoïdes fondamentaux des espaces de modules de courbes lisses relatifs aux points-bases tangenciels précédemment construits et le groupoïde de Lyubashenko, en y construisant certains chemins (torsion, tressage) et en établissant certaines relations entre ces chemins. Dans deux appendices, nous détaillons les notions de champ algébrique et de 2-catégorie.
|
7 |
Familles de surfaces de Klein et fonctions rationnelles réel-étalesLahaye-Hitier, Mathilde 16 December 2004 (has links) (PDF)
Cette thèse a pour objet la classification -- à isotopie près -- des fonctions rationnelles réel-étales de $\P^1_(\R)=\P^1$. Une fonction rationnelle réelle est une fraction de deux polynômes à coefficients réels, ou, de manière équivalente, un morphisme de $\P^1$ dans lui-même. Une telle fonction est dite réel-étale si elle n'a pas de ramification au-dessus des points réels. Comme nous le verrons plus bas, ces fonctions sont intéressantes à cause de leur lien avec les $M$-surfaces. Notre étude fait aussi le pendant de l'article [EG02] de A. Eremenko et A. Gabrielov dans lequel ils résolvent une conjecture de B. et M. Shapiro en dimension $1$. Pour cela, ils Ètudient les fonctions rationnelles sur $\P^1$ dont tous les points de ramification sont réels. Si on regardait les fonctions rationnelles réel-étales à homotopie près, on pourrait passer par des fonctions rationnelles ramifiées au-dessus des points réels. Cette classification est trop grossière. C'est pourquoi nous étudions plutôt les fonctions rationnelles réel-étales à isotopie près. Deux fonctions rationnelles réel-étales sont (\em isotopes) si l'on peut passer de l'une à l'autre par déformation continue dans l'ensemble des fonctions rationnelles réel-étales de mÍme degré. Pour définir de façon précise cette notion d'isotopie, une première partie de ma thèse développe la théorie des familles continues de surfaces de Klein. Pour cela, j'utilise le point de vue des espaces localement annelés. Ils permettent entre autre une définition plus naturelle des morphismes de surfaces de Klein que celle de la théorie classique. D'autre part, ils facilitent le travail en famille. Lors de cette étude, je démontre aussi un Théorème d'Existence de Riemann pour ces familles. Les principaux objets qui interviennent dans la classification sont les (\em arbres signés) associés à une fonction rationnelle réel-étale. Topologiquement, un endomorphisme de $\P^1$ est un revêtement ramifié du disque fermé par lui-même. Une fonction rationnelle $f$ sur $\P^1$ est réel-étale si et seulement si l'image réciproque $f^(-1)\bigl(\P^1(\R)\bigr)$ des points réels est la réunion disjointe de cercles topologiques dans $\C$. Ces cercles sont les arêtes de l'arbre. Les sommets de l'arbre sont les composantes connexes de $f^(-1)\bigl(\P^1\setminus\P^1(\R)\bigr)$. Un sommet $s$ est l'extrémité d'une arÍte $e$ si le cercle topologique $e$ est inclus dans l'adhérence de $s$ dans $\P^1$. De plus, l'arbre est pondéré : à chaque arête $e$ est associé le degré topologique de $f$ restreint à $e$. Une orientation sur $\P^1$ induit une orientation sur ses points réels. On ajoute alors au pied de l'arbre de $f$ un signe $"+"$ ou $"-"$ selon que $f$ préserve ou inverse respectivement l'orientation sur $\P^1(\R)$. Ceci donne l'(\em arbre signé) de $f$. Réciproquement, on montre que tout arbre signé peut être associé à une fonction rationnelle réel-étale.
|
8 |
Dynamique holomorphe et arbres de sphèresArfeux, Matthieu 09 December 2013 (has links) (PDF)
Cette thèse est consacrée à l'introduction d'une compactification des familles de fractions rationnelles dynamiquement marquées de degré d>1 utilisant la compactification de Deligne-Mumford dans le cas particulier du genre zéro. Nous montrerons que les éléments du compactifié peuvent être identifiés à des revêtements d'arbres de sphères dynamiques dont nous donnerons quelques propriétés propres. Dans ce cadre nous pouvons retrouver les résultats démontrés à ce jour par J. Kiwi sur les limites renormalisées sans utiliser les espaces de Berkovich et ré-interpréter d'autres travaux.
|
9 |
Etude arithmétique et algorithmique de courbes de petit genre / Algorithmic and arithmetic study of small genus curvesUlpat Rovetta, Florent 04 December 2015 (has links)
Cette thèse traite de plusieurs aspects algorithmiques des courbes algébriques. La première partie décrit et implémente en Magma un algorithme de calcul des tordues pour les courbes sur les corps finis et en étudie la complexité. Dans le cas hyperellitptique, il s’agit du premier algorithme complet pour faire cela en tout genre. La deuxième partie construit des familles représentatives pour les courbes non hyperelliptiques de genre 3 afin de permettre leur énumération efficace en lien avec le problème de l’obstruction de Serre. Cette partie a fait l’objet d’une publication dans ANTS et une annexe de la thèse est constituée d’un préprint étudiant un modèle statistique pour l’interprétation des données obtenues. La dernière partie de la thèse étudie les invariants et covariants des formes binaires en lien avec la description de l’espace de modules des courbes de genre 2. On y décrit en particulier une nouvelle opération pour engendrer des covariants en petite caractéristique. On étudie aussi l’application d’une nouvelle stratégie (dite de Geyer-Sturmfels) pour obtenir les algèbres de séparants et on l’applique au cas du degré 4 et du degré 6. Enfin, un dernier chapitre montre la validité d’un algorithme de reconstruction pour les courbes de genre 2 à partir de leurs invariants en toute caractéristique différente de 2 et l’implémente en SAGE. / This thesis addresses several algorithmic aspects of algebraic curves.The first part describe and plug in Magma a computational algorithm of twists for the curves over finite fields and study it's complexity. In the hyperelliptic case, it is the first complete algorithm to do this in all genus. The second part builts representatives family for the non hyperelliptic curves of genus 3 to enable them effective enumeration in connection with the Serre obstruction problem. This part has been published in ANTS and an annex of this thesis is made up of a preprint studing a statistic model for interpreting the data obtained.The last part of the thesis studies the invariants and covariants of binary forms in connexion with the description of the moduli space of curves of genus 2. A new operation in particular is described to generate covariants in small characteristic. We study to the implementation of a new strategy (called Geyer-Sturmfels) to get the algebras of separants and we apply it of the case of degree 4 ans 6. Finally, the last chapter shows the validity of a reconstruction algorithm for genus 2 curves from their invariants in all characteristic diferent from 2 and implements it in SAGE .
|
10 |
Espace de modules des G2-fibrés principaux sur une courbe algébrique / Moduli space of principal G2-bundles on an algebraic curveGrégoire, Chloé 01 October 2010 (has links)
L'objet de cette thèse est l'étude de l'espace de modules des G_2-fibrés principaux sur une courbe complexe projective connexe lisse, où G_2 désigne le groupe de Lie exceptionnel de plus petit rang. Le groupe G_2 est tout d'abord présenté comme le groupe des automorphismes de l'algèbre complexe des octaves de Cayley. D'autres définitions sont ensuite proposées. Les différentes réductions et extensions que peut admettre un G_2-fibré principal sont étudiées ainsi que la relation entre la stabilité d'un G_2-fibré principal et celle de son fibré vectoriel associé. L'espace de modules des G_2-fibrés principaux semistables est analysé. Nous obtenons notamment une caractérisation de son lieu lisse, une décomposition explicite de son lieu singulier en trois composantes connexes et une analyse de l'espace de Verlinde de niveau 1 pour le groupe G_2. / This thesis studies the moduli space of principal G_2-bundles over a smooth connected projective curve, where G_2 is the exceptional Lie group of smallest rank. The group G_2 is first introduced as the group of automorphisms of the complex algebra of the Cayley numbers. Other equivalent definitions are also proposed. We study the reductions and extensions that a principal G_2_bundle can admit, as well as the link between a principal G_2-bundle and its associated vector bundle in relation to the notion of (semi)stability. The moduli space of semistable principal G_2-bundles is analysed. We notably obtain a characterisation of its smooth locus, with an explicit decomposition of its singular locus into three connected componants. We also give an analysis of the Verlinde space of G_2 at level 1.
|
Page generated in 0.0825 seconds