Spelling suggestions: "subject:"estimateurs bayésien"" "subject:"estimateurs bayésiens""
1 |
Point de vue maxiset en estimation non paramétriqueAutin, Florent 07 December 2004 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous étudions les propriétés statistiques de diverses classes de procédures. Plus précisément, nous cherchons à déterminer les espaces maximaux (maxisets) sur lesquels ces procédures atteignent une vitesse de convergence donnée. L'approche maxiset nous permet alors de donner une explication théorique à certains phénomènes observés en pratique et non expliqués par l'approche minimax. Nous montrons en effet que les estimateurs de seuillage aléatoire sont plus performants que ceux de seuillage déterministe. Ensuite, nous prouvons que les procédures de seuillage par groupes, comme certaines procédures d'arbre (proches de la procédure de Lepski) ou de seuillage par blocs, ont de meilleures performances au sens maxiset que les procédures de seuillage individuel. Par ailleurs, si les maxisets des estimateurs Bayésiens usuels construits sur des densités à queues lourdes sont de même nature que ceux des estimateurs de seuillage dur, nous montrons qu'il en est de même pour ceux des estimateurs Bayésiens construits à partir de densités Gaussiennes à grande variance et dont les performances numériques sont très bonnes.
|
2 |
Test d'ajustement d'un processus de diffusion ergodique à changement de régimeGassem, Anis 07 July 2010 (has links) (PDF)
Nous considérons les tests d'ajustement de type Cramér-von Mises pour tester l'hypothèse que le processus de diffusion observé est un "switching diffusion", c'est-à-dire un processus de diffusion à changement de régime dont la dérive est de type signe. Ces tests sont basés sur la fonction de répartition empirique et la densité empirique. Il est montré que les distributions limites des tests statistiques proposés sont définis par des fonctionnelles de type intégrale des processus Gaussiens continus. Nous établissons les développements de Karhunen-Loève des processus limites correspondants. Ces développements nous permettent de simplifier le problème du calcul des seuils. Nous étudions le comportement de ces statistiques sous les alternatives et nous montrons que ces tests sont consistants. Pour traiter les hypothèses de base composite nous avons besoin de connaître le comportement asymptotique des estimateurs statistiques des paramètres inconnus, c'est pourquoi nous considérons le problème de l'estimation des paramètres pour le processus de diffusion à changement de régime. Nous supposons que le paramètre inconnu est à deux dimensions et nous décrivons les propriétés asymptotiques de l'estimateur de maximum de vraisemblance et de l'estimateur bayésien dans ce cas. L'utilisation de ces estimateurs nous ramène à construire les tests de type Cramér-von Mises correspondants et à étudier leurs distributions limites. Enfin, nous considérons deux tests de type Cramér-von Mises de processus de diffusion ergodiques dans le cas général. Il est montré que pour le choix de certaines des fonctions de poids ces tests sont asymptotiquement " distribution-free ". Pour certains cas particuliers, nous établissons les expressions explicites des distributions limites de ces statistiques par le calcul direct de la transformée de Laplace.
|
3 |
Estimation paramétriques et tests d'hypothèses pour des modèles avec plusieurs ruptures d'un processus de poisson / Parametric estimation and hypothesis testing for models with multiple change-point of poisson processTop, Alioune 20 June 2016 (has links)
Ce travail est consacré aux problèmes d’estimation paramétriques, aux tests d’hypothèses et aux tests d’ajustement pour les processus de Poisson non homogènes.Tout d’abord on a étudié deux modèles ayant chacun deux sauts localisés par un paramètre inconnu. Pour le premier modèle la somme des sauts est positive. Tandis que le second a un changement de régime et constant par morceaux. La somme de ses deux sauts est nulle. Ainsi pour chacun de ces modèles nous avons étudié les propriétés asymptotiques de l’estimateur bayésien (EB) et celui du maximum de vraisemblance(EMV). Nous avons montré la consistance, la convergence en distribution et la convergence des moments. En particulier l’estimateur bayésien est asymptotiquement efficace. Pour le second modèle nous avons aussi considéré le test d’une hypothèse simple contre une alternative unilatérale et nous avons décrit les propriétés asymptotiques (choix du seuil et puissance ) du test de Wald (WT)et du test du rapport de vraisemblance généralisé (GRLT).Les démonstrations sont basées sur la méthode d’Ibragimov et Khasminskii. Cette dernière repose sur la convergence faible du rapport de vraisemblance normalisé dans l’espace de Skorohod sous certains critères de tension des familles demesure correspondantes.Par des simulations numériques, les variances limites nous ont permis de conclure que l’EB est meilleur que celui du EMV. Lorsque la somme des sauts est nulle, nous avons développé une approche numérique pour le EMV.Ensuite on a considéré le problème de construction d’un test d’ajustement pour un modèle avec un paramètre d’échelle. On a montré que dans ce cas, le test de Cramer-von Mises est asymptotiquement ”parameter-free” et est consistent. / This work is devoted to the parametric estimation, hypothesis testing and goodnessof-fit test problems for non homogenous Poisson processes. First we consider two models having two jumps located by an unknown parameter.For the first model the sum of jumps is positive. The second is a model of switching intensity, piecewise constant and the sum of jumps is zero. Thus, for each model, we studied the asymptotic properties of the Bayesian estimator (BE) andthe likelihood estimator (MLE). The consistency, the convergence in distribution and the convergence of moments are shown. In particular we show that the BE is asymptotically efficient. For the second model we also consider the problem of asimple hypothesis testing against a one- sided alternative. The asymptotic properties (choice of the threshold and power) of Wald test (WT) and the generalized likelihood ratio test (GRLT) are described.For the proofs we use the method of Ibragimov and Khasminskii. This method is based on the weak convergence of the normalized likelihood ratio in the Skorohod space under some tightness criterion of the corresponding families of measure.By numerical simulations, the limiting variances of estimators allows us to conclude that the BE outperforms the MLE. In the situation where the sum of jumps is zero, we developed a numerical approach to obtain the MLE.Then we consider the problem of construction of goodness-of-test for a model with scale parameter. We show that the Cram´er-von Mises type test is asymptotically parameter-free. It is also consistent.
|
4 |
Estimation bayésienne non paramétriqueRivoirard, Vincent 13 December 2002 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous nous intéressons à l'étude statistique d'une classe particulière d'espaces de Lorentz : les espaces de Besov faibles qui apparaissent naturellement dans le contexte de la théorie maxiset. Avec des hypothèses de type "bruit blanc gaussien", nous montrons, grâce à des techniques bayésiennes, que les vitesses minimax des espaces de Besov forts ou faibles sont les mêmes. Les distributions les plus défavorables que nous exhibons pour chaque espace de Besov faible sont construites à partir des lois de Pareto et diffèrent en cela de celles des espaces de Besov forts. Grâce aux simulations de ces distributions, nous construisons des représentations visuelles des "ennemis typiques". Enfin, nous exploitons ces distributions pour bâtir une procédure d'estimation minimax, de type "seuillage" appelée ParetoThresh, que nous étudions d'un point de vue pratique. Dans un deuxième temps, nous nous plaçons sous le modèle hétéroscédastique de bruit blanc gaussien et sous l'approche maxiset, nous établissons la sous-optimalité des estimateurs linéaires par rapport aux procédures adaptatives de type "seuillage". Puis, nous nous interrogeons sur la meilleure façon de modéliser le caractère "sparse" d'une suite à travers une approche bayésienne. À cet effet, nous étudions les maxisets des estimateurs bayésiens classiques - médiane, moyenne - associés à une modélisation construite sur des densités à queues lourdes. Les espaces maximaux pour ces estimateurs sont des espaces de Lorentz, et coïncident avec ceux associés aux estimateurs de type "seuillage". Nous prolongeons de manière naturelle ce résultat en obtenant une condition nécessaire et suffisante sur les paramètres du modèle pour que la loi a priori se concentre presque sûrement sur un espace de Lorentz précis.
|
Page generated in 0.0634 seconds