• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 7
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 33
  • 21
  • 15
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Einfluss organischer Düngung auf Ertrag, symbiotische N2-Fixierung und Nährstoffaufnahme von Saatplatterbse (Lathyrus sativus L.), Ackerbohne (Vicia faba L.) und Rotklee (Trifolium pratense L.) sowie auf Ertrag eines nachfolgenden Winterweizens (Triticum aestivum L.)

Lux, Guido 11 February 2016 (has links)
Das Ziel der vorliegenden Arbeit war es, zu untersuchen, ob sich mit der Düngung von Stroh, Gehölzhäcksel, frischem Pferdemist und Grüngutkompost die Ertragsleistung und Nährstoffaufnahme von Leguminosen sowie der Folgefrucht Winterweizen steigern lässt. Darüber hinaus sollte die Aufnahme von düngebürtigem Kohlenstoff durch Rotklee mittels 13-C-angereichertem Stroh quantifiziert werden. Die Verfügbarkeit von Kalium, teilweise auch von Schwefel und Molybdän, wurde vor allem nach der Düngung von Grüngutkompost und von Pferdemist für die untersuchten Leguminosen verbessert, während nach der Düngung von Gehölzhäcksel und Stroh keine signifikanten Effekte auf die Nährstoffaufnahme der Pflanzen festgestellt werden konnten. Die scheinbare Ausnutzung des gedüngten Stickstoffs durch die Leguminosen lag in Abhängigkeit von der Düngung zwischen 0 und 9 % (Gehölzhäcksel < Grüngutkompost < Pferdemist < Stroh). Nur nach der Düngung von Pferdemist zu Saatplatterbse und Ackerbohne verringerte sich der Anteil an symbiotisch fixiertem Luftstickstoff am Spross-N gegenüber der Kontrolle, nicht jedoch die symbiotisch fixierte N-Menge. Der Vorrat an mineralischem Stickstoff im Boden in einer Tiefe von 0 bis 30 cm war unter Ackerbohne und Rotklee ca. 40 Tage nach der Düngung und Einarbeitung von Gehölzhäcksel gegenüber den Vergleichsvarianten und der Kontrolle deutlich vermindert. Ein Einfluss der durch die Düngung bedingten temporären N-Festlegung im Boden auf den Anteil an fixiertem Luftstickstoff am Spross-N konnte bei keiner der untersuchten Leguminosen festgestellt werden. Der nachfolgende Winterweizen reagierte in einem Jahr mit signifikant höherem Kornertrag auf die Düngung von Grüngutkompost zu Ackerbohne und erhöhtem Rohproteingehalt im Korn auf die Düngung von Pferdemist zu Saatplatterbse. Mit Hilfe von 13-C-markiertem Stroh wurde im Freiland eine Assimilation von 0,5 % der mit dem Stroh gedüngten Kohlenstoffmenge durch Rotklee ermittelt. / The aim of this study was to examine, whether the application of wheat straw, pruning, horse manure and green compost improves the yield formation and nutrient uptake of legumes and the succeeding crop winter wheat. Furthermore it should be quantified the amount of carbon in red clover derived from the organic fertilizer by carbon dioxid assimilation. An improved uptake of potassium, partially of sulphur and molybdenum for the legumes could be detected after the application of green compost and horse manure. No effects were found on plant nutrient uptake after the application of straw and pruning. The apparent utilization of the applied nitrogen by organic fertilizer was 0 to 9 %, depending on the fertilization (pruning < green compost < horse manure < straw). The proportion of symbiontically fixed nitrogen decrease in faba bean and in chick-pea after manuring with horse manure compared with the control. However the total amount of symbiotically fixed nitrogen did not decreased. The amount of mineral nitrogen in the soil (depth: 0 to 0,3 m) was significant reduced under faba bean and red clover, 40 days after application and incorporation of pruning. No effect on the symbiotic nitrogen fixation of the legumes was found because of the organic fertilizer induced temporary immobilization of nitrogen in this soil layer. An increased grain yield was determined in the succeeding winter wheat after fertilizing green compost to faba bean and a higher content of crude protein in grain of the wheat was determined after fertilizing horse manure to chick-pea. With the help of a 13C-tracer method it could be estimated, that about 0,5 % of the added carbon with straw was assimilated by red clover under field conditions.
62

Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchards

Irvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
63

Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchards

Irvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
64

Genetische Analysen für eine markergestützte Verbesserung der Trockenstresstoleranz von Winterackerbohnen / Genetic analysis for marker assisted improvement of drought tolerance in autumn sown Faba Bean

Welna, Gregor Christian 13 May 2014 (has links)
In dieser Arbeit zu genetischen Analysen für die Vorbereitung eine markergestützten Selek-tion auf Trockenstresstoleranz bei der Winterackerbohne wurden 196 Winterackerbohnen-Inzuchtlinien und vier Sommerackerbohnen-Inzuchtlinien genotypisiert. Diese Inzuchtlinien wurden außerdem hinsichtlich der Physiologie-Merkmale Spad-Wert, Membranstabilitäts-index, Blattwassergehalt, Gesamtgehalt löslicher Zucker sowie Prolin- und Glycinbetainge-halt in je einer Kontroll- und einer Stressbehandlung phänotypisiert. Anhand eines Verifika-tionssatzes von 40 der 196 Winterackerbohnen-Inzuchtlinien wurden korrelative Verbin-dungen zwischen den physiologischen Merkmalen sowie feldbasierten und züchterisch relevanten Merkmalen wie bspw. Ertrag gesucht. Diese feldbasierten Merkmale wurden mit Hilfe von Rain-Out-Sheltern an den Standorten Göttingen und Groß Lüsewitz in den Jahren 2010/2011, 2012 und 2012/2013 erfasst. Ferner wurden die Möglichkeiten einer Simulation von Trockenstressreaktionen anhand dieses Verifikationssatzes durch Sikkationsversuche mit Kaliumjodidapplikation untersucht. Es konnten keine eindeutigen Beziehungen zwi-schen der Stressreaktion induziert durch Wassermangel und durch Kaliumjodidapplikation ermittelt werden. Außerdem wurden keine eindeutigen Beziehungen der physiologischen Merkmale zu den feldbasierten Trockenstressresultaten gefunden. Mittels einer Kartierungspopulation von 101 RIL wurde eine genetische Karte der Acker-bohne mit zwölf Kopplungsgruppen bestehend aus insgesamt 1451 Markern und einer Län-ge von 1633,2 cM erstellt. Fünf dieser Kopplungsgruppen konnten als Fragmente identifi-ziert werden. Die verbleibenden sieben Kopplungsgruppen wurden mit den verwendeten SNP-Markern mittelbar den sechs Chromosomen der Ackerbohne zugeordnet. Hierbei stel-len z. B. die erste und vierte Kopplungsgruppe gemeinsam eine Kopplungsgruppe dar. Die so kartierten Marker wurden hinsichtlich ihres Spaltungsverhältnisses innerhalb des A-Satzes – bestehend aus 189 der 196 phänotypisierten Winterackerbohnen-Inzuchtlinien – überprüft und für eine Assoziationsanalyse mit den Physiologiemerkmalen ausgewählt. Das Gametenphasenungleichgewicht zwischen 323 610 Markerpaaren wurde ihrer jeweiligen Distanz auf der genetischen Karte gegenübergestellt. Es konnte gezeigt werden, dass in der Entstehungsgeschichte des untersuchten Materials das Gametenphasenungleichgewicht durch Rekombination stark abgebaut wurde. In die Assoziationsanalyse flossen insgesamt 1322 Marker ein. Mittels dieser molekularen Marker konnten insgesamt sechs QTL für Physiologie-Merkmale identifiziert werden. Dabei entfiel je ein QTL auf die Merkmale absolute Differenz im Glycinbetaingehalt zwischen Stress- und Kontrollbehandlung und Glycinbetaingehalt in der Kontrollbehandlung. Vier QTL konnten für die absolute Differenz zwischen dem Prolingehalt in der Stress- und Kontroll-behandlung identifiziert werden. Die gefundenen QTL können anhand der vorliegenden feldbasierten Verifikationsdaten nicht als markergestützte Selektionsmöglichkeit auf Tro-ckenstresstoleranz empfohlen werden. Der nächste Schritt ist demzufolge, mittels feldba-sierter Prüfungen der Inzuchtlinien in realen, relevanten Trockenstresslagen über ausrei-chend viele Orte und Jahre die Bedeutung der physiologischen Merkmale weiter zu prüfen.

Page generated in 0.026 seconds