91 |
An Introductory Analysis of Wolff's Law: The Genetic Influence on Bone MorphologyKasturiarachi, Courtney M. 26 May 2020 (has links)
No description available.
|
92 |
Radiographic Union Score for Tibia (RUST) scoring system in adult diaphyseal femoral fractures treated with intramedullary nailing: an assessment of interobserver and intraobserver reliabilityPanchoo, Pravesh 14 April 2023 (has links) (PDF)
Objectives The Radiographic Union Score for Tibia (RUST) scoring system has been validated in multiple studies assessing the healing of tibial fractures. Our objective was to assess the inter and intraobserver reliability for the RUST in diaphyseal femoral fractures treated with intramedullary (IM) nailing. Patients and Methods A total of 60 sets of anteroposterior (AP) and lateral radiographs of diaphyseal femoral fractures treated by reamed IM nailing were randomly selected from a prospectively collected database. The 60 sets of radiographs were then scored by three reviewers using the RUST system. Interobserver reliability was measured at initial scoring. The 60 sets of radiographs were scored again by the three reviewers to calculate the intraobserver reliability. Results The RUST scores ranged from 4 to 12 with a mean score of 11.3 ± 1.3. The interobserver intraclass correlation coefficient (ICC) was 0.87 (95% CI, 0.81-0.92) and the intraobserver ICC was 0.91 (95% CI, 0.88-0.94), which indicated excellent agreement. Conclusion This study demonstrated that the RUST system can be used reliably in the assessment of healing in diaphyseal femur fractures treated by reamed intramedullary nailing, with excellent interobserver and intraobserver reliability.
|
93 |
A Patient Specific Musculoskeletal Model Simulation of Limb Salvage Surgery to Investigate How Altered Hip Biomechanics Impacts Functional Outcomes / Functional Outcomes of Proximal Femur Limb Salvage SurgeryMadden, Fiona January 2023 (has links)
Sarcoma cancer of the proximal femur is a bone tumor that develops near the hip joint. The most common method of treatment is limb salvage surgery (LLS), a highly invasive surgery that often leads to impaired movement including walking due to soft tissue resection. The current thesis focuses on 1) systematically reviewing current literature of functional outcomes after proximal femur LSS to determine if specific methods of muscle reattachment lead to better limb function, and 2) objectively analysing how reducing hip muscle strength impacts one’s ability to achieve healthy gait. Findings from the systematic review suggest using artificial mesh or ligaments for LLS may be a good alternative to allograft prosthesis composites and trochanter osteotomy, producing good functional outcomes with low rates of complications. It was also determined current literature is lacking objective quantitative analysis of patients’ limb function after surgery. Objective 2 was executed using instrumented gait analysis to record the gait kinematics, kinetics and EMG patterns of a patient who received LSS for proximal femur sarcoma. Data from the gait analysis was used to create a patient-specific musculoskeletal model. Healthy gait kinematics were applied to the model and specific hip muscle strengths were systematically reduced to simulate different surgical interventions. After an 85% reduction in gluteus medius and minimus muscle strength, healthy gait kinematics were not achieved. Reducing muscle strength of the gluteus medius and minimus together had a greater impact on the model’s ability to achieve healthy gait kinematics then when reduced individually. An understanding of how patient’s limb function is impacted after surgery can inform surgical technique, implant design and physiotherapy programs leading to better quality of life for patients after surgery. / Thesis / Master of Applied Science (MASc) / Hip reconstructive surgery as treatment for bone cancer is a highly invasive surgery that negatively impacts patients walking patterns and ultimately quality of life. The current thesis investigates existing literature to determine if specific, innovative surgical techniques lead to better functional results for patients after surgery. A three-dimensional model of a patient who had hip reconstruction surgery for bone cancer was created using quantitative analysis of their walking patterns. The model was manipulated to simulate surgical intervention for hip cancer treatment. The model findings suggest when specific hip muscles are substantially affected by surgery, patients walking patterns are negatively impacted. Understanding how surgical intervention impacts walking patterns can inform surgical technique, implant design and physiotherapy programs leading to better quality of life for patients after surgery.
|
94 |
Developmental Features of the Canid Proximocaudal FemurLawler, Dennis F., Tangredi, Basil P., Owens, Jerry M., Widga, Christopher C., Martin, Terrance J., Kohn, Luci A. 02 December 2021 (has links)
We continued direct morphological studies of the canid coxofemoral joint, considering early-life spatial relationships around the locus of the proximocaudal joint capsule insertion. Our primary goal was to elucidate the postnatal developmental gross anatomy of the proximocaudal femur, among juveniles across Canidae. From an original database of 267 independent (museum) specimens from 11 canid taxa and 1 hybrid taxon, we identified 29 ancient or modern candidate juvenile specimens (nine taxa and one hybrid taxon). Based on optimal ability to recognize landmarks, the best photographic data were categorized into five groups of four each (n = 20). The data groups approximated early juvenile, early-mid juvenile, mid-juvenile, mid-late juvenile; and young adult stages. In this descriptive photographic essay, we demonstrate the developmental spatial proximity among (a) the dorsal meeting of the respective lateral and medial extensions from the growth centers of the femoral head and greater trochanter; (b) the caudodorsal aspect of the coxofemoral joint capsule attachment; (c) a segment of the proximocaudal femoral shaft physis; and (d) an eventual associated mineralized prominence. The latter occurs frequently but not universally, suggesting natural population variability across taxa. Across taxa and juvenile age categories, the morphology thus supports developmental conservation among ancient and modern Canidae. The biomechanical and biological cause-effect implications are not yet clear. For zoological purposes, we apply the term postdevelopmental mineralized prominence to the residual caudolateral surface feature. We extend the original anatomical work of Morgan in zoological and phylogenic arenas, using direct observation of cleared skeletal specimens.
|
95 |
Trend Analysis of Hospital Admission for Pediatric Femur CancerChilds, Tawanna 07 June 2016 (has links)
No description available.
|
96 |
Evaluating the Mechanical Response of Novel Synthetic Femurs Representing Osteoporotic BoneGluek, Cooper January 2018 (has links)
Osteoporosis is a disease prevalent in older adults, characterized by increased bone porosity resulting in significant fracture risk. Orthopaedic implants are designed and validated against cadavers from the general ‘healthy’ population, but little is known about their response in osteoporotic bone. Orthopaedic implants can also be developed using synthetic bones, if they have been demonstrated to be representative of healthy bone, and offer a number of advantages. To date, no synthetic femur has been validated for the osteoporotic population. The purpose of this study was to assess novel synthetic femurs for representing this population.
Custom jigs were manufactured to test two sets of ten synthetic femurs and five isolated cadaveric femurs in four-point bending, torsion, axial compression, axial failure, and screw pullout, using an Instron mechanical testing machine to record load-displacement data. Statistical significance was found in bending, torsion, and screw pullout between both synthetic sets and cadavers using one-way ANOVA with post-hoc Tukey analysis. In all instances, the synthetic femurs had lower coefficients of variation than natural specimens.
Both synthetic and cadaveric femurs were CT scanned prior to testing. The data were used to measure key anatomical details and to develop a series of numerical models of the synthetic bones, using Materialize Mimics® and ABAQUS® software, evaluated using axial and bending data. The model was modified by reducing cortical thickness and modulus in an attempt to make the synthetic model better represent osteoporotic bone.
Establishing synthetic femurs as suitable replacements for osteoporotic bone allows for improved orthopaedic implant development. The digital model constructed allows the synthetic to be further analyzed, improving expected response of the synthetic bones. These synthetic bones could provide a foundation for development of effective orthopaedics for this population. / Thesis / Master of Applied Science (MASc) / The considerations and parameters in the design of orthopaedic implants for osteoporotic bone are relatively unknown. Orthopaedic implants can be evaluated with synthetic bones, which offer a number of advantages to natural specimens, assuming they are sufficiently representative of natural bone. No physical synthetic model yet exists that represents an osteoporotic femur.
In the present work, synthetic femurs were subjected to bending, torsion, axial compression, and screw pullout and compared to natural osteoporotic specimens. The synthetics were significantly different to natural specimens in bending, torsion, and screw pullout. A numerical model was created, evaluated, and tested in finite element software alongside modified models with reduced modulus and cortical thickness to assess stiffness. Recommendations were made to improve the accuracy of a future synthetic model.
The synthetic femurs tested were not representative of osteoporotic femurs, but may be feasible alternatives with minor modifications and could be useful in future orthopaedics design.
|
97 |
An examination of age-related differences in lower extremity joint torques and strains in the proximal femur during gaitAnderson, Dennis E. 16 April 2010 (has links)
Hip fractures are serious injuries that are associated with high rates of morbidity and mortality in older adults. While much of the increased risk of hip fracture with age can be explained by age-related decreases in bone mineral density, muscles and motor control are altered by aging as well. Muscles forces in vivo are thought to have a prophylactic effect that can reduce shear and bending in the femur. This is beneficial because bone is stronger in compression than in shear or tension, and shear plays an important role in fatiguing bone. Understanding how aging and muscular loads affect strains in the proximal femur could lead to improvements in clinical screening and preventative measures for hip fracture.
Three studies were performed to investigate age-related changes in neuromuscular function during gait and how these changes affect strains in the proximal femur. Study 1 examined age differences in peak lower extremity joint torques during walking with controlled speed and step length. Studies 2 and 3 applied muscle forces estimated during gait to finite element models of the femur. Study 2 examined age differences in femoral strains, and Study 3 examined the sensitivity of strains to individual muscle forces.
The results support the idea that older adults walk with reduced contributions from the ankle plantar flexors and increased contributions from the hip extensors. Interactions between age and speed indicate that older adults utilized a different neuromuscular strategy than young adults to vary the speed of their gait. No age differences were found for the largest magnitude strains in the proximal femur. However, young adults were able to apply larger loads to the femur without corresponding increases in femoral strains. Strains in the femoral neck were found to be sensitive to muscle forces, particularly hip abductor forces. Strains in the sub-trochanteric region tended to be larger than those in the femoral neck, and less sensitive to muscle forces. These results increase our understanding of neuromuscular changes that occur with age, and the effects of these changes on the femur. / Ph. D.
|
98 |
Wirkung von kurzzeitiger vertikaler Ganzkörpervibration mit Frequenzen unter 90 Hz auf das Femur ovarektomierter Ratten. / Effect of vertical, short-term whole-body vibration with frequencies under 90 Hz on the femur of ovariectomized rats.Neuerburg, Theresa Elisabeth Adele 14 December 2015 (has links)
No description available.
|
99 |
Alterações da morfologia, resistência mecânica e capacidade osteogênica dos ossos de camundongos mdx / Alterations of morphology, mechanical and osteogenic capacity of mdx mice bonesNakagaki,Wilson Romero 17 August 2018 (has links)
Orientador: José Angelo Camilli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-17T23:25:02Z (GMT). No. of bitstreams: 1
Nakagaki_WilsonRomero_D.pdf: 4233267 bytes, checksum: 97a4bebd0547a5885f015f496b45e99f (MD5)
Previous issue date: 2011 / Resumo: A distrofia muscular de Duchenne (DMD) é uma doença neuromuscular resultante da ausência de distrofina. Em virtude do enfraquecimento muscular e do uso de glicocorticóides, pacientes com DMD têm ossos frágeis. O camundongo mdx é o modelo experimental largamente utilizado para o estudo da DMD e apresenta falta da distrofina, processo inflamatório intenso e degeneração da fibra muscular. Além disso, apresenta ciclos de degeneração/regeneração muscular que se iniciam de forma mais marcante após o vigésimo primeiro dia de vida. Estudos demonstraram que camundongos mdx têm níveis elevados de fatores de crescimento de fibroblasto e proteína quimiotática de monócito-1, bem como aceleração da cicatrização em lesões da pele. Com base nessas evidências, elaboramos duas hipóteses. A primeira hipótese é que podem existir alterações nos ossos de camundongos mdx por influência da ausência de distrofina ou por algum outro mecanismo inerente à doença mesmo antes da sua manifestação clínica. A segunda hipótese é que o processo de reparo ósseo espontâneo também possa estar acelerado, de modo semelhante à cicatrização da pele. Para testar a primeira hipótese o fêmur e o músculo quadríceps do camundongo mdx foram analisados aos 21 dias de vida. Para verificar a segunda hipótese foi produzido um defeito no osso parietal direito e a regeneração foi analisada após 15, 30 e 60 dias pós-cirúrgicos. Na análise morfológica do quadríceps as fibras musculares apresentavam núcleos periféricos e não foram observadas fibras positivas para o corante azul de Evans em ambos os grupos, indicando que não houve degeneração das fibras no grupo mdx. O fêmur do grupo mdx demonstrou osteopenia, menor quantidade de osteoblastos, menor conteúdo mineral e menor resistência mecânica na ausência de sinais de degeneração muscular em relação ao grupo controle. No estudo do osso parietal, os dados mostraram que não há diferença significante no volume de osso neoformado entre os grupos controle e mdx nos três tempos pós-operatórios e também entre os três tempos, independentemente do grupo estudado. Diante destes resultados, concluímos que o fêmur dos camundongos mdx com 21 dias de vida pode conter um distúrbio interligado a algum fator genético, diretamente ou não relacionado com a ausência de distrofina. Isto demonstrou que a perda da qualidade óssea em camundongos mdx não ocorre somente em função do enfraquecimento muscular. Considerando a qualidade óssea inferior do fêmur e a similaridade estatística da taxa de regeneração óssea, entendemos que a capacidade osteogênica da calvária mdx foi mais expressiva do que a dos camundongos controle, igualando a taxa de reparo ósseo de um tecido com menor qualidade à de ossos normais / Abstract: Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by lack of dystrophin. DMD patients have brittle bones because of muscle weakness and use of glucocorticoids. The mdx mouse is widely used as experimental model for the study of DMD and it presents lack of dystrophin, intense inflammatory process and muscle fiber degeneration. Moreover, it presents cycles of muscle degeneration/regeneration that becomes more marked after the twenty-first day of life. Studies have shown that mdx mice have elevated levels of fibroblast growth factor and monocyte chemoattractant protein-1, as well as accelerate wound healing in skin lesions. Based on this evidence, we formulate two hypotheses. The first hypothesis is that there may be changes in the bones of mdx mice by the influence of the absence of dystrophin or by some other mechanism inherent to the disease even before clinical manifestation. The second hypothesis is that the process of spontaneous bone repair can also be accelerated, similar to skin healing. To test the first hypothesis, the femur and the quadriceps muscle of mdx mice were analyzed at 21 days of life. To verify the second hypothesis a defect was produced in the right parietal bone and the regeneration was evaluated after 15, 30 and 60 days after surgery. In the morphological analysis of quadriceps were observed muscle fibers with peripheral nuclei and were not seen Evans blue dye positive fibers in both groups, indicating that there was no fiber degeneration in mdx group. The femur of the mdx group demonstrated osteopenia, lower number of osteoblasts, lower mineral content and lower mechanical strength in the absence of signs of muscular degeneration compared to the control group. In the study of the parietal bone, the data showed no significant difference in newly formed bone volume between control and mdx groups in the three moments after the operation and also between the three moments, regardless of the studied group. Given these results, we conclude that the femur of mdx mice at 21 days of life can contain a disorder linked to some genetic factor, directly or not related to the absence of dystrophin. This demonstrated that loss of bone quality in mdx mice occurs not only because of muscle weakening. Considering the lower femur bone quality and statistical similarity in the rate of bone regeneration, we believed that the osteogenic capacity of mdx calvaria was more expressive than that of control mice, equaling the rate of bone repair of a tissue with lesser quality to that of normal bones / Doutorado / Anatomia / Doutor em Biologia Celular e Estrutural
|
100 |
Biomechanická studie proximální části femorálního vnitrodřeňového hřebu / Biomechanical study of the proximal part of the femoral intermedullary nailHrdlička, Jan January 2015 (has links)
The presented Master Thesis is focused on the structural analysis of the proximal femur on which the Proximal Femoral Nail (PFN) and Proximal Femoral Tele-Screw (PFT) systems are applied. These systems are used for a treatment of the intertrochanteric and femoral neck fractures. However, in some cases a loss of stability of the systems may be expected. The presented thesis describes a development of numerical models in which stress distribution of implants and strain distribution of bone tissue are compared. Numerical models were created from real objects. The model of femur geometry was created by using the Computed Tomography (CT). Boundary conditions of the model were estimated from the force equilibrium of the lower limb. All numerical models were processed in the commercial package ANSYS Workbench v15.0. It is shown that the hip screws of the PFN system result in lower equivalent stresses than the screws of the PFT system. Maximal strains of the bone tissue, when using the PFN system, are situated near the fracture, close the hip screw thread. For the PFT system, the maximal strains are only near the area of fracture.
|
Page generated in 0.0263 seconds