221 |
Parametrisation of Gas Flares Using FireBIRD Infrared Satellite ImagerySoszynska, Agnieszka Kazimiera 03 September 2021 (has links)
Bei der Förderung von Erdöl wird auch Erdgas gefördert, das oft abgefackelt wird. Das Abfackeln von Erdgas ist sehr schädlich für die Umwelt und die Bewohner einer Umgebung in der Gas abgefackelt wird. Demzufolge ist die Reduktion dieses Prozesses eine wichtige Aufgabe, die durch Monitoring von Gasfackeln unterstützt werden kann. Dies gelingt am besten durch Fernerkundung mit Satellitendaten.
Die vorliegende Dissertation widmet sich der Parametrisierung von Gasfackeln anhand von Infrarot-Satellitenaufnahmen. Eine Gruppe von Sensoren wurde verglichen, woraus optimale Eigenschaften eines Sensors zur Gasfackelanalyse abgeleitet wurden. Danach wurde ein Modell zur Berechnung des Gasflusses aus Infrarot-Satellitenaufnahmen entwickelt. Das vorgeschlagene Modell basiert auf der Physik der Verbrennung und wird von Teilmodellen zur Berechnung der Verbrennungsparameter unterstütz. Dadurch werden Prozesse mitberücksichtigt, die bisher in der Gasfackelforschung wenig adressiert wurden.
Eine Experimentenreihe erlaubte eine Charakterisierung der Flamme in Bezug auf sich verändernde Bedingungen, z.B. Gasfluss. Zusätzlich wurde das Modell durch die Experimente validiert. Die abgeleitete Genauigkeit der Gasflusswerte ist verhältnismäßig hoch, insbesondere wenn man die Komplexität und Variabilität einer Gasflamme berücksichtigt.
Durch Analysieren des Sensordesigns des BIROS Sensors aus der FireBIRD-Mission des Deutschen Zentrums für Luft- und Raumfahrt konnten die Sensorparameter charakterisiert und deren Einfluss auf ein abgeleitetes Bildprodukt quantifiziert werden. Die Fähigkeit des Modells mit unterschiedlichen Sensordaten zu funktionieren, wurde geprüft durch einen Vergleich der geschätzten Gasflusswerte aus Daten von zwei Satellitensensoren. Die verglichenen Gasflusswerte sind sehr ähnlich, was die Fähigkeit des Models mit unterschiedlichen Daten gut zu funktionieren, bestätigt.
Das vorgeschlagene Model hat Potenzial, das globale Monitoring von Gasfackeln zu verbessern. / Routine gas flaring is harmful to the environment and people living in the vicinity of gas flares. Therefore, the reduction of this process is an important task, which can be supported by monitoring of gas flares, which can be done with remote sensing techniques.
The presented work is devoted to the monitoring of gas flaring. The first aspect of the analysis was to compare a group of sensors with respect to the features crucial for gas flaring analysis. A set of requirements for an optimal sensor for this purpose was proposed. Next, a model for calculating gas flow from infrared satellite imagery was proposed, which relies on several other models, allowing to derive the values of the combustion parameters. By modelling these parameters in a gas flare, processes are accounted for that were scarcely addressed in the research conducted on gas flaring until now. To describe the characteristics of the flame coming from combustion in a flare, an experimental series was designed and conducted.
The experimental series allowed to characterise the flame with respect to changing conditions, e.g. gas flow. Thus, the characteristics derived from the experiments could be included in the model for gas flow calculation. Additionally, the experiments served as a mean to validate the model. The accuracy of the derived gas flow values is relatively high, especially considering the variability of a gas flare flame.
One design goal of the model for gas flow calculation was to ensure feasibility to work with data from different sensors producing equally accurate results. By analysing the design of the BIROS sensor of the DLR, the sensor parameters could be described, and their influence on the resulting imagery could be quantified. The feasibility was verified by comparing the gas flow values calculated using data from two different satellite sensors. The results obtained are very similar.
The model proposed reveals potential to improve the global monitoring of gas flaring.
|
222 |
Automated and robust geometric and spectral fusion of multi-sensor, multi-spectral satellite imagesScheffler, Daniel 02 January 2023 (has links)
Die in den letzten Jahrzehnten aufgenommenen Satellitenbilder zur Erdbeobachtung bieten eine ideale Grundlage für eine genaue Langzeitüberwachung und Kartierung der Erdoberfläche und Atmosphäre. Unterschiedliche Sensoreigenschaften verhindern jedoch oft eine synergetische Nutzung. Daher besteht ein dringender Bedarf heterogene Multisensordaten zu kombinieren und als geometrisch und spektral harmonisierte Zeitreihen nutzbar zu machen. Diese Dissertation liefert einen vorwiegend methodischen Beitrag und stellt zwei neu entwickelte Open-Source-Algorithmen zur Sensorfusion vor, die gründlich evaluiert, getestet und validiert werden. AROSICS, ein neuer Algorithmus zur Co-Registrierung und geometrischen Harmonisierung von Multisensor-Daten, ermöglicht eine robuste und automatische Erkennung und Korrektur von Lageverschiebungen und richtet die Daten an einem gemeinsamen Koordinatengitter aus. Der zweite Algorithmus, SpecHomo, wurde entwickelt, um unterschiedliche spektrale Sensorcharakteristika zu vereinheitlichen. Auf Basis von materialspezifischen Regressoren für verschiedene Landbedeckungsklassen ermöglicht er nicht nur höhere Transformationsgenauigkeiten, sondern auch die Abschätzung einseitig fehlender Spektralbänder. Darauf aufbauend wurde in einer dritten Studie untersucht, inwieweit sich die Abschätzung von Brandschäden aus Landsat mittels synthetischer Red-Edge-Bänder und der Verwendung dichter Zeitreihen, ermöglicht durch Sensorfusion, verbessern lässt. Die Ergebnisse zeigen die Effektivität der entwickelten Algorithmen zur Verringerung von Inkonsistenzen bei Multisensor- und Multitemporaldaten sowie den Mehrwert einer geometrischen und spektralen Harmonisierung für nachfolgende Produkte. Synthetische Red-Edge-Bänder erwiesen sich als wertvoll bei der Abschätzung vegetationsbezogener Parameter wie z. B. Brandschweregraden. Zudem zeigt die Arbeit das große Potenzial zur genaueren Überwachung und Kartierung von sich schnell entwickelnden Umweltprozessen, das sich aus einer Sensorfusion ergibt. / Earth observation satellite data acquired in recent years and decades provide an ideal data basis for accurate long-term monitoring and mapping of the Earth's surface and atmosphere. However, the vast diversity of different sensor characteristics often prevents synergetic use. Hence, there is an urgent need to combine heterogeneous multi-sensor data to generate geometrically and spectrally harmonized time series of analysis-ready satellite data. This dissertation provides a mainly methodical contribution by presenting two newly developed, open-source algorithms for sensor fusion, which are both thoroughly evaluated as well as tested and validated in practical applications. AROSICS, a novel algorithm for multi-sensor image co-registration and geometric harmonization, provides a robust and automated detection and correction of positional shifts and aligns the data to a common coordinate grid. The second algorithm, SpecHomo, was developed to unify differing spectral sensor characteristics. It relies on separate material-specific regressors for different land cover classes enabling higher transformation accuracies and the estimation of unilaterally missing spectral bands. Based on these algorithms, a third study investigated the added value of synthesized red edge bands and the use of dense time series, enabled by sensor fusion, for the estimation of burn severity and mapping of fire damage from Landsat. The results illustrate the effectiveness of the developed algorithms to reduce multi-sensor, multi-temporal data inconsistencies and demonstrate the added value of geometric and spectral harmonization for subsequent products. Synthesized red edge information has proven valuable when retrieving vegetation-related parameters such as burn severity. Moreover, using sensor fusion for combining multi-sensor time series was shown to offer great potential for more accurate monitoring and mapping of quickly evolving environmental processes.
|
223 |
Leveraging big satellite image and animal tracking data for characterizing large mammal habitatsOeser, Julian 07 September 2022 (has links)
Die zunehmende Verfügbarkeit von Satellitenfernerkundungs- und Wildtier-Telemetriedaten eröffnet neue Möglichkeiten für eine verbesserte Überwachung von Wildtierhabitaten durch Habitatmodelle, doch fehlt es häufig an geeigneten Ansätzen, um dieses Potenzial voll auszuschöpfen. Das übergeordnete Ziel dieser Arbeit bestand in der Konzipierung und Weiterentwicklung von Ansätzen zur Nutzung des Potenzials großer Satellitenbild- und Telemetriedatensätze in Habitatmodellen. Am Beispiel von drei großen Säugetierarten in Europa (Eurasischer Luchs, Rothirsch und Reh) wurden Ansätze entwickelt, um (1) Habitatmodelle mit dem umfangreichsten global und frei verfügbaren Satellitenbildarchiv der Landsat-Satelliten zu verknüpfen und (2) Wildtier-Telemetriedaten über Wildtierpopulationen hinweg in großflächigen Analysen der Habitateignung und -nutzung zu integrieren. Die Ergebnisse dieser Arbeit belegen das enorme Potenzial von Landsat-basierten Variablen als Prädiktoren in Habitatmodellen, die es ermöglichen von statischen Habitatbeschreibungen zu einem kontinuierlichen Monitoring von Habitatdynamiken über Raum und Zeit überzugehen. Die Ergebnisse meiner Forschung zeigen darüber hinaus, wie wichtig es ist, die Kontextabhängigkeit der Lebensraumnutzung von Wildtieren in Habitatmodellen zu berücksichtigen, insbesondere auch bei der Integration von Telemetriedatensätzen über Wildtierpopulationen hinweg. Die Ergebnisse dieser Dissertation liefern neue ökologische Erkenntnisse, welche zum Management und Schutz großer Säugetiere beitragen können. Darüber hinaus zeigt meine Forschung, dass eine bessere Integration von Satellitenbild- und Telemetriedaten eine neue Generation von Habitatmodellen möglich macht, welche genauere Analysen und ein besseres Verständnis von Lebensraumdynamiken erlaubt und so Bemühungen zum Schutz von Wildtieren unterstützen kann. / The growing availability of satellite remote sensing and animal tracking data opens new opportunities for an improved monitoring of wildlife habitats based on habitat models, yet suitable approaches for making full use of this potential are commonly lacking. The overarching goal of this thesis was to develop and advance approaches for harnessing the potential of big satellite image and animal tracking data in habitat models. Specifically, using three large mammal species in Europe as an example (Eurasian lynx, red deer, and roe deer), I developed approaches for (1) linking habitat models to the largest global and freely available satellite image record, the Landsat image archive, and (2) for integrating animal tracking datasets across wildlife populations in large-area assessments of habitat suitability and use. The results of this thesis demonstrate the enormous potential of Landsat-based variables as predictors in habitat models, allowing to move from static habitat descriptions to a continuous monitoring of habitat dynamics across space and time. In addition, my research underscores the importance of considering context-dependence in species’ habitat use in habitat models, particularly also when integrating tracking datasets across wildlife populations. The findings of this thesis provide novel ecological insights that help to inform the management and conservation of large mammals and more broadly, demonstrate that a better integration of satellite image and animal tracking data will allow for a new generation of habitat models improving our ability to monitor and understand habitat dynamics, thus supporting efforts to restore and protect wildlife across the globe.
|
224 |
Modelling surface runoff and soil erosion for Yen Bai Province, Vietnam, using the Soil and Water Assessment Tool (SWAT): Research articleNguyen, Hong Quang, Le, Thi Thu Hang, Pham, Thi Thanh Nga, Kappas, Martin 24 August 2017 (has links)
Applications of the Soil and Water Assessment Tool (SWAT) are common. However, few attempts have focused on the tropics like in the Yen Bai province, Vietnam. Annual water-induced soil erosion (WSE) rates and surface runoff (SR) were estimated. The Nam Kim and Ngoi Hut watersheds were calibrated with accepted agreement between simulated and observed discharge. Correlations between precipitation, land covers, surface runoff and WSE were indicated. Although the estimated average WSE 4.1 t ha−1 year−1 (t ha−1 y−1) was moderate, some steep-bare areas were suffering serious soil loss of 26 t ha−1 y−1 and 15% of the province was calculated at the rate of 8.5 t ha−1 y−1. We found that the changes in WSE significantly correlated with land use changes. As calibrated SR matched closely with the measured data, we recommend SWAT applications for long-term soil erosion assessments in the tropics. / Những ứng dụng của mô hình công cụ đánh giá đất và nước (SWAT) đã được sử dụng phổ biến. Tuy nhiên có rất ít nghiên cứu tập trung vào khu vực nhiệt đới như tỉnh Yên Bái của Việt Nam. Trong nghiên cứu này, giá trị trung bình năm (2001-2012) nước chảy bề mặt (NCM) và xói mòn đất do nước (XM) đã được đánh giá trên cơ sở mô hình SWAT. Các thông số thủy văn của hai lưu vực sông là Nậm Kim và Ngòi Hút được tính toán và kiểm nghiệm với sự trùng hợp tương đối tốt giữa kết quả mô hình và số liệu thực đo. Mối liên hệ giữa lượng mưa, phủ bề mặt, NCM và XM cũng được phân tích và trình bầy chi tiết. Mặc dù giá trị XM năm được ước lượng ở mức trung bình cho toàn Tỉnh (4,1 tấn/ha/năm) nhưng ở một số khu vực nơi có độ dốc lớn và phủ mặt ít lại có lượng XM năm ở mức cao, 26 tấn/ha/năm và 15% tổng diện tích của Tỉnh có giá trị XM là 8,5 tấn/ha/năn. Kết quả nghiên cứu cho thấy sự liên hệ mật thiết giữa sự thay đổi phủ mặt tới giá trị XM. Trên cơ sở kết quả kiểm nghiệm mô hình khả quan, chúng tôi đề xuất sử dụng mô hình SWAT để đánh giá XM trong thời gian dài cho vùng nhiệt đới.
|
225 |
Linking agents, patterns and outcomes of forest disturbances to understand pathways of degradation in the Argentine Dry ChacoDe Marzo, Teresa Rita 17 November 2023 (has links)
Tropische Trockenwälder sind von großer Bedeutung für das Klima, die biologische Vielfalt und den Lebensunterhalt von Millionen von Menschen. Die Walddegradation bedroht die tropischen Trockenwälder, aber es fehlt an Wissen über ihre Muster, ihr Ausmaß und ihre Ursachen. Ziel dieser Arbeit war es, das derzeitige Verständnis der Walddegradation im argentinischen Dry Chaco mit Hilfe der Fernerkundung zu verbessern. Mithilfe des Landsat-Archivs habe ich die Störungsgeschichte des verbleibenden Waldes charakterisiert, die räumlichen und zeitlichen Muster der Störungsfaktoren bewertet und die langfristigen Auswirkungen der verschiedenen Faktoren auf die Waldstruktur untersucht. Die Ergebnisse zeigen, dass über 30 Jahre hinweg große Gebiete des argentinischen Dry Chaco (etwa 8 %) von Störungen betroffen waren. Meine Ergebnisse zeigen einen anthropogenen Zusammenhang mit den meisten Störungsarten, deuten aber auch auf einen komplexen indirekten Einfluss von Niederschlagsmustern hin, wobei Waldstörungen in Dürrejahren besonders verbreitet sind. Die Analyse der zeitlichen Muster der verschiedenen Einwirkungen zeigt Trends in der Landnutzung im Laufe der Zeit, wobei neue Landnutzungsformen wie silvopastorale Systeme entstehen und alte Praktiken wie die Abholzung jedes Jahr einen relativ stabilen Anteil der Flächen betreffen. Die Ergebnisse zu den langfristigen Auswirkungen von Störungen zeigen, dass sich die Waldstruktur bei den am weitesten verbreiteten Störungen über drei Jahrzehnte kaum oder gar nicht erholt, was auf eine großflächige Walddegradation schließen lässt. Diese Arbeit zeigt das Potenzial von Satellitenzeitreihen für eine robuste Charakterisierung der Walddynamik im Zusammenhang mit der Degradation auch in tropischen Trockenwäldern. Die aus dieser Arbeit resultierenden Karten, Ansätze und Erkenntnisse tragen zu einem besseren Verständnis der Walddegradation im Dry Chaco bei und können zu einem wirksameren Schutz der tropischen Trockenwälder beitragen. / Tropical dry forests are of great importance for climate regulation, harbour biodiversity and sustain the livelihood of millions of people. Deforestation and degradation threaten tropical dry forests but whereas our understanding of tropical deforestation has increased tremendously over the last decades, knowledge of the patterns, extent and drivers of forest degradation is lacking. This thesis aimed to advance the current understanding of forest degradation in the Dry Chaco by means of remote sensing. Using the Landsat archive, I characterized the disturbance history of the remaining Argentine Dry Chaco forest, assessed spatial and temporal patterns of disturbance agents, and investigated the long-term effect of different agents on forest structure. Results show that over 30 years large areas of the Argentine Dry Chaco (about 8%) were affected by disturbances. My findings reveal an anthropogenic link to most types of disturbances, while also suggesting complex indirect influence of precipitation patterns, with forest disturbances being particularly widespread during drought years. The analyses of temporal patterns of different agents reveals trends in land-use practices over time, with new land uses emerging, such as silvopastoral systems, and old practices such as logging, affecting a fairly stable share of areas every year. Findings on the long-term impact of disturbances indicate that for the most widespread disturbances, forest structure shows little or no recovery over three decades, which suggests forest degradation affecting large areas. This thesis demonstrates the potential of satellite time series for robust characterization of forest dynamics related to degradation also in tropical dry forests, despite the complex conditions these systems represent. The maps, approaches and knowledge resulting from this thesis contribute to a better understanding of forest degradation in the Dry Chaco and can inform more effective conservation of tropical dry forests.
|
226 |
Assessing, evaluating, and applying canopy models of urban vegetation from satellite-based height data / Erfassung, Bewertung und Anwendung von Kronenmodellen der Stadtvegetation aus satellitengestützten HöhendatenSchreyer, Johannes 12 March 2024 (has links)
Städtische Gehölzflächen haben positive Auswirkungen für Mensch und Natur, wie die Abkühlung überhitzter Innenstädte. Detaillierte Angaben zur Lage, Höhe und Kronenstruktur sind zur Lokalisierung und Quantifizierung derartiger Wirkungen unentbehrlich, allerdings auf globalen Maßstab nur für wenige Siedlungsräume verfügbar. In dieser Arbeit werden städtische Baumkronenhöhenmodelle (BHM) aus global verfügbaren digitalen Höhenmodellen (DHM) der TanDEM-X-Mission unter Einbezug zusätzlicher Fernerkundungsdaten und übertragbarer Bildverarbeitungstechniken erstellt sowie deren Anwendbarkeit für stadtökologische Fragestellungen untersucht. Das übergeordnete Ziel der Arbeit ist die Bereitstellung von Ansätzen zur Erstellung und Einbindung großmaßstäblicher, mehrdimensionaler Informationen zu städtischen Gehölzflächen. In einem ersten Schritt wird ein BHM aus einem TanDEM-X DHM unter Verwendung eines zusätzlichen Geländemodells für verschiedene urbane Biotopen der deutschen Stadt Berlin abgeleitet und validiert. Im Anschluss wird in einem neuartigen Ansatz zuerst ein Gelände- und dann ein Kronenmodell für groß- und kleinflächige Gehölzbestände aus einem TanDEM-X-DHM abgeleitet, um die Unabhängigkeit zusätzlicher Höhendaten zu erreichen. Die Genauigkeiten beider Schritte variieren in Abhängigkeit des städtischen Kontextes, wobei Resultate gröber aufgelöster globaler Höhendaten übertroffen werden. Zur Ideenfindung zukünftiger Anwendungen eines BHM in der Stadtforschung wird eine schriftliche Expertenumfrage durchgeführt. Über die Ableitung und Einbindung eines BHM für die iranische Stadt Yazd werden die methodische Übertragbarkeit getestet und Anwendbarkeit demonstriert. Im Gesamtergebnis liefert diese Dissertation validierte Ansätze zur Erstellung und Einbindung großskaliger Flächen- und Höhendaten städtischer Vegetation, die neue Perspektiven für stadtökologische Fragestellungen bieten. / Urban trees and shrubs have a variety of positive effects on humans and nature, such as cooling overheated inner cities. Detailed information on the location, height, and canopy structure of urban woody plants is indispensable for locating and quantifying such effects, but they are only poorly available on large scales. The globally available digital elevation model (DEM) of the TanDEM-X mission seems suitable for deriving the height and structure of woody areas in cities. This work incorporates TanDEM-X’s DEM with additional remote sensing data and transferable image processing techniques to create urban tree canopy height models (CHM) of woody vegetation and investigate their applicability. The overall goal of this thesis is to provide approaches for creating and applying large-scale, multi-dimensional information on urban wooded areas in a holistic framework. In a first step, CHMs are derived from a TanDEM-X DEM and validated using an additional terrain model for different urban biotopes in Berlin, Germany. Next, first a terrain model and then a crown model are derived in a novel approach, to eliminate the need for an additional terrain model. The accuracies of both steps vary depending on the urban context, but exceed results based on global elevation data with coarser resolution. Then, to generate ideas for future applications of a CHM in urban research, a Berlin CHM is presented to a scientific audience in a written survey. By conducting an urban CHM for the Iranian city of Yazd and integrating it into an urban ecological study, the methodological transferability of the model is tested and the applicability is demonstrated. As an overall result, this thesis provides approaches for the processing and specific application of large-scale area and elevation data on urban vegetation, offering a variety of new perspectives on urban ecological issues.
|
227 |
UAV-gestützte Vermessung im Bergbau – Abschätzung der Genauigkeit bei Verwendung von Structure from MotionTscharf, Alexander, Mayer, Gerhard, Fraundorfer, Friedrich, Bischof, Horst 16 July 2019 (has links)
Kaum eine technologische Neuentwickung der letzten Jahrzehnte hatte auf Anhieb einen derart starken Einfluss auf die markscheiderische und geodätische Praxis wie das Aufkommen unbemannter Flugsysteme (unmanned aerial system, UAS). Bedingt durch Größe und Tragfähigkeit dieser Systeme, beschränkt durch die vorherrschenden rechtlichen Rahmenbedingungen, sowie aufgrund der stetigen Miniaturisierung und Weiterentwicklung moderner Digitalkameras sind ein Großteil der am Markt befindlichen Systeme heutzutage mit Kameras als „eigentliches Vermessungsinstrument“ ausgestattet. Aufgrund der bei Drohnenbefliegungen üblicherweise unregelmäßigen und ungeordneten Bildverbände erfolgt die Auswertung in der Regel mittels automatisierter Mehrbildauswertung aus dem
Bereich Computer Vision (Structure from Motion, SfM), wobei trotz zahlreicher erfolgreicher Anwendungen grundlegende Untersuchungen und belastbare Aussagen zur erreichbaren Genauigkeit nach wie vor fehlen.
Vor diesem Hintergrund beschäftigt sich die markscheiderische Forschung an der Montanuniversität nun schon seit mehreren Jahren mit der Anwendung von UAS im Bergbau, wobei insbesondere hinsichtlich der Ergebnisverantwortlichkeit die Identifikation und Wechselwirkung genauigkeitsrelevanter Einflussparameter den Kern der Arbeiten bildet.
Neben Befliegungen im Realmaßstab, nehmen vor allem auch modellhafte Untersuchungen einen hohen Stellenwert in der Erforschung der gesuchten Zusammenhänge ein, welche im vorliegenden Beitrag präsentiert werden. / Hardly any new technological development in recent decades has had such a strong influence on geodetic practice as the emergence of unmanned aerial systems (UAS). Due to the size and carrying capacity of these systems, limited by the current legal framework, as well as due to the constant miniaturization and further development of modern digital cameras, the majority of systems on the market today are equipped with cameras as 'actual surveying instrument'. Due to the usually irregular and disordered image blocks in drone surveys, the evaluation is usually carried out by means of automated multi image evaluation from Computer Vision (Structure from Motion, SfM), whereby despite numerous successful applications fundamental investigations and reliable statements on the achievable accuracy are still missing.
Against this background, research at Montanuniversitaet Leoben has been dealing with the application of UAS in mining for several years, whereby the identification and interaction of influencing parameters relevant to accuracy forms the core of the work. In addition to real-scale aerial surveys, model-based investigations also play an important role in the research of the desired interrelationships, which are presented in this article.
|
228 |
Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project / Entwicklung einer Schnittstelle zur Überführung von Geodaten des Projektes CEOP-AEGIS in ein NetCDF-Datenmodell und Publikation dieser Daten unter Verwendung der Internetanwendung DChartHolzer, Nicolai 08 August 2011 (has links) (PDF)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security.
The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability.
Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way.
Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community. / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit.
Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann.
In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt.
In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.
|
229 |
Combining measurements, remote sensing and numerical modelling to assess multi-scale flow dynamics in groundwater-dependent environmental systemsNixdorf, Erik 04 June 2018 (has links) (PDF)
Groundwater flow modelling provides an important quantitative instrument for addressing issues related to the quantity and quality of groundwater and the connected water resources. Consequently, groundwater flow models have been developed and used ubiquitously in science to deepen the understanding of subsurface processes and their drivers as well as management and planning tools.
The present work investigates how numerical models can be linked to field investigations and public databases to quantitatively approach questions in the area of groundwater research. The primary goal is to develop new, efficient ways to overcome limitations of the individual hydrological concepts for solving specific hydrological problems and to increase the understanding of practical applicability of different methods. For this purpose, tailor-made approaches were developed for different study areas covering diverse spatial scales: the hydrology of a small mining lake, the riparian aquifer at the scale of a single meander as well as the aquifer systems of a large-scale river basin in China.
The first part of the work deals with the physical and mathematical modelling of water constituents balance in a meromictic mining lake in Lusatia. The capability of using a rather simple mass-balance model based on a sufficient dataset of field data to evaluate lake stratification and lake-groundwater interaction were shown.
In the second part, a transient numerical groundwater flow model was developed for the riparian aquifer of a stream meander and was calibrated by three different salt tracer tests. The model was used to proof the reliability of subsurface travel times derived from time series analysis and to give insights in the riparian zone dynamics during changing hydraulic gradients.
The third part of the work describes the methodology to conduct risk assessment of groundwater contamination on the large catchment scale of the Songhua River in China. A comprehensive literature study was conducted to get an overview about measurement data on water quality data in China. A three-dimensional numerical flow and mass transport model was applied to access the flow and matter transport dynamics in the aquifer system of a sub-basin considering changing groundwater exploitation scenarios. Consequently, numerical groundwater modelling was combined with processed remote sensing and web mapping service data to overcome field data limitations and to derive groundwater vulnerability, groundwater hazard and groundwater risk maps for the entire Songhua River Basin.
Summarizing, this doctoral thesis could develop new methods of combining field measurements, data assimilation and aggregation from various sources and groundwater modelling strategies and successfully apply these methods to find solutions on problems of multiple scales and across water systems. / Die Grundwassermodellierung stellt eine wichtige wissenschaftliche Methode zur quantitativen Analyse von Fragestellungen zum Schutz der Menge und Güte der Grundwasserressourcen sowie der angeschlossenen Wasserkörper dar. Dementsprechend werden Grundwassermodelle sowohl für Planungs- und Bewertungszwecke im Wasserressourcenmanagement als auch zur wissenschaftlichen Erforschung der Prozesse im Untergrund entwickelt und angewendet.
Die vorliegende Arbeit untersucht in diesem Rahmen, wie numerische Modelle, Feldmessungen und Daten generiert aus Fernerkundungsdaten und Webplattformen systematisch verknüpft werden können, um Fragestellungen im Bereich der Grundwasserforschung quantitativ zu beantworten. Das Ziel der Arbeit ist es neue effiziente Abläufe zu entwickeln, die die Limitierung der einzelnen Methoden überwinden und diese auf deren Anwendbarkeit für die Lösung spezifischer hydrologischer Probleme zu analysieren. Zu diesem Zweck wurden in dieser Doktorarbeit fallspezifische Lösungen für verschiedene Untersuchungsgebiete entwickelt, die sowohl in der räumlichen Skale als auch in den zu untersuchenden hydrologischen Fragestellungen eine große Diversität aufweisen.
Im ersten Teil der Arbeit wurde die Massenbilanz von Wasserinhaltsstoffen in einem meromiktischen Tagebaurestsee im Lausitzer Revier durch physikalische und mathematische Modellierungsmethoden untersucht. Dabei konnte gezeigt werden, dass auf Basis einer gewonnenen mehrjährigen Zeitreihe von Messdaten ein einfaches Massenbilanzmodell in der Lage ist, sowohl Seeschichtungs- als auch Grundwasseraustauschdynamiken quantitativ zu beschreiben.
Der zweite Teil der Arbeit umfasst die Entwicklung eines transienten numerischen Grundwassermodells für den quartären Uferaquifer im Bereich eines Flussmäanders der Selke welches anhand von Daten aus mehreren Salztracertests kalibriert wurde. Das Modell wurde dafür verwendet die transienten Verweilzeiten in der gesättigten Zone des Mäanderbogens unter dem Einfluss dynamischer hydraulischer Bedingungen zu untersuchen. Die Ergebnisse wurden im Anschluss mit Verweilzeiten verglichen, die aus der Analyse der zeitlichen Verschiebung von gemessenen elektrischen Leitfähigkeitszeitreihen zwischen Fluss und Grundwassermessstellen gewonnen wurden. Durch dieses kombinierte Verfahren konnten sowohl die Beschränkungen der zeitreihenbasierten Verweilzeitberechnung aufgezeigt als auch ein tieferes Systemverständnis für die Interaktionsdynamiken zwischen Grund- und Flusswasser auf der Mäanderskala gewonnen werden.
Der dritte Teil der Arbeit beschreibt die Vorgehensweise für die Bewertung des Grundwasserkontaminationsrisikos im Einzugsgebiet des Songhua Flusses in China. Eine umfassende Literaturstudie wurde durchgeführt, um einen Überblick über die Verfügbarkeit von Messdaten zur Belastung der Wasserressourcen Chinas mit organischen Schadstoffen zu erhalten. Danach wurde für ein Teileinzugsgebiet ein dreidimensionales numerisches Grundwassermodell auf Basis der vorhandenen hydrogeologischen Daten aufgebaut. Dieses wurde dazu verwendet die Änderungen im Stofftransports und den Schadstoffkonzentrationen innerhalb des Aquifersystems unter steigenden Entnahmeraten zu analysieren. Basierend auf diesen Studien wurden auf der Skale des Gesamteinzugsgebiets, um die beschränkte Verfügbarkeit von Felddaten auszugleichen, die Ergebnisse der numerischen Grundwassermodellierung mit Fernerkundungsdaten und Webdatenbanken in einem Indexsystem kombiniert mit dem für die oberflächennahen Aquifere Vulnerabilität, Gefährdungspotential und Verschmutzungsrisiko in einer räumlichen Auflösung von 1 km² bestimmt wurden.
Zusammenfassend konnten durch die vorliegende Doktorarbeit neue passgenaue Methoden zur effektiven Kombination von in-situ Messungen, der Datenerhebung und Datenintegration aus vielfältigen Datenquellen sowie numerischen Grundwassermodellierungsstrategien entwickelt und zur Lösung der untersuchten hydrologischer Fragestellen auf den verschiedenen Skalen und über die Grenzen der einzelnen hydrologischen Teilsysteme hinaus erfolgreich angewandt werden.
|
230 |
Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS projectHolzer, Nicolai 20 April 2011 (has links)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security.
The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability.
Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way.
Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community.:Task of Diploma Thesis ii
Declaration of academic honesty vii
Abstract ix
Acknowledgments xiii
Dedication xv
Table of Contents xvii
List of Figures xxi
List of Tables xxiii
List of Listings xxv
Nomenclature xxvii
1 Introduction 1
1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10
2 Theoretical foundations 13
2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31
2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33
2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34
2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35
2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36
2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42
2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48
2.2.5 OPeNDAP data models and data types . . . . . . . . . 49
2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53
2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57
2.3.2 System architecture and Dapper services . . . . . . . . 58
2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61
2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64
2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66
2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67
2.5.2 Dapper and DChart system requirements . . . . . . . . 67
3 Implementation 69
3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71
3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73
3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80
3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89
3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93
3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95
3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98
3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98
3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105
3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Conclusion 111
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A Appendix 119
A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119
A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121
A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122
A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123
A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124
A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125
A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126
A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127
A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130
A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131
A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132
A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133
A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134
A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135
A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136
A.5.4 Data Interface modules and classes . . . . . . . . . . . 137
A.5.5 Data Interface NetCDF metadata file for gridded data 138
A.5.6 Data Interface NetCDF metadata file for in-situ data . 139
A.5.7 Data Interface coordinate metadata file for gridded data140
A.5.8 Data Interface coordinate metadata file for in-situ data 140
A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141
A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142
A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143
A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144
A.5.13 Data Interface settings file for gridded data . . . . . . . 145
A.5.14 Data Interface settings file for in-situ data . . . . . . . 146
A.5.15 Data Interface batch file for data conversion via GrADS146
A.5.16 Data Interface batch file for data conversion via GDAL 147
A.5.17 Data Interface batch file for data conversion via CSV . 148
A.6 Pydoc documentation for upstream data interface . . . . . . . 149
A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150
A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155
A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162
A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167
A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172
A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175
A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179
A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185
A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189
A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191
Bibliography 197
Index 205 / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit.
Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann.
In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt.
In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.:Task of Diploma Thesis ii
Declaration of academic honesty vii
Abstract ix
Acknowledgments xiii
Dedication xv
Table of Contents xvii
List of Figures xxi
List of Tables xxiii
List of Listings xxv
Nomenclature xxvii
1 Introduction 1
1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10
2 Theoretical foundations 13
2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31
2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33
2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34
2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35
2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36
2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42
2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48
2.2.5 OPeNDAP data models and data types . . . . . . . . . 49
2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53
2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57
2.3.2 System architecture and Dapper services . . . . . . . . 58
2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61
2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64
2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66
2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67
2.5.2 Dapper and DChart system requirements . . . . . . . . 67
3 Implementation 69
3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71
3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73
3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80
3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89
3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93
3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95
3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98
3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98
3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105
3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Conclusion 111
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A Appendix 119
A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119
A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121
A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122
A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123
A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124
A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125
A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126
A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127
A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130
A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131
A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132
A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133
A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134
A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135
A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136
A.5.4 Data Interface modules and classes . . . . . . . . . . . 137
A.5.5 Data Interface NetCDF metadata file for gridded data 138
A.5.6 Data Interface NetCDF metadata file for in-situ data . 139
A.5.7 Data Interface coordinate metadata file for gridded data140
A.5.8 Data Interface coordinate metadata file for in-situ data 140
A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141
A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142
A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143
A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144
A.5.13 Data Interface settings file for gridded data . . . . . . . 145
A.5.14 Data Interface settings file for in-situ data . . . . . . . 146
A.5.15 Data Interface batch file for data conversion via GrADS146
A.5.16 Data Interface batch file for data conversion via GDAL 147
A.5.17 Data Interface batch file for data conversion via CSV . 148
A.6 Pydoc documentation for upstream data interface . . . . . . . 149
A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150
A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155
A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162
A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167
A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172
A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175
A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179
A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185
A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189
A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191
Bibliography 197
Index 205
|
Page generated in 0.0835 seconds