• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 13
  • 5
  • Tagged with
  • 43
  • 19
  • 17
  • 15
  • 13
  • 12
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Spatio-temporal dynamics of fluids and tissues: discrete versus continuous modeling

Franke, Florian 05 August 2024 (has links)
Um das Verständnis für physikalische und biologische Dynamiken zu verbessern, werden oft stellvertretend mathematische Modelle entwickelt, implementiert,validiert und analysiert. Die Entscheidung für oder gegen einen bestimmten Modelltyp, zum Beispiel ob die Auflösung in Raum und Zeit diskret oder kontinuierlich definiert ist, kann erheblichen Einfluss auf die Ergebnisse haben. Insbesondere bei der Untersuchung und Simulation der Dynamiken von biologischen Zellen, die häufig auch als biologische Flüssigkeiten (Biofluids) bezeichnet und in der Literatur oft mit physikalischen Flüssigkeiten verglichen werden, ist die Wahl des geeigneten Modelltyps nicht immer trivial. In diesem Zusammenhang stellt die vorliegende Arbeit drei verschiedene Szenarien vor. Unter Zuhilfenahme von unterschiedlichen mathematischen Modellen werden diese Szenarien dann untersucht. Dabei wird deutlich, dass trotz des ähnlichen Kontextes von physikalischen und biologischen Dynamiken je Szenario unterschiedliche Modelltypen besser geeignet sind und mitunter verschiedene Aussagen liefern. Daher muss für jedes dieser Szenarien die Entscheidung, welches Modell genommen wird und ob dieses in Raum und Zeit diskret oder kontinuierlich ist, neu evaluiert werden. Das erste Szenario befasst sich mit einer rein physikalischen Dynamik und beschreibt das Aufsteigen einer runden Flüssigkeitsblase innerhalb einer anderen Flüssigkeit. In diesem Zusammenhang wird auch häufig von zwei Phasen gesprochen. Dieser Fall dient auch als numerischer Benchmark-Test zur Bewertung der Genauigkeit von Zwei-Phasen-Modellen. Innerhalb dieses Kontextes werden oft Modelle verwendet, die kontinuierlich in Bezug auf Ort und Zeit sind. In der vorliegenden Arbeit wird stellvertretend das Cahn-Hilliard-Navier-Stokes-Modell verwendet. Vor allem wird ein neuer einfacher Diskretisierungsansatz für dieses Modell vorgestellt. Unter Verwendung eines Standard-Benchmark-Tests wird gezeigt, dass die Genauigkeit vergleichbar zu bisherigen Methoden ist. Das zweite Szenario fokussiert sich auf eine biologische Dynamik und beschreibt das Wachstum eines Tumorsphäroiden und sein Verhalten bei der Behandlung mit Radiostrahlung. Tumorsphäroide sind spezielle 3D in-vitro Experimente, welche eine Ansammlung von mehreren tausend Zellen umfassen und Tumormikroumgebung und Mikrometastasen nachempfinden. Durch ihre 3D Struktur zeigen sie Stoffwechselgradienten von Sauerstoff, Nährstoffen und Abfallprodukten. Die Modellierung solcher Sphäroide wird häufig mit zell- oder agentenbasierten Modellen beschrieben, die in Bezug auf Ort und Zeit meist diskret sind und das Zellverhalten regelbasiert beschreiben. In dieser Arbeit wird hierfür stellvertretend ein zellulärer Automat verwendet. Dieser dient später als Vergleichsmodell zu dem neu entwickelten und hier vorgestellten Ansatz: dem 1D Radial Shell Modell, welches im Ort diskret und in der Zeit kontinuierlich ist. Dieses ermöglicht weitere Erkenntnisse und Vorhersagen zum Wachstum der Sphäroide, insbesondere für die Dynamik bei kleinem Sphäroidvolumen. Im dritten Szenario wird ein Grenzfall zwischen den physikalischen und biologischen Flüssigkeiten beschrieben: Die Entmischungsdynamik von biologischen Zellen, welche oft in der Literatur mit der Entmischung von zwei physikalischen Flüssigkeiten, wie Wasser und Öl, verglichen wird. Daher werden die beiden zuvor vorgestellten Modelle, das kontinuierliche Cahn-Hilliard-Navier-Stokes-Modell und der diskrete zelluläre Automat, für diesen Sachverhalt simuliert und analysiert. Zudem werden beide Modelle miteinander und jeweils mit biologischen Experimenten verglichen, wobei aufgrund ihrer unterschiedlichen zeitlichen und räumlichen Auflösung verschiedene Vor- und Nachteile identifizierbar sind. Am Ende zeigt sich entgegen bisherigen Versuchen in der Literatur, dass die Anpassung der Modelle an die Experimentaldaten nicht ausschließlich durch das Skalierungsverhalten machbar ist, da die Zeitskalen in den Experimenten häufig zu kurz sind. Daher sollten zusätzliche Metriken, wie zum Beispiel der durchschnittliche Clusterdurchmesser oder die Verteilung der Clustergrößen, beachtet werden. / Enhancing the understanding of physical and biological dynamics is crucial, which is why assisting mathematical models are often developed, implemented, validated, and analyzed. The decision for or against a particular model type, for example, whether the resolution in space and time is defined discretely or continuously, can considerably influence the results. Especially when investigating and simulating the dynamics of biological cells, also referred to as biological fluids and in the literature often compared to physical fluids, choosing the appropriate model type is not trivial in every case. This work presents three scenarios, which are further examined with the help of various mathematical models. Despite the similar context, dynamics of physical and biological fluids, some model types are more suited and deliver different results for each scenario. Therefore, the decision should be made new, depending on the scenarios, which model type is optimal, discrete, or continuous in space and time. The first scenario describes pure physical dynamics by the rise of a round fluid bubble within another fluid, which is often referred to as two phases. This setup also serves as a numerical benchmark test to evaluate the accuracy of physical two-phase-models. Within this context, the models used are often continuous regarding space and time. In this work, the Cahn-Hilliard-Navier-Stokes-model is chosen as a representative example. In particular, a new discretization approach for the model is introduced and evaluated by the previous benchmark test, which showcases that the new, more straightforward discretization approach leads to comparably precise results. The second scenario focuses on biological dynamics and describes the untreated growth of a tumor spheroid and further its behavior when exposed to \acl{rt}. These tumor spheroids are, in particular, 3D-assays of in-vitro experiments, which are 3D avascular aggregates of several thousand tumor cells mimicking tumor microareas or micrometastases. Due to their 3D structure, spheroids exhibit metabolic gradients of oxygen, nutrients, and waste products. These are usually simulated with cell or agent-based models, which are discrete in terms of space and time and describe the cell behavior in a rule-based manner. In this work, a cellular automaton is used as a representative. Later, this model will serve as a comparison for the new innovative approach presented here: the 1D Radial Shell model, which is space-discrete and time-continuous. This model allows further insights and predictions, for example, regarding the behavior of spheroids at small volumes, justifying the use of multiple model types. The third scenario can be seen as the in-between of physical and biological fluid dynamics: The segregation of biological cells of two distinct types, which is in the literature often referred to as similar or equal to that of two physical fluids, like oil and water. Therefore, this process is simulated and analyzed with the previously introduced continuous Cahn-Hilliard-Navier-Stokes and the discrete cellular automaton models. Thereby, both models are compared with each other and also individually with biological experiments. The comparison enables the identification of various advantages and disadvantages due to their different temporal and spatial resolution. In the end, it becomes clear that adapting the models to the experimental data is only partially feasible through the scaling behavior, as the time scale in the experiments is often too short, which stands in contrast to the current standard in the literature. Therefore, we emphasize that additional metrics should be considered, such as the average cluster diameter or cluster size distribution.
42

Perkolierte Feststoff-Vergärung Vergleichende Untersuchungen zur Prozesssteuerung in ein- und mehrstufigen Verfahren

Krieg, Andreas Ludwig 14 May 2019 (has links)
Bei der Behandlung organische Abfälle werden zunehmend Feststoff-Vergärungsverfahren mit Perkolation eingesetzt. Sie werden bevorzugt, wenn eine Vorab-Zerstörung der Feststoffstruktur nachteilig für die Gärrest-Verwendung oder sich daraus keine ökonomischen Vorteile ergeben. Das trifft auch bei strohartiger Biomasse zu. Zur satzweisen Vergärung wurden zahlreiche Erkenntnisse publiziert. Zeitgleich wurde das Sauter-Verfahren für den kontinuierlichen Betrieb zur Anwendungsreife entwickelt sowie am Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB) Forschungen einer zweistufigen Variante publiziert. Erstmalig erfolgt unter Verwendung von Silagen ein Vergleich der Varianten. Einflüsse der Perkolationsintensität auf Zusammensetzung und Eigenschaften der Feststoffe und der Prozessflüssigkeit sowie auf die Kinetik der Gasbildung werden untersucht. Die Perkolatzusammensetzung variiert variantenabhängig. OTS-Belastungs-Grenzen lassen sich in erster Näherung bestimmen. Geeignete Vergleichsparameter werden dargestellt. Betreiberbefragungen und messtechnische Begleitung einer Sauter-Anlage ergänzen die Arbeit. Eine differenzierte Beurteilung der Perkolationsverfahren ist nun möglich. Betrachtet werden die Feststoffdichte im Fermenter, die TS-Gehalte im Gärstock sowie der Schwimmschicht. Die Verweilzeit der partikulären Biomasse im Fermenter ist erheblich kürzer als bisher angenommen. Das beeinflusst direkt die Hydrolyserate und mittelbar die Mikroflora im Fermenter. Nähere Untersuchungen sind erforderlich. Auch bei Perkolationsverfahren beeinflusse Substratzusammensetzung und Mahlgrad die Kinetik der Gasbildung. Die Methanausbeuten unterscheiden sich nur unwesentlich von Rührkessel-Systemen. Die Erweiterung der perkolierten Vergärung durch eine Perkolat-Methanisierungsstufe sind höhere Raum-Zeit-Ausbeuten möglich. Das erlaubt eine zeitlich gesteuerte Methanerzeugung, wobei Ausmaß und Leistungsgradient weiterer Forschung bedürfen. / Numerous research findings and experience on the batchwise fermentation of stacked biomass are available. At the same time, the percolated and continuously operated Sauter-process was developed to market maturity. Research on a two-stage variant has been carried out and published by the Leibnitz Institute for Agricultural Engineering and Bioeconomics e.V. (ATB). This paper provides for the first time a direct comparison of the above-mentioned percolated process variants using maize and sedge silages. The effects of percolation intensity on composition and properties of the solids and the process fluid as well as on the gas formation kinetics are investigated in particular. Furthermore, suitable benchmarks of the variants are identified and evaluated. The link to practice is a operators questioning and a one year lasting monitoring of a Sauter plant. The findings allow a differentiated assessment of percolation processes. Findings on solid matter density as well as on dry matter content in the fermenting stock or floating layer are presented in detail. During continuous operation, particulate biomass retention time is considerably shorter than would result from usual calculation of hydraulic retention time. It is indicated that the microflora in the fermenter is also indirectly affected. This requires further research work. It is shown that in percolation processes substrate composition and extent of grinding also dominate the gas formation kinetics, albeit to different extents. Methane yields differ under comparable load and operating parameters only marginally from yields of stirred tank systems. Composition of percolate also varies variant-specific. Findings can be used to define in a first approximation limits of volatile solid load. It has been proven that percolated solid-state fermentation with an additional percolate methanization stage allows higher space-time yields. This extra stage suits also for controlled flexible methane production.
43

Parallele Algorithmen für die numerische Simulation dreidimensionaler, disperser Mehrphasenströmungen und deren Anwendung in der Verfahrenstechnik

Frank, Thomas 21 June 2002 (has links)
Many fluid flow processes in nature and technology are characterized by the presence and coexistence of two ore more phases. These two- or multiphase flows are furthermore characterized by a greater complexity of possible flow phenomena and phase interactions then in single phase flows and therefore the numerical simulation of these multiphase flows is usually demanding a much higher numerical effort. The presented work summarizes the research and development work of the author and his research group on "Numerical Methods for Multiphase Flows" at the University of Technology, Chemnitz over the last years. This work was focussed on the development and application of numerical approaches for the prediction of disperse fluid-particle flows in the field of fluid mechanics and process technology. A main part of the work presented here is concerned with the modelling of different physical phenomena in fluid-particle flows under the paradigm of the Lagrangian treatment of the particle motion in the fluid. The Eulerian-Lagrangian approach has proved to be an especially well suited numerical approach for the simulation of disperse multiphase flows. On the other hand its application requires a large amount of (parallel) computational power and other computational ressources. The models described in this work give a mathematical description of the relevant forces and momentum acting on a single spherical particle in the fluid flow field, the particle-wall interaction and the particle erosion to the wall. Further models has been derived in order to take into account the influence of particle-particle collisions on the particle motion as well as the interaction of the fluid flow turbulence with the particle motion. For all these models the state-of-the-art from literature is comprehensively discussed. The main field of interest of the work presented here is in the area of development, implementation, investigation and comparative evaluation of parallelization methods for the Eulerian-Lagrangian approach for the simulation of disperse multiphase flows. Most of the priorly existing work of other authors is based on shared-memory approaches, quasi-serial or static domain decomposition approaches. These parallelization methods are mostly limited in theire applicability and scalability to parallel computer architectures with a limited degree of parallelism (a few number of very powerfull compute nodes) and to more or less homogeneous multiphase flows with uniform particle concentration distribution and minor complexity of phase interactions. This work now presents a novel parallelization method developed by the author, realizing a dynamic load balancing for the Lagrangian approach (DDD - Dynamic Domain Decomposition) and therefore leading to a substantial decrease in total computation time necessary for multiphase flow computations with the Eulerian-Lagrangian approach. Finally, the developed and entirely parallelized Eulerian-Lagrangian approach MISTRAL/PartFlow-3D offers the opportunity of efficient investigation of disperse multiphase flows with higher concentrations of the disperse phase and the resulting strong phase interaction phenomena (four-way coupling). / Viele der in Natur und Technik ablaufenden Strömungsvorgänge sind durch die Koexistenz zweier oder mehrerer Phasen gekennzeichnet. Diese sogenannten Zwei- oder Mehrphasensysteme zeichnen sich durch ein hohes Maß an Komplexität aus und erfordern oft einen sehr hohen rechentechnischen Aufwand zu deren numerischer Simulation. Die vorliegende Arbeit faßt langjährige Forschungs- und Entwicklungsarbeiten des Autors und seiner Forschungsgruppe "Numerische Methoden für Mehrphasenströmungen" an der TU Chemnitz zusammen, die sich mit der Entwicklung und Anwendung numerischer Berechnungsverfahren für disperse Fluid-Partikel-Strömungen auf dem Gebiet der Strömungs- und Verfahrenstechnik befassen. Ein wesentlicher Teil der Arbeit befaßt sich mit der Modellierung unterschiedlicher physikalischer Phänomene in Fluid-Partikel-Strömungen unter dem Paradigma der Lagrange'schen Betrachtungsweise der Partikelbewegung. Das Euler-Lagrange-Verfahren hat sich als besonders geeignetes Berechnungsverfahren für die numerische Simulation disperser Mehrphasenströmungen erwiesen, stellt jedoch in seiner Anwendung auch höchste Anforderungen an die Ressourcen der verwendeten (parallelen) Rechnerarchitekturen. Die näher ausgeführten mathematisch-physikalischen Modelle liefern eine Beschreibung der auf eine kugelförmige Einzelpartikel im Strömungsfeld wirkenden Kräfte und Momente, der Partikel-Wand-Wechselwirkung und der Partikelerosion. Weitere Teilmodelle dienen der Berücksichtigung von Partikel-Partikel-Stoßvorgängen und der Wechselwirkung zwischen Fluidturbulenz und Partikelbewegung. Der Schwerpunkt dieser Arbeit liegt im Weiteren in der Entwicklung, Untersuchung und vergleichenden Bewertung von Parallelisierungsverfahren für das Euler-Lagrange-Verfahren zur Berechnung von dispersen Mehrphasenströmungen. Zuvor von anderen Autoren entwickelte Parallelisierungsmethoden für das Lagrange'sche Berechnungsverfahren basieren im Wesentlichen auf Shared-Memory-Ansätzen, Quasi-Seriellen Verfahren oder statischer Gebietszerlegung (SDD) und sind somit in ihrer Einsetzbarkeit und Skalierbarkeit auf Rechnerarchitekturen mit relativ geringer Parallelität und auf weitgehend homogene Mehrphasenströmungen mit geringer Komplexität der Phasenwechselwirkungen beschränkt. In dieser Arbeit wird eine vom Autor entwickelte, neuartige Parallelisierungsmethode vorgestellt, die eine dynamische Lastverteilung für das Lagrange-Verfahren ermöglicht (DDD - Dynamic Domain Decomposition) und mit deren Hilfe eine deutliche Reduzierung der Gesamtausführungszeiten einer Mehrphasenströmungsberechnung mit dem Euler-Lagrange-Verfahren möglich ist. Im Ergebnis steht mit dem vom Autor und seiner Forschungsgruppe entwickelten vollständig parallelisierten Euler-Lagrange-Verfahren MISTRAL/PartFlow-3D ein numerisches Berechnungsverfahren zur Verfügung, mit dem disperse Mehrphasenströmungen mit höheren Konzentrationen der dispersen Phase und daraus resultierenden starken Phasenwechselwirkungen (Vier-Wege-Kopplung) effektiv untersucht werden können.

Page generated in 0.0587 seconds