• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 54
  • 15
  • 13
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 66
  • 50
  • 46
  • 36
  • 34
  • 31
  • 27
  • 27
  • 23
  • 23
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The Topology and Dynamics of Surface Diffeomorphisms and Solenoid Embeddings

Hui, Xueming 07 April 2023 (has links)
We study two topics on surface diffeomorphisms, their mapping classes and dynamics. For the mapping classes of a punctured disc, we study the $\ZxZ$ subgroups of the fundamental groups of the corresponding mapping tori. An application is the proof of the fact that a satellite knot with braid pattern is prime. For the mapping classes of the disc minus a Cantor set, we study a special type of reducible mapping class. This has direct application on the embeddings of solenoids in $\mathbb{S}^3$. We also give some examples of other types of mapping classes of the disc minus a Cantor set. For the dynamics of surface diffeomorphisms, we prove three formulas for computing the topological pressure of a $C^1$-generic conservative diffeomorphism with no dominated splitting and show the continuity of topological pressure with respect to these diffeomorphisms. We prove for these generic diffeomorphisms that there is no equilibrium states with positive measure theoretic entropy. In particular, for hyperbolic potentials, there are no equilibrium states. For $C^1$ generic conservative diffeomorphisms on compact surfaces with no dominated splitting and $\phi_m(x):=-\frac{1}{m}\log \Vert D_x f^m\Vert, m \in \mathbb{N}$, we show that there exist equilibrium states with zero entropy and there exists a transition point $t_0$ for the one parameter family $\lbrace t \phi_m\rbrace_{t\geq 0}$, such that there is no equilibrium states for $ t \in [0, t_0)$ and there is an equilibrium state for $t \in [t_0,+\infty)$.
222

“The Key to All Reform”: Mormon Women, Religious Identity, and Suffrage, 1887-1920

Geis, Amy Lynn January 2015 (has links)
No description available.
223

Topics in the theory of inhomogeneous media: composite superconductors and dielectrics

Kim, Kwangmoo 26 June 2007 (has links)
No description available.
224

Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems

González Zumba, Jorge Andrés 10 January 2021 (has links)
[ES] La naturaleza aleatoria que caracteriza algunos fenómenos en sistemas físicos reales (e.g., ingeniería, biología, economía, finanzas, epidemiología y otros) nos ha planteado el desafío de un cambio de paradigma del modelado matemático y el análisis de sistemas dinámicos, y a tratar los fenómenos aleatorios como variables aleatorias o procesos estocásticos. Este enfoque novedoso ha traído como consecuencia nuevas especificidades que la teoría clásica del modelado y análisis de sistemas dinámicos deterministas no ha podido cubrir. Afortunadamente, maravillosas contribuciones, realizadas sobre todo en el último siglo, desde el campo de las matemáticas por científicos como Kolmogorov, Langevin, Lévy, Itô, Stratonovich, sólo por nombrar algunos; han abierto las puertas para un estudio bien fundamentado de la dinámica de sistemas físicos perturbados por ruido. En la presente tesis se discute el uso de ecuaciones diferenciales algebraicas estocásticas (EDAEs) para el modelado de sistemas multifísicos en red afectados por perturbaciones estocásticas, así como la evaluación de su estabilidad asintótica a través de exponentes de Lyapunov (ELs). El estudio está enfocado en EDAEs d-index-1 y su reformulación como ecuaciones diferenciales estocásticas ordinarias (EDEs). Fundamentados en la teoría ergódica, es factible analizar los ELs a través de sistemas dinámicos aleatorios (SDAs) generados por EDEs subyacentes. Una vez garantizada la existencia de ELs bien definidas, hemos procedido al uso de técnicas de simulación numérica para determinar los ELs numéricamente. Hemos implementado métodos numéricos basados en descomposición QR discreta y continua para el cómputo de la matriz de solución fundamental y su uso en el cálculo de los ELs. Las características numéricas y computacionales más relevantes de ambos métodos se ilustran mediante pruebas numéricas. Toda esta investigación sobre el modelado de sistemas con EDAEs y evaluación de su estabilidad a través de ELs calculados numéricamente, tiene una interesante aplicación en ingeniería. Esta es la evaluación de la estabilidad dinámica de sistemas eléctricos de potencia. En el presente trabajo de investigación, implementamos nuestros métodos numéricos basados en descomposición QR para el test de estabilidad dinámica en dos modelos de sistemas eléctricos de potencia de una-máquina bus-infinito (OMBI) afectados por diferentes perturbaciones ruidosas. El análisis en pequeña-señal evidencia el potencial de las técnicas propuestas en aplicaciones de ingeniería. / [CA] La naturalesa aleatòria que caracteritza alguns fenòmens en sistemes físics reals (e.g., enginyeria, biologia, economia, finances, epidemiologia i uns altres) ens ha plantejat el desafiament d'un canvi de paradigma del modelatge matemàtic i l'anàlisi de sistemes dinàmics, i a tractar els fenòmens aleatoris com a variables aleatòries o processos estocàstics. Aquest enfocament nou ha portat com a conseqüència noves especificitats que la teoria clàssica del modelatge i anàlisi de sistemes dinàmics deterministes no ha pogut cobrir. Afortunadament, meravelloses contribucions, realitzades sobretot en l'últim segle, des del camp de les matemàtiques per científics com Kolmogorov, Langevin, Lévy, Itô, Stratonovich, només per nomenar alguns; han obert les portes per a un estudi ben fonamentat de la dinàmica de sistemes físics pertorbats per soroll. En la present tesi es discuteix l'ús d'equacions diferencials algebraiques estocàstiques (EDAEs) per al modelatge de sistemes multifísicos en xarxa afectats per pertorbacions estocàstiques, així com l'avaluació de la seua estabilitat asimptòtica a través d'exponents de Lyapunov (ELs). L'estudi està enfocat en EDAEs d-index-1 i la seua reformulació com a equacions diferencials estocàstiques ordinàries (EDEs). Fonamentats en la teoria ergòdica, és factible analitzar els ELs a través de sistemes dinàmics aleatoris (SDAs) generats per EDEs subjacents. Una vegada garantida l'existència d'ELs ben definides, hem procedit a l'ús de tècniques de simulació numèrica per a determinar els ELs numèricament. Hem implementat mètodes numèrics basats en descomposició QR discreta i contínua per al còmput de la matriu de solució fonamental i el seu ús en el càlcul dels ELs. Les característiques numèriques i computacionals més rellevants de tots dos mètodes s'illustren mitjançant proves numèriques. Tota aquesta investigació sobre el modelatge de sistemes amb EDAEs i avaluació de la seua estabilitat a través d'ELs calculats numèricament, té una interessant aplicació en enginyeria. Aquesta és l'avaluació de l'estabilitat dinàmica de sistemes elèctrics de potència. En el present treball de recerca, implementem els nostres mètodes numèrics basats en descomposició QR per al test d'estabilitat dinàmica en dos models de sistemes elèctrics de potència d'una-màquina bus-infinit (OMBI) afectats per diferents pertorbacions sorolloses. L'anàlisi en xicotet-senyal evidencia el potencial de les tècniques proposades en aplicacions d'enginyeria. / [EN] The random nature that characterizes some phenomena in the real-world physical systems (e.g., engineering, biology, economics, finance, epidemiology, and others) has posed the challenge of changing the modeling and analysis paradigm and treat these phenomena as random variables or stochastic processes. Consequently, this novel approach has brought new specificities that the classical theory of modeling and analysis for deterministic dynamical systems cannot cover. Fortunately, stunning contributions made overall in the last century from the mathematics field by scientists such as Kolmogorov, Langevin, Lévy, Itô, Stratonovich, to name a few; have opened avenues for a well-founded study of the dynamics in physical systems perturbed by noise. In the present thesis, we discuss stochastic differential-algebraic equations (SDAEs) for modeling multi-physical network systems under stochastic disturbances, and their asymptotic stability assessment via Lyapunov exponents (LEs). We focus on d-index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Supported by the ergodic theory, it is feasible to analyze the LEs via the random dynamical system (RDSs) generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and use it in the computation of the LEs. Important numerical and computational features of both methods are illustrated through numerical tests. All this investigation concerning systems modeling through SDAEs and their stability assessment via computed LEs finds an appealing engineering application in the dynamic stability assessment of power systems. In this research work, we implement our QR-based numerical methods for testing the dynamic stability in two types of single-machine infinite-bus (SMIB) power system models perturbed by different noisy disturbances. The analysis in small-signal evidences the potential of the proposed techniques in engineering applications. / Mi agradecimiento al estado ecuatoriano que, a través del Programa de Becas para el Fortalecimiento y Desarrollo del Talento Humano en Ciencia y Tecnología 2012 de la Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SENESCYT), han financiado mis estudios de doctorado. / González Zumba, JA. (2020). Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158558
225

Caractérisation des aérosols par inversion des données combinées des photomètres et lidars au sol.

Nassif Moussa Daou, David January 2012 (has links)
Aerosols are small, micrometer-sized particles, whose optical effects coupled with their impact on cloud properties is a source of large uncertainty in climate models. While their radiative forcing impact is largely of a cooling nature, there can be significant variations in the degree of their impact, depending on the size and the nature of the aerosols. The radiative and optical impact of aerosols are, first and foremost, dependent on their concentration or number density (an extensive parameter) and secondly on the size and nature of the aerosols (intensive, per particle, parameters). We employed passive (sunphotmetry) and active (backscatter lidar) measurements to retrieve extensive optical signals (aerosol optical depth or AOD and backscatter coefficient respectively) and semi-intensive optical signals (fine and coarse mode OD and fine and coarse mode backscatter coefficient respectively) and compared the optical coherency of these retrievals over a variety of aerosol and thin cloud events (pollution, dust, volcanic, smoke, thin cloud dominated). The retrievals were performed using an existing spectral deconvolution method applied to the sunphotometry data (SDA) and a new retrieval technique for the lidar based on a colour ratio thresholding technique. The validation of the lidar retrieval was accomplished by comparing the vertical integrations of the fine mode, coarse mode and total backscatter coefficients of the lidar with their sunphotometry analogues where lidar ratios (the intensive parameter required to transform backscatter coefficients into extinction coefficients) were (a) computed independently using the SDA retrievals for fine mode aerosols or prescribed for coarse mode aerosols and clouds or (b) computed by forcing the computed (fine, coarse and total) lidar ODs to be equal to their analog sunphotometry ODs. Comparisons between cases (a) and (b) as well as the semi-qualitative verification of the derived fine and coarse mode vertical profiles with the expected backscatter coefficient behavior of fine and coarse mode aerosols yielded satisfactory agreement (notably that the fine, coarse and total OD errors were <~ sunphotometry instrument errors). Comparisons between cases (a) and (b) also showed a degree of optical coherency between the fine mode lidar ratios.
226

Analyse spectrale des signaux chaotiques / Spectral analysis of chaotic signals

Feltekh, Kais 12 September 2014 (has links)
Au cours des deux dernières décennies, les signaux chaotiques ont été de plusen plus pris en compte dans les télécommunications, traitement du signal ou transmissionssécurisées. De nombreux articles ont été publiés qui étudient la densitéspectrale de puissance (DSP) des signaux générés par des transformations spécifiques.La concentration sur la DSP est due à l’importance de la fréquence dans lestélécommunications et la transmission sécurisée. Grâce au grand nombre de systèmessans fil, la disponibilité des fréquences de transmission et de réception est de plus enplus rare pour les communications sans fil. Aussi, les médias guidés ont des limitationsliées à la bande passante du signal. Dans cette thèse, nous étudions certainespropriétés associées à la bifurcation collision de frontière pour une transformationunidimensionnelle linéaire par morceaux avec trois pentes et deux paramètres. Nouscalculons les expressions analytiques de l’autocorrélation et de la densité spectralede puissance des signaux chaotiques générés par les transformations linéaires parmorceaux. Nous montrons l’existence d’une forte relation entre les différents typesde densité spectrale de puissance (passe-bas, passe-haut ou coupe-bande) et les paramètresde bifurcation. Nous notons également en évidence une relation entre le typede spectre et l’ordre des cycles attractifs. Le type du spectre dépend de l’existencedes orbites périodiques au-delà de la bifurcation de collision de frontière qui a donnénaissance au chaos. Nous utilisons ensuite les transformations chaotiques pour étudierla fonction d’ambiguïté. Nous combinons quelques transformations chaotiquesbien déterminées pour obtenir un spectre large bande avec une bonne fonction d’ambiguïtéqui peut être utilisée en système radar / During the two last decades, chaotic signals have been increasingly consideredin telecommunications, signal processing or secure transmissions. Many papers haveappeared which study the power spectral density (PSD) of signals issued from somespecific maps. This interest in the PSD is due to the importance of frequency in thetelecommunications and transmission security. With the large number of wirelesssystems, the availability of frequencies for transmission and reception is increasinglyuncommon for wireless communications. Also, guided media have limitations relatedto the bandwidth of a signal. In this thesis, we investigate some properties associatedto the border-collision bifurcations in a one-dimensional piecewise-linear map withthree slopes and two parameters. We derive analytical expressions for the autocorrelationsequence, power spectral density of chaotic signals generated by our piecewiselinearmap. We prove the existence of strong relation between different types of thepower spectral density (low-pass, high-pass or band-stop) and the parameters. Wealso find a relation between the type of spectrum and the order of attractive cycleswhich are located after the border collision bifurcation between chaos and cycles.We use the chaotic transformations to study the ambiguity function. We combinesome chaotic transformations well determined to obtain a broadband spectrum witha good ambiguity function that can be used in radar systems
227

Equations aux dérivées partielles elliptiques du quatrième ordre avec exposants critiques de Sobolev sur les variétés riemanniennes avec et sans bord

CARAFFA BERNARD, Daniela 23 April 2003 (has links) (PDF)
L'objet de cette thèse est l'étude, sur les variétés riemanniennes compactes $(V_n,g)$ de dimension $n>4$, de l'équation aux dérivées partielles elliptique de quatrième ordre $$(E)\; \Delta^2u+\nabla [a(x)\nabla u] +h(x)u= f(x)|u|^(N-2)u$$ où $a$, $h$, $f$ sont fonction $C^\infty $, avec $f(x)$ fonction constante ou partout positive et $N=(2n\over((n-4)))$ est l'exposant critique. En utilisant la méthode variationnelle on prouve dans le théorème principal que l'équation $(E)$ admet une solution $C^((5,\alpha))(V)$ $0<\alpha<1$ non nulle si une certaine condition qui dépend de la meilleure constante dans les inclusion de Sobolev ($H_2\subset L_(2n\over(n-4))$) est satisfaite. De plus on montre que si $a$ et $h$ sont des fonctions constantes bien précisées la solution de l'équation est positive et $C^\infty(V)$. Lorsque $n\geq 6$, on donne aussi des applications du théorème principal. Dans la dernière partie de cette thèse sur une variété riemannienne compacte à bord de dimension $n$, $(\overline(W)_n,g )$ nous nous intéressons au problème : $$ (P_N) \; \left\lbrace \begin(array)(c) \Delta^2 v+\nabla [a(x)\nabla u] +h(x) v= f(x)|v |^(N-2)v \; \hbox(sur)\; W \\ \Delta v =\delta \, , \, v = \eta \;\hbox(sur) \;\partial W \end(array)\right.$$ avec $\delta$,$\eta$,$f$ fonctions $C^\infty (\overline (W))$ avec $f(x)$ fonction partout positive et on démontre l'existence d'une solution non triviale pour le problème $(P_N)$.
228

Ελλειπτικές εξισώσεις με υπερκρίσιμο εκθέτη σε συμπαγείς πολλαπλότητες με σύνορο

Λαμπρόπουλος, Νίκος 30 July 2007 (has links)
Η παρούσα διατριβή ερευνητικά εντάσσεται στην περιοχή της Μη Γραμμικής Ανάλυσης και ειδικότερα στην επίλυση Μη Γραμμικών Ελλειπτικών Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.) με υπερκρίσιμο εκθέτη. Η μη γραμμικότητα δεν επιτρέπει την επίλυση των εξισώσεων αυτών χρησιμοποιώντας τις συμπαγείς εμφυτεύσεις. Αξιοποιώντας τις ιδιότητες συμμετρίας που παρουσιάζει η πολλαπλότητα, αφενός παρακάμπτουμε το εμπόδιο αυτό και αφετέρου επιτυγχάνουμε να επιλύσουμε εξισώσεις αυτού του τύπου με υπερκρίσιμο εκθέτη. Στο πρώτο μέρος της Διατριβής υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο στον στερεό τόρο, μελετάμε το φαινόμενο της συμπύκνωσης και επιλύουμε τα προβλήματα (P1) και (P2). Στο δεύτερο μέρος υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο σε μια λεία, συμπαγή, n-διάστατη, n\geq 3, πολλαπλότητα Riemann (M,g) με σύνορο, που είναι αναλλοίωτη από τη δράση μιας οποιασδήποτε συμπαγούς υποομάδας G της ομάδας των ισομετριών Is(M,g) της Μ και της οποίας όλες οι G-τροχιές έχουν άπειρο πληθάριθμο και κάνουμε μια σύντομη παρουσίαση των λύσεων των προβλημάτων (P3) και (P4). / The present Thesis is incorporated in the research area of Nonlinear Analysis, especially solvability of Nonlinear Elliptic PDE’s with supercritical exponent.The nonlinear nature of the equations makes it impossible to be solved by means of compact imbeddings. Taking advantage of the symmetry properties of the manifold we overcome the obstacle as well as we succeed in solving equations of this type possessing supercritical exponent. In the first part of the Thesis we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on the solid torus, we study the phenomenon of concentration and solve problems (P1) and (P2).In the second part we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on a smooth, compact, n−dimensional Riemannian manifold (M, g), n _ 3, with boundary, which is invariant under the action of a subgroup G of the isometry group Is(M, g) of M, the orbits of which have infinity cardinality. We also present brief solutions of problems (P3) and (P4).
229

Extremal Problems of Error Exponents and Capacity of Duplication Channels

Ramezani, Mahdi Unknown Date
No description available.
230

Analysis of cerebral and respiratory activity in neonatal intensive care units for the assessment of maturation and infection in the early premature infant

Navarro, Xavier 22 October 2013 (has links) (PDF)
This Ph.D. dissertation processes and analyzes signals from the neonatal intensive care units (NICUs) for the study of maturity, systemic infection (sepsis) and the influence of immunization in the premature newborn. A special attention is payed to the electroencephalography and the breathing signal. The former is often contaminated by several sources of noise, thus methods based on the signals decomposition and optimal noise cancellation, adapted to the characteristics of the immature EEG, were proposed and evaluated objectively on real and simulated signals. By means of the EEG and delta burst analysis, detected automatically by a proposed classifier, infant's maturation and the effects of vaccination are studied. Concerning the second signal, breathing, non-linear and fractal methods are adapted to evaluate maturity and sepsis. A robustness study of estimation methods is also conducted, showing that the Hurst exponent, estimated on respiratory variability signals, is a good detector of infection.

Page generated in 0.0831 seconds