• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Pretreatment Methods on Methane Yield and Nutrient Solubilization During Anaerobic Digestion of Microalgae

Hill, Alexander Scott 01 June 2014 (has links) (PDF)
Microalgal biomass is a candidate feedstock for biofuel production. To improve the sustainability of algae biofuel production, following biofuel recovery, the biomass nutrients should be recycled for additional algae growth. Anaerobic digestion of algae or oil-extracted algae is a means of recovering carbon and other nutrients, while offsetting algae production electricity demand. The major limiting factor in microalgae digestion is the low biodegradability of the cell walls. In the present study, various pretreatment technologies were tested at bench scale for their ability to improve raw, non-lipid-extracted algae biodegradability, which was assessed in terms of methane yield, volatile solids destruction, and solubilization of N, P, and K. The microalgae were harvested by sedimentation from outdoor wastewater-fed raceways ponds operated in coastal southern California. Four pretreatment methods (sonication, high-pressure homogenization, autoclaving, and boiling) were used on the algae slurries, each followed by batch anaerobic digestion (40 days at 35oC). Biomass sonication for 10 minutes showed the highest methane yield of 0.315 L CH4/ g VSIN, which is a 28% increase over the untreated control. Conversely, autoclaved algae slurry inhibited methane production (0.200 vs. 0.228 L CH4/ g VSIN for the treatment and control). A preliminary energy balance indicated that none of the pretreatments led to a net increase in energy conversion to biomethane. However, pretreatment did increase the initial N and P solubilization rates, but, after digestion, the ultimate N and P solubilization was nearly the same among the treatments and controls. After 40 days of digestion, solubilization of N, P, and K reached, respectively, 50-60% of average total Kjeldahl N, 40-50% of average total P, and 80-90% of average total K. Descriptive first-order models of solubilization were developed. Overall, certain pretreatments marginally improved methane yield and nutrient solubilization rate, which cast doubt on the efficacy of, or even the need for, algae biomass pretreatment prior to anaerobic digestion.
2

Impact of Substrate to Inoculum Ratio on Methane Production in High Solids Anaerobic Digestion (HS-AD) of Food Waste, Yard Waste, and Biosolids

Dixon, Phillip James 22 March 2018 (has links)
High solids anaerobic digestion (HS-AD) is an alternative for managing the organic fraction of municipal solids waste (MSW), which produces mainly methane (CH4) and fertilizer as byproducts. HS-AD offers a potentially more economically and environmentally sustainable option compared with landfilling or incineration waste-to-energy facilities. However, HS-AD is a complex process requiring specific microbial communities working together symbiotically. Previous studies have found that the substrate to inoculum (S/I) ratio affects CH4 production and yield in HS-AD reactors by affecting substrate mass and energy transfer as well as microbial activity. In this thesis, biochemical methane potential (BMP) assays were used to investigate the effect of S/I ratio on CH4 production and chemical properties during the digestion of food waste, yard waste, and biosolids. The results indicate that the S/I ratio of 1.0 based on total solids (TS) content was the optimum ratio for the mixtures, compared to 2.0 and 3.0 based on TS as well as an inoculum only blank. Specifically, the S/I ratio of 1.0 based on TS had the greatest cumulative CH4 production of 2,320-mL and maximum cumulative CH4 yield of 126 mL-CH4/ (g VSadded) over 47 days while reducing total TS and VS in the reactors. Weekly chemical analyses showed that the optimum values were produced in BMPs with S/I of 1.0 because this set was the least influenced by pH, volatile fatty acid (VFA), total ammonia nitrogen (TAN) induced microbial inhibition. Overall, these findings may assist in the design and operation of HS-AD systems with greater CH4 volume and CH4 production for the digestion of the organic fraction of MWS.
3

GHG reduction by rewetted arable land : a study on cultivated peatland for biogas production in temperate climate in Sweden

Martens, Mireille LMI January 2017 (has links)
Hydrophytes can be cultivated on rewetted drained peatland and used as substrate to produce biogas which can be utilized as vehicle fuel. This results in less GHG from rewetted peat soils and at the same time leads to renewable energy that substitutes fossil fuels. A literature research was conducted to study the impact of different species (Phragmites australis = Pa and Typha latifolia=Tl) and soil nutrient status on GHG emissions of rewetted fens in N Europe. In addition, biogas production and the exposure to different N-load were investigated for these species. Pa has a methane yield of 235 ml CH4 g-1 VS-1 regardless the input of N whereas Tl needs to be fertilized in order to produce high methane yield (204 ml CH4 g-1 VS-1).  Pa sequesters more CO2 and converts it into biomass which makes it a C-sink but by using the GWP factor to convert CH4 into CO2-equivalents, Pa becomes as Tl a GHG-source. Still Pa’s GHG emissions are lower than Tl’s if water depth is maximum 20 cm. Pa also contributes to peat formation and can cope with water fluctuations.
4

Optimization of Methane Yield in Solid-State Anaerobic Co-Digestion of Dairy Manure and Corn Stover

Ajayi-banji, Ademola January 2020 (has links)
Sole dependence on fossil fuel and the concomitant environmental concerns could be minimized through the optimization of green energy generation from the growing volume of onfarm organic wastes. In this mesophilic study, green energy, mainly methane, was optimized through the solid-state anerobic co-digestion (SSAD) of two on-farm organic wastes (dairy manure with corn stover). Factors considered to achieve the improved methane yield under a total solids of 16% were particle size of corn stover (0.18 – 0.42 and 0.42 – 0.84 mm), alkaline pretreatment type (thermo-chemical and wet state), alkaline-pretreatment reagent (NaOH, NH4OH, and Ca(OH)2) used for the corn stover, and the magnetite nanoparticles(20, 50, and 75 mg/L) thereafter added to the treatment with highest methane yield. Kinetic models were used to describe some of the high methane yield as well as the environmental impact investigated with life cycle assessment. Results indicated that corn stover with particle size 0.42 - 0.84 mm blended with dairy manure under a C/N of 24 had the highest methane yield (106 L/ kgVS) under 60 days retention time. After pretreatment of the 0.42 - 0.84 mm corn stover with the three different alkaline reagents, methane yield improved under this wet state pretreatment relative to thermochemical. For instance, calcium pretreated corn stover blended with dairy manure (CaW) had the highest methane yield (176 L / kgVS) under a reduced retention time (79 days), overcame potential volatile fatty acids accumulation and digester upset relative to other pretreated treatments. Furthermore, addition of 20 mg of the nanoparticles to the CaW treatment further enhanced methane yield (191 L / kg VS), minimized digester upset, and reduced retention time to 52 days. Suitable process parameters for methanogenic activities were 0.1 - 0.5 for VFA/Ammonia and VFA/Alkalinity ratios. Free ammonia concentration between 258 – 347 mg/L does not affect methanogenic activities. Environmnetal impact aseessment indicated that pretreatment negatively influenced human health factors and eutrophication potentials though reduced ozone depletion, global warming potential, and smog potentials. The solid-state of dairy manure co-digested with corn stover has the potential to improve green energy generation that could complement fossil fuel and address waste management challenges.
5

Investigation of the effects of co-digesting of biodegradable waste and swine manure on the biogas process

Ojong, Pascal January 2011 (has links)
Biomass and biomass-derived waste are important renewable energy sources which plays a vital role in greenhouse gas reduction from fossil fuel.  Biomass can be degraded in a process known as anaerobic digestion (AD) to produce biogas. Biogas is a mixture of methane and carbon dioxide which is utilized as a renewable source of energy. This project was based on the investigation of AD process in Nordvästra Skånes Renhållnings AB (NSR) a biogas facility in Helsingborg Sweden. A lab simulation of NSR digesters was conducted to evaluate the effects of swine manure on AD using two continuously stirred tank reactors (CSTR) R1 (control) and R2 with a working volume of 4L for 21 weeks. The study was divided into 4 periods and the investigation was carried out by increasing the organic loading rate (OLR) step wise from 2.5 to 3.6 gVSL-1day-1. To assess the effects of swine manure, the performance and stability of the reactors were monitored by collecting data from process parameters. These process parameters included biogas production, pH, volatile fatty acids, methane yield, methane content and organic solids (total and volatile solids). Increase in OLR resulted in increase biogas production in both reactors, however R2 with additional swine manure (15%) produced more biogas than R1. Methane yield was fairly stable during the experiment and had a similar trend in both reactors, but however R2 had a slightly higher average yield (730±60 mLCH4 gVS-1) than R1 (690±60 mLCH4 gVS-1) during the entire experiment. Increase OLR resulted in increase VFA in period 2; R2 with additional swine manure had a lower peak VFA concentration of 25 mM as compared to 33mM in R1.  The characteristics of NSR substrate mix and swine manure provided a good buffering system (stable pH), and reactors were still running stably at 3.6 gVSL-1day-1. Furthermore swine manure was investigated to contain macro-nutrients and trace metals which might have enhanced the AD process in R2 containing more Co, Zn, Ni and Mo than R1. Since this investigation was a simulation, the waste mix used at NSR contained 7% swine manure, this made it difficult to give clearer conclusions about the effects of co-digestion of swine manure on the biogas process since the control (R1) had 7% swine manure. Keywords: Anaerobic digestion, co-digestion, swine manure, substrate mix, organic loading rate, biogas production, methane yield, VFA, process parameters, CSTR.
6

Codigestão anaeróbia de lixiviado de aterro industrial e glicerina / Anaerobic co-digestion of leaching industrial landfill and glycerin

Castro, Thiago Morais de 31 January 2018 (has links)
Submitted by Rosangela Silva (rosangela.silva3@unioeste.br) on 2018-05-30T14:15:49Z No. of bitstreams: 2 Thiago Morais de Castro.pdf: 2981699 bytes, checksum: 66cbb29086744ea891ed186377e4ec48 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-30T14:15:49Z (GMT). No. of bitstreams: 2 Thiago Morais de Castro.pdf: 2981699 bytes, checksum: 66cbb29086744ea891ed186377e4ec48 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main objective of this study was to evaluate the performance of the anaerobic co-digestion of different concentrations of industrial landfill leachate associated with crude residual glycerin, in a continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) in the same process of anaerobic co-digestion. In this way, co-digestion tests were carried out in laboratory scale (400 mL of useful volume), batch operated in mesophilic conditions (30 ± 1 °C), with a 30-day incubation time in which five levels of (0, 1.5, 5, 8.5, and 10%) and five food/microorganism (F/M) levels (0.3, 0.5, 1, 0, 1.5, and 1.7), adopting experimental design of the Central Composite Rotational Design (CCRD). The results indicated a significant effect on the responses: methanogenic potential, removal of organic matter in terms of COD, accumulated production of CH4, and estimation of maximum production of CH4 using the modified Gompertz model, considering a confidence interval of 95% (p <0.05). From the results and with the desirability test it was verified that the ideal mixture was 95.13% of the industrial landfill leachate with 4.87% of the crude residual (v/v) residual glycerin with F/M ratio of 1.61 to optimize the process as a function of the response variables. From this recommended combination, with approximately 5% glycerin added to the leachate (v/v), the performance of ABFSB was evaluated in the co-digestion cited. The performance of the process was evaluated in three stages: biomass adaptation, gradual increase of organic loading rate (OLR) and reduction of alkaline supplementation. After the first 48-day period, the results were favorable to the application of the bioreactor in the evaluated anaerobic co-digestion, since the system presented stable conditions regarding the operational parameters with the addition of alkalinity with sodium bicarbonate (NaHCO3) and biomass adaptation. Thus, the second stage was started with application of increasing OLR (2, 3.5, 7.1 and 11.6 gCOD L-1 d-1). In the OLR of 7.1 gCOD L-1 d-1, the process reached the maximum methane flow rate (MFR) of 7.61 LNCH4 d-1, methane (MY) yield of 0.302 LNCH4 gCODrem-1 and volumetric methane production rate (VMPR) of 2.79 LNCH4 L-1 d-1, with total COD (ERCOD) and soluble COD removal efficiencies (ERsCOD) above 90%. Thus, the condition adopted in the third was OLR of 7.1 gCOD L-1 d-1, CODaffluent of 10.68 gO2 L-1 and hydraulic holding time of 35.2 h, aiming to optimize the quantity effectively required of NaHCO3. The minimum required concentration of alkalinity supplementation was of 0.28 gNaHCO3 gDQOaffluent-1. It is concluded that alkalinity supplementation was an important factor in the stability of the bioreactor. Finally, it is evidenced that the system is promising and that the results can serve as subsidy for industrial landfills to adopt this form of co-digestion, with biogas energy use. / O objetivo principal deste trabalho foi avaliar a codigestão anaeróbia de diferentes concentrações de lixiviado de aterro industrial e glicerina inicialmente em reatores em batelada e posteriormente o desempenho do processo em biorreator anaeróbio de leito fixo ordenado (Continuous Anaerobic Bioreactor with a Fixed-Structure Bed – ABFSB) em fluxo ascedente contínuo. Foram realizados ensaios de codigestão em reatores, em escala de laboratório, operados em batelada em condições mesofílicas (30 ±1 °C), com tempo de incubação de 30 dias, quando foram testados cinco níveis de adição de glicerina ao lixiviado (v/v) (0; 1,5; 5; 8,5 e 10%) e cinco níveis de relação alimento/microrganismo (A/M) (0,3; 0,5; 1,0; 1,5 e 1,7), adotando-se planejamento experimental do tipo Delineamento Composto Central Rotacional (DCCR). Os resultados obtidos indicaram efeito significativo para as variáveis respostas: potencial metanogênico, remoção de matéria orgânica, em termos de DQO, produção acumulada de CH4 e a estimativa da produção máxima de CH4 utilizando o modelo de Gompertz modificado, considerando intervalo de confiança de 95% (p<0,05). A partir dos resultados e com o ensaio da desejabilidade foi verificado que a mistura ideal foi de 95,13% do lixiviado de aterro industrial com 4,87% da glicerina residual bruta (v/v) com relação A/M de 1,61 para otimização do processo em função das variáveis respostas. A partir desta combinação recomendada, com aproximadamente 5% de glicerina adicionada ao lixiviado (v/v), avaliou-se o desempenho do ABFSB na codigestão citada. O desempenho do processo foi avaliado em três etapas: adaptação da biomassa, aumento gradual da carga orgânica volumétrica (COV) e redução da suplementação alcalina. Na primeira etapa o sistema apresentou condições estáveis quanto aos parâmetros operacionais com a suplementação da alcalinidade com bicarbonato de sódio (NaHCO3) e adaptação da biomassa. Na segunda etapa com aplicação de COV crescentes (2; 3,5; 7,1 e 11,6 gDQO L-1 d-1). Na COV de 7,1 gDQO L-1 d-1, o processo atingiu os máximos valores de vazão de metano (MFR) de 7,61 LNCH4 d-1, rendimento de metano (MY) de 0,302 LNCH4 gDQOrem-1 e a produção volumétrica de metano (VMPR) de 2,79 LNCH4 L-1 d-1, com eficiências de remoção de DQO total (ERDQO) e DQO solúvel (ERDQOs) superiores a 90%. Na terceira etapa com o COV de 7,1 gDQO L-1 d-1, DQOafluente de 10,68 gO2 L-1 e TDH de 35,2 h, visando otimizar a quantidade efetivamente necessária de NaHCO3. A concentração mínima necessária da suplementação de alcalinidade foi de 0,28 gNaHCO3 gDQOafluente-1. Concluiu-se que a suplementação da alcalinidade foi um fator de importância na estabilidade do biorreator, ficando evidenciado que o sistema é promissor e que os resultados podem servir de subsídio para que aterros industriais adotem esta forma de codigestão, com aproveitamento energético do biogás.
7

Perkolierte Feststoff-Vergärung Vergleichende Untersuchungen zur Prozesssteuerung in ein- und mehrstufigen Verfahren

Krieg, Andreas Ludwig 14 May 2019 (has links)
Bei der Behandlung organische Abfälle werden zunehmend Feststoff-Vergärungsverfahren mit Perkolation eingesetzt. Sie werden bevorzugt, wenn eine Vorab-Zerstörung der Feststoffstruktur nachteilig für die Gärrest-Verwendung oder sich daraus keine ökonomischen Vorteile ergeben. Das trifft auch bei strohartiger Biomasse zu. Zur satzweisen Vergärung wurden zahlreiche Erkenntnisse publiziert. Zeitgleich wurde das Sauter-Verfahren für den kontinuierlichen Betrieb zur Anwendungsreife entwickelt sowie am Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB) Forschungen einer zweistufigen Variante publiziert. Erstmalig erfolgt unter Verwendung von Silagen ein Vergleich der Varianten. Einflüsse der Perkolationsintensität auf Zusammensetzung und Eigenschaften der Feststoffe und der Prozessflüssigkeit sowie auf die Kinetik der Gasbildung werden untersucht. Die Perkolatzusammensetzung variiert variantenabhängig. OTS-Belastungs-Grenzen lassen sich in erster Näherung bestimmen. Geeignete Vergleichsparameter werden dargestellt. Betreiberbefragungen und messtechnische Begleitung einer Sauter-Anlage ergänzen die Arbeit. Eine differenzierte Beurteilung der Perkolationsverfahren ist nun möglich. Betrachtet werden die Feststoffdichte im Fermenter, die TS-Gehalte im Gärstock sowie der Schwimmschicht. Die Verweilzeit der partikulären Biomasse im Fermenter ist erheblich kürzer als bisher angenommen. Das beeinflusst direkt die Hydrolyserate und mittelbar die Mikroflora im Fermenter. Nähere Untersuchungen sind erforderlich. Auch bei Perkolationsverfahren beeinflusse Substratzusammensetzung und Mahlgrad die Kinetik der Gasbildung. Die Methanausbeuten unterscheiden sich nur unwesentlich von Rührkessel-Systemen. Die Erweiterung der perkolierten Vergärung durch eine Perkolat-Methanisierungsstufe sind höhere Raum-Zeit-Ausbeuten möglich. Das erlaubt eine zeitlich gesteuerte Methanerzeugung, wobei Ausmaß und Leistungsgradient weiterer Forschung bedürfen. / Numerous research findings and experience on the batchwise fermentation of stacked biomass are available. At the same time, the percolated and continuously operated Sauter-process was developed to market maturity. Research on a two-stage variant has been carried out and published by the Leibnitz Institute for Agricultural Engineering and Bioeconomics e.V. (ATB). This paper provides for the first time a direct comparison of the above-mentioned percolated process variants using maize and sedge silages. The effects of percolation intensity on composition and properties of the solids and the process fluid as well as on the gas formation kinetics are investigated in particular. Furthermore, suitable benchmarks of the variants are identified and evaluated. The link to practice is a operators questioning and a one year lasting monitoring of a Sauter plant. The findings allow a differentiated assessment of percolation processes. Findings on solid matter density as well as on dry matter content in the fermenting stock or floating layer are presented in detail. During continuous operation, particulate biomass retention time is considerably shorter than would result from usual calculation of hydraulic retention time. It is indicated that the microflora in the fermenter is also indirectly affected. This requires further research work. It is shown that in percolation processes substrate composition and extent of grinding also dominate the gas formation kinetics, albeit to different extents. Methane yields differ under comparable load and operating parameters only marginally from yields of stirred tank systems. Composition of percolate also varies variant-specific. Findings can be used to define in a first approximation limits of volatile solid load. It has been proven that percolated solid-state fermentation with an additional percolate methanization stage allows higher space-time yields. This extra stage suits also for controlled flexible methane production.
8

Improving digestibility of cattle waste by thermobarical treatment

Budde, Jörn 16 April 2015 (has links)
Im Laborversuch konnte der positive Einfluss einer thermobarischen Vorbehandlung auf die Hydrolysier- und Vergärbarkeit von Rinderfestmist und Rindergülle nachgewiesen werden. Die Laborergebnisse wurden innerhalb eines theoretischen Modells in den Praxismaßstab übertragen, um den Einfluss auf Treibhausgasemissionen, Energiebilanz und Ökonomie zu bewerten. Die Vorbehandlungstemperaturen im Labor lagen zwischen 140 und 220°C in Schritten von 20 K und einer Vorbehandlungszeit von jeweils 5 Minuten. Die höchste Methanmehr¬ausbeute von 58 % konnte bei einer Temperatur von 180°C ermittelt werden. Das Auftreten von Inhibitoren und nicht vergärbaren Bestandteilen führte bei einer Aufbereitungstemperatur von 220°C zu Methanausbeuten, die geringer waren als die des unaufbereiteten Einsatzstoffes. In einer erweiterten Analyse konnte ein funktioneller Zusammenhang zwischen der Methanausbeute nach 30 Tagen und der Methanbildungsrate und -ausbeute während der Beschleunigungsphase gezeigt werden. Mittels einer Regressionsanalyse der so ermittelten Werte wurde nachgewiesen, dass die optimale Aufbereitungstemperatur 164°C ist und die minimale größer als 115°C zu sein hat. Treibhausgasemissionen und Energiebilanz wurden im Rahmen einer Ökobilanz nach ISO 14044 (2006) ermittelt, sowie eine Kosten-Nutzen-Analyse durchgeführt. Dazu wurde eine Anlage zur thermobarischen Vorbehandlung entwickelt und innerhalb eines Modells in eine Biogasanlage integriert. Weiterhin wurde in diesem Modell Maissilage durch Rinderfestmist und / oder Rindergülle als Einsatzstoff ersetzt. Rinderfestmist, ein Einsatzstoff mit hohem organischen Trockenmassegehalt, der ohne Vorbehandlung nicht einsetzbar wäre, erreichte eine energetische Amortisationszeit von 9 Monaten, eine Vermeidung in Höhe der während der Herstellung emittierten Treibhausgase innerhalb von 3 Monaten und eine ökonomische Amortisationszeit von 3 Jahren 3 Monaten, wohingegen Rindergülle keine positiven Effekte zeigte. / Hydrolysis and digestibility of cattle waste as feedstock for anaerobic digestion were improved by thermobarical treatment in lab-scale experiments. The effects of this improvement on greenhouse gas emissions, energy balance and economic benefit was assessed in a full-scale model application. Thermobarical treatment temperatures in lab-scale experiments were 140 to 220°C in 20 K steps for a 5-minute duration. Methane yields could be increased by up to 58 % at a treatment temperature of 180°C. At 220°C, the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis, it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. The theoretical application of a full-scale model was used for assessing energy balance and greenhouse gas emissions following an LCA approach according to ISO 14044 (2006) as well as economy. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and / or solid cattle waste. The integration of thermobarical pretreatment is beneficial for raw material with high organic dry matter content that needs pretreatment to be suitable for anaerobic digestion: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.
9

Feldfrüchte für die Biogaserzeugung – Index der relativen Anbauwürdigkeit (IrA) / Field crops for biogas production – Index of relative agronomical suitability (IrA)

Hey, Katharina 02 October 2020 (has links)
No description available.

Page generated in 0.0399 seconds