31 |
Treatment of Pneumococcal Infection by Using Engineered Human C-Reactive Protein in a Mouse ModelNgwa, Donald N., Singh, Sanjay K., Gang, Toh B., Agrawal, Alok 07 October 2020 (has links)
C-reactive protein (CRP) binds to several species of bacterial pathogens including Streptococcus pneumoniae. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection by binding to pneumococci and activating the complement system. For protection, however, CRP must be injected into mice within a few hours of administering pneumococci, that is, CRP is protective against early-stage infection but not against late-stage infection. It is assumed that CRP cannot protect if pneumococci got time to recruit complement inhibitor factor H on their surface to become complement attack-resistant. Since the conformation of CRP is altered under inflammatory conditions and altered CRP binds to immobilized factor H also, we hypothesized that in order to protect against late-stage infection, CRP needed to change its structure and that was not happening in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor H on pneumococci but do not bind to factor H on any host cell in the blood. We found that E-CRP, in cooperation with wild-type CRP, was protective regardless of the timing of administering E-CRP into mice. We conclude that CRP acts via two different conformations to execute its anti-pneumococcal function and a model for the mechanism of action of CRP is proposed. These results suggest that pre-modified CRP, such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal infection. Our findings may also have implications for infections with antibiotic-resistant pneumococcal strains and for infections with other bacterial species that use host proteins to evade complement-mediated killing.
|
32 |
Structure-Function Relationships of C-Reactive Protein in Bacterial InfectionNgwa, Donald N., Agrawal, Alok 01 January 2019 (has links)
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. One host defense function of C-reactive protein (CRP) is to protect against Streptococcus pneumoniae infection as shown by experiments employing murine models of pneumococcal infection. The protective effect of CRP is due to reduction in bacteremia. There is a distinct relationship between the structure of CRP and its anti-pneumococcal function. CRP is functional in both native and non-native pentameric structural conformations. In the native conformation, CRP binds to pneumococci through the phosphocholine molecules present on the C-polysaccharide of the pneumococcus and the anti-pneumococcal function probably involves the known ability of ligand-complexed CRP to activate the complement system. In the native structure-function relationship, CRP is protective only when given to mice within a few hours of the administration of pneumococci. The non-native pentameric conformation of CRP is created when CRP is exposed to conditions mimicking inflammatory microenvironments, such as acidic pH and redox conditions. In the non-native conformation, CRP binds to immobilized complement inhibitor factor H in addition to being able to bind to phosphocholine. Recent data using CRP mutants suggest that the factor H-binding function of non-native CRP is beneficial: in the non-native structure-function relationship, CRP can be given to mice any time after the administration of pneumococci irrespective of whether the pneumococci became complement-resistant or not. In conclusion, while native CRP is protective only against early stage infection, non-native CRP is protective against both early stage and late stage infections. Because non-native CRP displays phosphocholine-independent anti-pneumococcal activity, it is quite possible that CRP functions as a general anti-bacterial molecule.
|
33 |
Mechanisms of the Anti-Pneumococcal Function of C-Reactive ProteinGang, Toh B 01 December 2013 (has links) (PDF)
Human C-reactive protein (CRP) increases survival of and decreases bacteremia in mice infected with Streptococcus pneumoniae. Such protection of mice against pneumococcal infection is seen only when CRP is administered into mice 6 hours before to 2 hours after the injection of pneumococci, but not when CRP is given to mice at a later time. Our first aim was to define the mechanism of CRP-mediated initial protection of mice against infection. It was proposed that CRP binds to phosphocholine (PCh) moieties present in the cell wall and activates the complement system on the pneumococcal surface that kills the pathogen. We generated a CRP mutant F66A/T76Y/E81A incapable of binding to PCh. Mutant CRP did not protect mice from pneumococcal infection. Thus, the proposed hypothesis was correct; the PCh-binding property of CRP contributes to the protection of mice against pneumococcal infection. Our second aim was to investigate why CRP was not protective during the late stages of infection. Pneumococci are known to recruit an inhibitor of complement activation, factor H, from the host to their surface to escape complement attack. We considered the ability of CRP, in its nonnative form, to bind to factor H, and generated a CRP mutant E42Q/F66A/T76Y/E81A capable of binding to factor H. In vivo experiments using the quadruple CRP mutant are in progress. We anticipate that the combination of wild-type and quadruple mutant CRP should be protective during the late stages of infection; wild-type CRP would bind to PCh and activate complement while mutant CRP would cover factor H to prevent its complement-inhibitory activity. Our long-term goal is to explore the possibility of developing a CRP-based strategy to treat pneumococcal infection.
|
34 |
Prokaryotic expression of human complement regulator factor H domains and their interaction withPneumococcal surface protein PspC / Uttryck i prokaryoter av domäner hos den humana komplementfaktor-regulatorn faktor H och derasinteraktion med ytproteinet PspC hos pneumokockerLindström, Nils January 2017 (has links)
One of the oldest and most exciting questions in science is: are we alone in the universe? During the last four billion years of Earth’s history, countless organisms have inhabited almost every environmental niche on the planet, from the deepest sea to driest deserts. However, so far no extraterrestrial life has been found. Studying the propensity for life on our neighboring planet, Mars,helps us understanding its potential for past and present life, and guides future missions. Liquid water is a prerequisite for life as we know it and recently, evidence of transient night time liquidbrines on the surface of present day Mars have been theorized. These brines may be hyper-salinewith high ionic strengths and varying pH-values. Halobacterium salinarum is an extremophilic (saltloving) halophilic archaeon whose natural habitat includes hyper-saline brines, desiccating conditions and exposure to high fluences of solar UV radiation. Herein, we report the response of Hbt.salinarum following exposure to simulated Martian conditions, with regard to survival and DNAintegrity. The simulated conditions include the synthetic Martian Brine Analogues (MBAs), diurnalnocturnaltemperature cycling, prolonged desiccation and Mars-like solar UV (200-400 nm) radiation.We also addressed the prolific space hardware contaminant, Bacillus subtilis whose endospores show substantial resistance against space conditions. The ambition was to investigate potentia linterplanetary forward contamination by Hbt. salinarum, should it have bacterial spores available as nutrients in the Martian brines. Halophiles are some of our best candidates for studying unicellular life on Mars and other bodies where liquid water is also stabilized by high salt concentrations.Moreover, Hbt. salinarum was able to survive over one month in the Martian brines, albeit with growth limited to one particularly hospitable brine. It displayed survival in the brines at relevant temperatures and with diurnal-nocturnal cycling but only when first desiccated to remove preventwater crystal formation. The radiation resistance was highly dependent on the choice of brine inwhich Hbt. salinarum was confined and desiccated. Even in the hospitable brines, the halophile lost over 90% of its viable population following irradiation equal to one Martian day, in our experimentalsetup. The inter-brine difference in DNA fragmentation following irradiation confirmed the differencein survival. Hbt. salinarum was subsequently unable to digest B. subtilis endospores for nutrient exploit and responded no differently than when nutrient-deprived. Surprisingly, the addition of otherwise available nutrients in the brines caused a hurried decrease in survival, with the exception of the hospitable brine. Despite its extremophilic and polyextremotolerant character, Hbt. salinarumis unlikely to survive, not to mention thrive, in a combination of all tested stressors.
|
35 |
Role of Complement Regulatory Protein Properdin in Complement Activation on Platelets and in the Formation of Platelet-Leukocyte AggregatesSaggu, Gurpanna 20 August 2014 (has links)
No description available.
|
36 |
Role of Complement Regulatory Proteins Properdin and Factor H in Platelet/Granulocyte Aggregate FormationBlatt, Adam Z. January 2016 (has links)
No description available.
|
37 |
Effect of Sialylation of Histophilus somni Lipooligosaccharide on Virulence and Resistance to Host DefensesBalyan, Rajiv 19 September 2007 (has links)
Incorporation of N-acetyl neuraminic acid (NANA), or sialic acid, onto lipooligosaccharide (LOS) enhances the virulence of several bacterial species. In the present study, we assessed the effect of sialylation of Histophilus somni LOS on complement-mediated killing, binding of complement factor H (which converts C3b to inactive C3b (iC3b) and inhibit the alternative complement pathway) to the bacteria, complement activation by the LOS, and phagocytosis and killing of the bacteria by bovine polymorphonuclear leukocytes (PMN). Killing of H. somni by alternative complement pathway was measured by incubation of sialylated or non-sialylated H. somni with antibody-free precolostral calf serum (PCS) followed by viable plate count. A complement dose-dependent response to killing of non-sialylated H. somni by PCS was observed. However, sialylated H. somni were significantly (P = 0.001) more resistant to killing at any of the concentrations of PCS used.
Sialylated H. somni LOS activated (P = 0.025) and consumed (P = 0.001) less complement than non-sialylated LOS, as determined by reduction in hemolysis of opsonized sheep red blood cells or rabbit red blood cells, and by western blotting of C3 activation products. Sialylated H. somni bound more factor H than non-sialylated bacteria (determined by enzyme-linked immunosorbent assay) (P = 0.004), supporting the deficiencies observed in complement activation and consumption by sialylated LOS. Sialylation of H. somni inhibited both PMN phagocytosis of 3H-thymidine-labelled bacteria (P = 0.004) and intracellular killing of the bacteria (P = 0.0001), compared to non-sialylated bacteria. Therefore, sialylation of the LOS results in enhanced binding of complement factor H to the bacteria, resulting in diminished complement activation, resistance to complement-mediated lysis, and PMN phagocytosis and killing. / Master of Science
|
38 |
Analysis of biomarkers for complex human diseasesAnsari, Morad January 2009 (has links)
The aims of this study were to analyse known and potential biomarkers of common and genetically complex human disorders and to identify genetic and environmental variation associated with plasma biomarker concentrations. Two groups of protein biomarkers were analysed. First, plasma complement factor H (CFH) was selected as a potential biomarker for age-related macular degeneration (AMD), since common variants in the CFH gene show strong association with this disorder. Secondly, two isoforms of amyloid-β (Aβ40 and Aβ42) were selected as biomarkers for Alzheimer disease (AD) since Aβ deposits are major constituents of the amyloid plaques characteristic of this disorder. Physiological and anthropometric measurements and samples of human and genomic DNA were collected from a population sample of 1,021 individuals from the Croatian island of Vis. Quantitative determination of plasma Aβ40 and Aβ42 concentrations was performed using enzyme-linked immunosorbent assays. Heritabilities and significant covariate effects were estimated for each trait in the Croatian data set. Genome-wide linkage and association analyses were conducted for the biomarker traits. A novel finding was the genome-wide significant association between a CFH and several polymorphisms close to and within the CFH gene. The strongest association was with an intronic SNP within CFH, which explained 28% of the total trait variance (P < 10-50). The association was also replicated in a Dutch sample set. A SNP haplotype was identified which accounted for a higher proportion of the phenotypic variance. Conditional haplotype analysis showed that the effect of this haplotype on plasma CFH concentration was independent of the CFH Y402H variant, and significantly stronger than a deletion of the adjacent CFHR3/CFHR1 which was already known to affect AMD susceptibility. Genetic analysis of 382 AMD cases and 201 controls was consistent with the CFH Y402H variant being the strongest AMD susceptibility locus. Variation in plasma CFH concentration was found to explain up to 1.8% of the variation in susceptibility to AMD with an odds 2.1 (95% C.I. 1.3-3.4, P = 0.003). SNPs that were strongly associated with a CFH concentration also influenced AMD susceptibility (P < 0.05) independently of the CFH Y402H polymorphism. Functional analysis of genomic regions associated with plasma CFH is needed to identify the causal variants. Associations were observed between plasma Aβ40 concentration and several novel candidate loci, spanning regions of approximately 0.2 Mb, on chromosomes 9 and X. Similarly, novel associations with plasma Aβ42 were found in several regions, each spanning 0.2-0.4 Mb, on chromosomes 2, 5, 9, 15 and 20. The proportion of the phenotypic variance in plasma Aβ42 explained by these putative associations ranged between 1.8 and 2.8%. However, none of the associated SNPs was significant after correction for multiple testing, therefore replication is required. Finally, attempts were made to identify and quantitate new protein biomarkers of disease in human plasma using mass spectrometry. Development and optimisation of techniques was initially undertaken to deplete high-abundance plasma proteins and improve signal:noise ratio. This allowed the assessment of downstream proteomic approaches including MALDI-TOF mass spectrometry (MS), capillary electrophoresis (CE) and ion exchange chromatography (IEC), each with the potential for large-scale quantitation of plasma proteins. Although the analysis of single protein analytes, using CE and IEC proved promising, the results highlighted the difficulty associated with MALDI-TOF and protein ionisation techniques in analysing complex mixtures such as plasma.
|
39 |
Interação de proteínas de membrana de Leptospira com os reguladores Fator H e C4BP do sistema complemento humano. / Interaction of Leptospira membrane proteins with human complement regulators Factor H and C4BP.Valencia, Mónica Marcela Castiblanco 12 September 2014 (has links)
Diferentes mecanismos têm sido mostrados por estar envolvidos na evasão à morte mediada por complemento. Neste estudo, demonstramos que a aquisição do FH pela Leptospira é crucial para a sobrevivência das bactérias no soro e que estas espiroquetas interagem com FH, FHL-1, FHR-1 e C4BP. Nós também demonstramos que a ligação à estes reguladores é mediada pelas proteínas leptospiral immunoglobulin-like (Lig). FH se liga as proteínas Lig via short consensus repeat (SCR) principalmente pelos domínios 5 e 20. Ensaios de competição sugerem que FH e C4BP têm sítios de ligação diferentes nas proteínas Lig. Além disso, FH e C4BP ligados nas proteínas Lig mantêm a atividade de cofator, mediando a degradação de C3b e C4b pelo FI. Nós demonstramos que a aquisição de FH e C4BP pela L. biflexa transgênica para LigA e LigB exercem um papel de proteção na sobrevida destas bactérias. Análise por citometria de fluxo também confirmaram a capacidade das leptospiras transgênicas para controlar a deposição de C3, C4 e MAC. As proteínas Lig também foram capazes de ligar plasminogênio, o qual foi ativado em plasmina e esta enzima foi capaz de degradar fibrinogénio, C3b e C5. Estas clivagens inativam C3b e C5, evitando a progressão da cascata, e bloqueando as três vias de complemento. / Different mechanisms have been shown to be involved in evasion of complement-mediated killing. In this study, we demonstrate that acquisition of FH on the Leptospira surface is crucial for bacterial survival in the serum and that these spirochetes interact with FH, FHL-1, FHR-1 and C4BP. We also demonstrate that binding to these regulators is mediated by leptospiral immunoglobulin-like (Lig) proteins. FH binds to Lig proteins via short consensus repeat (SCR) domains 5 and 20. Competition assays suggest that FH and C4BP have distinct binding sites on Lig proteins. Moreover, FH and C4BP bound to immobilized Ligs display cofactor activity, mediating C3b and C4b degradation by FI. We demonstrated that acquisition of FH and C4BP by the LigA and LigB transformed L. biflexa have the protective role, being crucial by bacterial survival. Analysis by Cytometer fluid also confirmed the ability of L. biflexa expressing LigA and LiB to controller the deposition of C3, C4 and MAC. Lig proteins were able to bind plasminogen, which was activated to plasmin and this enzyme was able to degrade the fibrinogen, C3b and C5. These cleavages inactivate C3b and C5, preventing progression of the complement cascade and blocking the three complement pathways.
|
40 |
Comparison of Anti-Pneumococcal Functions of Native and Modified Forms of C-Reactive ProteinNgwa, Donald Neba 01 May 2016 (has links)
The anti-pneumococcal function of native C-reactive protein (CRP) involves its binding to phosphocholine molecules present on Streptococcus pneumoniae and subsequent activation of the complement system. However, when pneumococci recruit complement inhibitory protein factor H on their surface, they escape complement attack. Non-native forms of CRP have been shown to bind immobilized factor H. Accordingly, we hypothesized that modified CRP would bind to factor H on pneumococci, masking its complement inhibitory activity, allowing native CRP to exert its anti-pneumococcal function. As reported previously, native CRP protected mice from lethal pneumococcal infection when injected 30 minutes before infection but not when injected 24 hours after infection. However, a combination of native and mutant CRP was found to protect mice even when administered 24 hours after infection. Therefore, it is concluded that while native CRP is protective only against early-stage infection, a combination of native and mutant CRP offers protection against late-stage infection.
|
Page generated in 0.0476 seconds