• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 1
  • Tagged with
  • 23
  • 13
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Efficient generation and execution of DAG-structured query graphs

Neumann, Thomas. January 2005 (has links) (PDF)
Mannheim, Univ., Diss., 2005.
12

Untersuchung der Gruppen GL(s, Zn) und SL(s, Zn) zur Nutzung in der Kryptographie

Baumgart, Matthias. Unknown Date (has links)
Universiẗat, Diss., 2005--Giessen.
13

The Main Diagonal of a Permutation Matrix

Lindner, Marko, Strang, Gilbert January 2011 (has links)
By counting 1's in the "right half" of 2w consecutive rows, we locate the main diagonal of any doubly infinite permutation matrix with bandwidth w. Then the matrix can be correctly centered and factored into block-diagonal permutation matrices. Part II of the paper discusses the same questions for the much larger class of band-dominated matrices. The main diagonal is determined by the Fredholm index of a singly infinite submatrix. Thus the main diagonal is determined "at infinity" in general, but from only 2w rows for banded permutations.
14

Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip

Ehrhardt, Torsten 05 July 2004 (has links)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces. A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization. In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert. Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung. In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
15

Investigating the large N limit of SU(N) Yang-Mills gauge theories on the lattice

García Vera, Miguel Francisco 02 August 2017 (has links)
In dieser Arbeit praesentieren wir Resultate der topologischen Suszeptibilitaet “chi” und untersuchen die Faktorisierung der reinen SU(N) Yang-Mills Eichtheorie im 't Hooft'schen Grenzwert grosser N. Ein entscheidender Teil der Berechnung von chi in der Gittereichtheorie ist die Abschaetzung des topologischen Ladungsdichtekorrelators, die durch ein schlechtes Signal-Rausch- Verhaeltnis beeintraechtigt ist. Um dieses Problem abzuschwaechen, fuehren wir einen neuen, auf einem mehrstufigen Vorgehen beruhenden Algorithmus ein, um die Korrelationsfunktion von Observablen zu berechnen, die mit dem Yang-Mills Gradientenfluss geglaettet wurden. Angewandt auf unsere Observablen, erhalten wir Ergebnisse, deren Fehlerskalierung besser ist, als die von herkoemmlichen Monte-Carlo Simulationen. Wir bestimmen die topologische Suszeptibilitaet in der reinen Yang-Mills Eichtheorie fuer Eichgruppen mit N = 4,5,6 und drei verschiedenen Gitterabstaenden. Um das Einfrieren der Topologie zu umgehen, wenden wir offene Randbedingungen an. Zusaetzlich wenden wir die korrekte Definition der topologischen Ladungsdichte durch den Gradientenfluss an. Unser Endresultat im des Grenzfalls von grossen N repraesentiert eine neue Qualitaet in der Verifikation der Witten-Veneziano Formel. Schliesslich benutzen wir die Gitterformulierung, um die Erwartungswertfaktorisierung des Produkts eichinvarianter Operatoren im Grenzwert grosser N zu verifizieren. Wir arbeiten mit durch den Yang-Mills Grandientenfluss geglaetteten Wilsonschleifen und Simulationen bis zur Eichgruppe SU(8). Die Extrapolationen zu grossen N sind in Ueberstimmung mit der Faktorisierung sowohl fuer endlichen Gitterabstand als auch in Kontinnumslimes. Unsere Daten erlauben uns nicht nur die Verifizierung der Faktorisierung, sondern auch einen hochpraezisen Test des 1/N Skalierungsverhaltens. Hier konnten wir das quadratische Skalierungsverhalten in 1/N finden, welches von 't Hooft vorhergesagt wurde. / In this thesis we present results for the topological susceptibility “chi”, and investigate the property of factorization in the 't Hooft large N limit of SU(N) pure Yang-Mills gauge theory. A key component in the lattice gauge theory computation of chi is the estimation of the topological charge density correlator, which is affected by a severe signal to noise problem. To alleviate this problem, we introduce a novel algorithm that uses a multilevel type approach to compute the correlation function of observables smoothed with the Yang-Mills gradient flow. When applied to our observables, the results show an scaling of the error which is better than the one of standard Monte-Carlo simulations. We compute the topological susceptibility in the pure Yang-Mills gauge theory for the gauge groups with N = 4, 5, 6 and three different lattice spacings. In order to deal with the freezing of topology, we use open boundary conditions. In addition, we employ the theoretically sound definition of the topological charge density through the gradient flow. Our final result in the limit N to infinity, represents a new quality in the verification of the Witten-Veneziano formula. Lastly, we use the lattice formulation to verify the factorization of the expectation value of the product of gauge invariant operators in the large N limit. We work with Wilson loops smoothed with the Yang-Mills gradient flow and simulations up to the gauge group SU(8). The large N extrapolations at finite lattice spacing and in the continuum are compatible with factorization. Our data allow us not only to verify factorization, but also to test the 1/N scaling up to very high precision, where we find it to agree very well with a quadratic series in 1/N as predicted originally by 't Hooft for the case of the pure Yang-Mills gauge theory.
16

Nodale Spektralelemente und unstrukturierte Gitter - Methodische Aspekte und effiziente Algorithmen

Fladrich, Uwe 23 October 2012 (has links) (PDF)
Die Dissertation behandelt methodische und algorithmische Aspekte der Spektralelementemethode zur räumlichen Diskretisierung partieller Differentialgleichungen. Die Weiterentwicklung einer symmetriebasierten Faktorisierung ermöglicht effiziente Operatoren für Tetraederelemente. Auf Grundlage einer umfassenden Leistungsanalyse werden Engpässe in der Implementierung der Operatoren identifiziert und durch algorithmische Modifikationen der Methode eliminiert.
17

Block SOR for Kronecker structured representations

Buchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links) (PDF)
Hierarchical Markovian Models (HMMs) are composed of multiple low level models (LLMs) and high level model (HLM) that defines the interaction among LLMs. The essence of the HMM approach is to model the system at hand in the form of interacting components so that its (larger) underlying continous-time Markov chain (CTMC) is not generated but implicitly represented as a sum of Kronecker products of (smaller) component matrices. The Kronecker structure of an HMM induces nested block partitionings in its underlying CTMC. These partitionings may be used in block versions of classical iterative methods based on splittings, such as block SOR (BSOR), to solve the underlying CTMC for its stationary vector. Therein the problem becomes that of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of a particular partitioning. This paper shows that in each HLM state there may be diagonal blocks with identical off-diagonal parts and diagonals differing from each other by a multiple of the identity matrix. Such diagonal blocks are named candidate blocks. The paper explains how candidate blocks can be detected and how the can mutually benefit from a single real Schur factorization. It gives sufficient conditions for the existence of diagonal blocks with real eigenvalues and shows how these conditions can be checked using component matrices. It describes how the sparse real Schur factors of candidate blocks satisfying these conditions can be constructed from component matrices and their real Schur factors. It also demonstrates how fill in- of LU factorized (non-candidate) diagonal blocks can be reduced by using the column approximate minimum degree algorithm (COLAMD). Then it presents a three-level BSOR solver in which the diagonal blocks at the first level are solved using block Gauss-Seidel (BGS) at the second and the methods of real Schur and LU factorizations at the third level. Finally, on a set of numerical experiments it shows how these ideas can be used to reduce the storage required by the factors of the diagonal blocks at the third level and to improve the solution time compared to an all LU factorization implementation of the three-level BSOR solver.
18

Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations

Buchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links) (PDF)
Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner.
19

Laser-driven molecular dynamics: an exact factorization perspective

Fiedlschuster, Tobias 19 January 2019 (has links)
We utilize the exact factorization of the electron-nuclear wave function [Abedi et al., PRL 105 123002 (2010)] to illuminate several aspects of laser-driven molecular dynamics in intense femtosecond laser pulses. Above factorization allows for a splitting of the full molecular wave function and leads to a time-dependent Schrödinger equation for the nuclear subsystem alone which is exact in the sense that the absolute square of the corresponding, purely nuclear, wave function yields the exact nuclear N-body density of the full electron-nuclear system. As one remarkable feature, this factorization provides the exact classical force, the force which contains the highest amount of electron-nuclear correlations that can be retained in the quantum-classical limit of the electron-nuclear system. We re-evaluate the classical limit of the nuclear Schrödinger equation from the perspective of the exact factorization, and address the long-standing question of the validity of the popular quantum-classical surface hopping approach in laserdriven cases. In particular, our access to the exact classical force allows for an elaborate evaluation of the various and completely different potential energy surfaces frequently applied in surface hopping calculations. The highlight of this work consists in a generalization of the exact factorization and its application to the laser-driven molecular wave function in the Floquet picture, where the molecule and the laser form an united quantum system exhibiting its own Hilbert space. This particular factorization enables us to establish an analytic connection between the exact nuclear force and Floquet potential energy surfaces. Complementing above topics, we combine different well-known and proven methods to give a systematic study of molecular dissociation mechanisms for the complicated electric fields provided by modern attosecond laser technology.:Contents Introduction 1 The exact factorization of time-dependent wave functions 1.1 Concern and state of the art 1.2 The exact factorization of the electron-nuclear wave function 1.3 The generalized exact factorization 1.4 The exact factorization for coupled harmonic oscillators 1.5 The exact factorization for a single particle with spin 1.6 The exact factorization of the laser-driven electron-nuclear wave function in the Floquet picture 1.7 Summary and conclusion 2 Quantum-classical molecular dynamics from an exact factorization perspective 2.1 Concern and state of the art 2.2 The exact nuclear TDSE 2.3 The Wigner-Moyal equation for the nuclear TDSE and its classical limit 2.4 The Bohmian formulation of the nuclear TDSE and its classical limit 2.5 Comparative calculations 2.5.1 Scenario 1: stationary states 2.5.2 Scenario 2: laser-driven dynamics 2.6 Summary and conclusion 3 Surface hopping in laser-driven molecular dynamics 3.1 Concern and state of the art 3.2 Surface hopping 3.3 Quantum-classical dynamics on the EPES 3.4 The benchmark model and its potential energy surfaces 3.5 Surface hopping in laser-driven molecular dynamics 3.6 Summary and conclusion 4 Beyond the limit of the Floquet picture: molecular dissociation in few-cycle laser pulses 4.1 Concern and state of the art 4.2 Theoretical few-cycle pulses 4.3 Calculation of dissociation probabilities 4.4 Dissociation in few-cycle pulses 4.4.1 Dissociation in half-cycle pulses 4.4.2 Dissociation in few-cycle pulses 4.5 Dissociation in realistic attosecond pulses 4.6 Summary and conclusion Outlook Appendices A List of abbreviations B Numerical details C Calculating electronic observables within quantum-classical molecular dynamics D Ionization in few-cycle pulses E Modeling an optical attosecond pulse Bibliography
20

Block SOR Preconditional Projection Methods for Kronecker Structured Markovian Representations

Buchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links)
Kronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block SOR (BSOR) preconditioner for hierarchical Markovian Models (HMMs) that are composed of multiple low level models and a high level model that defines the interaction among low level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becoms the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solvers these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree algorithm (COLAMD). A set of numerical experiments are presented to show the merits of the proposed BSOR preconditioner.

Page generated in 0.0751 seconds