Spelling suggestions: "subject:"arganic loading rate"" "subject:"0rganic loading rate""
1 |
Effects of Organic Loading Rate on Reactor Performance and Archaeal Community Structure in Mesophilic Anaerobic Digesters Treating Municipal Sewage SludgeGomez, Eddie F. 23 August 2010 (has links)
No description available.
|
2 |
Performance Assessment And Enhancement Of Anaerobic Digestion Of Organic Wastes From A Snacks Production FacilityGur Erdost, Begum 01 May 2010 (has links) (PDF)
A snacks company / that manufactures potato, corn and corn grain chips constructed an anaerobic co-digestion facility (ACF) having a total volume of 4200 m3. The process involved anaerobic co-digestion of anaerobic sludge from its wastewater treatment plant (WWTP), along with organic waste generated in the plant. The anaerobic co-digestion process had two products / 60 % methane containing biogas, and digestate with improved fertilizer characteristics compared to raw organic waste. Produced biogas was being utilized in a co-generation plant, where electricity and heat was produced.
The main objective of this study was to enhance biogas production of the ACF. Two routes were followed for this purpose / first being the investigation of OLR effects in an experimental set-up / and second being the assessment of ACF&rsquo / s biogas production
performance through observation of biogas production rate, and OLR. Results obtained from the experiments conducted were used to improve ACF&rsquo / s OLR regime.
Experimenting with Organic Loading Rates of 3.3 / 5.3 and 6.4 kg VS/m3.d / biogas production rates of 114 L/d / 207 L/d and 246 L/d have been obtained respectively. Related biogas yield values have been found out as 0.396 / 0.431 and 0.200 L/g VS added.
Based on the results of the experimental study, two conclusions were drawn:
OLR of 5.3 kg VS/m3.d resulted in the highest biogas production rate, and an OLR of 6.4 kg VS/m3.d inhibited the mixed anaerobic cultures and thus biogas production capacity.
Regarding the studies realized in real size ACF / adjusting the loading regime and increasing the average OLR from 1.8 kg VS / m3.d to 3 kg VS / m3.d resulted an increase of 50% in the biogas production rate / that would result in an annual greenhouse gas saving of 1,534,250 m3 .
|
3 |
Produção de biohidrogênio e biometano em AnSBBR a partir da codigestão de glicerina e soro de leite / Co-digestion of glycerin and whey in AnSBBR for biohydrogen and biomethane productionLovato, Giovanna 23 February 2018 (has links)
A presente pesquisa teve como proposta avaliar o reator anaeróbio, operado de forma descontínua ou descontínua alimentada, contendo biomassa imobilizada em suporte inerte e com recirculação da fase líquida (AnSBBR) aplicado à produção de biohidrogênio a partir da codigestão de glicerina (efluente da produção de biodiesel) e soro de leite (efluente da produção de laticínios). A estabilidade, os índices de desempenho (referentes à produtividade e rendimento molar do hidrogênio) e o fator de conversão (entre biogás produzido e matéria orgânica consumida) foram analisados em função da composição afluente (porcentagem de cada substrato alimentado ao sistema), da variação da carga orgânica, do tempo de enchimento e da temperatura (20, 25, 30 e 35ºC). Os ensaios foram realizados em diferentes proporções dos substratos utilizando-se variadas cargas orgânicas volumétricas (10,3; 17,1 e 24,0 gDQO.L-1.d-1), as quais foram modificadas em função: (i) da concentração afluente (3, 5 e 7 gDQO.L-1) e (ii) do tempo de ciclo (4, 3 e 2 h, ou seja, 6, 8 e 12 ciclos diários). Também foram realizados ensaios para a produção de biometano a partir da codigestão proposta nesta pesquisa (com COAV de 7,6 gDQO.L-1.d-1) em diferentes proporções de mistura. Para a produção de biometano, a condição com 75% de soro e 25% de glicerina (base DQO) obteve os melhores resultados: produtividade molar de 101,8 molCH4.m-3.d-1 e rendimento por carga aplicada de 13,3 molCH4.kgDQO-1; o que representa um aumento de produtividade de cerca de 9% e 30% quando comparado com a digestão anaeróbia de soro e glicerina puros, respectivamente. A produção de metano no melhor ensaio aconteceu predominantemente pela rota hidrogenotrófica. Para a produção de biohidrogênio, a maior produtividade e rendimento do reator foram obtidas no ensaio operado com razão de mistura de 75% soro e 25% glicerina, com 7 gDQO.L-1 de concentração afluente, tempo de ciclo de 3 h e tempo de enchimento de 1,5 h (modo batelada alimentada - COAV de 23,9 kgDQO.m-3.d-1), a 30°C: foi obtida uma produtividade molar de 129,0 molH2.m-3.d-1 e rendimento de 5,4 molH2.kgDQO-1. Esses resultados representam um aumento de produtividade de 145% em relação a mono-digestão do soro na condição inicial, o que indica o benefício significativo da adição de glicerina ao afluente, provavelmente devido à sua capacidade tamponante, e a otimização das condições operacionais. A adição de glicerina e o aumento da COAV balancearam as rotas de produção de hidrogênio, sendo produzido de forma mais equilibrada pelas vias do ácido acético, butírico e valérico. A caracterização do consórcio microbiano desse ensaio indicou que a comunidade microbiana presente no AnSBBR foi dominada por Ethanoligenens e Megasphaera. / The current research evaluated an anaerobic reactor, operated in batch or fed-batch mode, containing immobilized biomass in inert support and with recirculation of the liquid phase (AnSBBR), applied to the production of biohydrogen co-digesting glycerin (effluent from biodiesel production process) and whey (effluent from dairy industry). Stability, performance (regarding productivity and molar hydrogen yield) and conversion factor (between biogas produced and organic matter consumed) were analyzed according to the percentage of each substrate fed to the system, organic loading rate, filling time and temperature (20, 25, 30 and 35ºC). Assays were carried out using different substrates proportions and organic loading rates (10.3; 17.1 and 24.0 gCOD.L-1.d-1), which have been modified in function of: (i) influent concentration (3, 5 and 7 gCOD.L-1) and (ii) cycle length (4, 3 and 2 h, i.e. 6, 8 and 12 cycles daily). Assays were also carried out aiming for biomethane production using the proposed co-digestion (with AVOL of 7.6 gDQO.L-1.d-1) with different proportions of substrate mixture. For biomethane production, the assay conducted with 75% whey and 25% glycerin (COD basis) obtained the best results: molar productivity of 101.8 molCH4.m-3.d-1 and yield per applied load of 13.3 molCH4. kgCOD-1; which is an increase in productivity of about 9% and 30% when compared with the anaerobic mono-digestion of whey and glycerin, respectively. Methane production in this assay came mainly from the hydrogenotrophic route. For biohydrogen production, the highest productivity and yield were achieved in the assay operated with 75% whey and 25% glycerin, with 7 gCOD.L-1 of influent concentration, 3 h of cycle time and filling time of 1.5 h (fed batch mode - AVOL of 23.9 kgCOD.m-3.d-1), at 30°C: a molar productivity of 129.0 molH2.m-3.d-1 and yield of 5.4 molH2.kgCOD-1 were obtained. These results represent a productivity increase of 145% in relation to whey mono-digestion at its initial condition, which indicates the significant benefit of glycerin addition to the influent, probably due to its buffering capacity, and improvement of operational conditions. The addition of glycerin and the increase in AVOL balanced the hydrogen production routes, since hydrogen was produced similarly by the acetic, butyric and valeric acid routes. The characterization of the microbial consortium of this assay indicated that the microbial community present in the AnSBBR was dominated by Ethanoligenens and Megasphaera.
|
4 |
Optimering och effektivisering av biogasprocessen vid biogasanläggningen Kungsängens gård / Optimization and potentiation of the biogasprocess at the biogas plant Kungsängens gårdFrid, Sara January 2012 (has links)
Under år 2008 användes globalt en energimängd motsvarande nästan 144 000 TWh ochav dessa stod fossila bränslen för 81 %. I Sverige uppgick energitillförseln under år2010 till totalt 616 TWh och av detta stod råolja/oljeprodukter för 30,4 %. Vidförbränning av fossila bränslen frigörs koldioxid, en gas som bidrar till att förstärkaväxthuseffekten. År 2000 uppmättes halten av koldioxid i atmosfären till 370 ppmv ochför att den globala temperaturen inte ska öka med mer än 2°C bör halten stanna på 450ppmv innan år 2100. Ett sätt att minska andelen av fossila bränslen är att öka andelen avförnybara energikällor, som t.ex. biogas, som i Sverige uppskattas kunna ge enenergimängd motsvarande 10-15 TWh/år i framtiden.Vid biogasanläggningen Kungsängens gård, Uppsala, samrötas slakteriavfall samtorganiskt avfall från hushåll och livsmedelsindustri i en termofil rötningsprocess. Underår 2011 producerades ca 3 400 000 Nm3 biogas och den största andelen uppgraderadestill fordonsgas. Behovet fordonsgas i Uppsala ökar och i detta examensarbete utreddestvå sätt att effektivisera processen och öka gasproduktionen. Dels undersöktes om enökad belastning skulle ge en ökad biogasproduktion utan att riskera processensstabilitet. Detta gjordes i två labskalereaktorer där belastningen ökades gradvis i denena. Dels studerades möjligheten att minska energiförbrukningen på anläggningengenom att byta hygieniseringsmetod. Innan substratet matas in i rötkamrarna måste dethygieniseras, vilket i dagsläget görs genom pastörisering (upphettning till 70oC under entimme). Då detta är väldigt energikrävande finns det planer på att byta metod ochistället låta substratet hygieniseras i rötkamrarna (52°C) i minst 10 timmar. Det är dockviktigt att beakta huruvida metanpotentialen för pastöriserat och opastöriserat materialskiljer sig åt, varför detta utreddes i sk satsvisa utrötningsförsök.Genom hela belastningsökningen (från 3 till 6 kg VS/m3,d) ökade biogasproduktionenoch vid den högsta belastningen var ökningen 100 % jämfört med dagens nivå. Andraviktiga processparametrar, så som specifik gasproduktion, kvoten CO2/CH4, pH,halterna av fettsyror och utrötningsgraden, låg på en jämn nivå under försöket, vilkettyder på att processen var stabil trots den ökade belastningen. Utrötningsförsöket visadeatt pastöriseringen inte hade någon effekt på metanproduktionen, troligtvis eftersomsubstratet redan var lättnedbrytbart. Beräkningen av energiförbrukning visade attenergianvändningen skulle minska med ca 33 % vid byte av hygieniseringsmetod. / During 2008 an amount of energy equivalent to almost 144,000 TWh was used globally,of which fossil fuels accounted for 81 %. In Sweden, during 2010, an amount of energyequivalent to 616 TWh was used, of which crude oil/oil products accounted for 30.4 %.Carbon dioxide, a gas that contributes to the global warming, is produced during thecombustion of fossil fuels. In 2000 the levels of carbon dioxide in the atmosphere wasmeasured to be 370 ppmv and if the global temperature is not to increase with morethan 2°C, the levels should stay at 450 ppmv by 2100. One way of decreasing the use offossil fuels is to increase the use of renewable energy, such as biogas. In the futurebiogas can, approx., provide with energy equivalent to 10-15 TWh/year in Sweden.At the biogas plant Kungsängens gård, in Uppsala, slaughterhouse byproducts are codigestedwith source separated household waste and waste from the food processingindustry in a thermophilic process. During the year 2011 approximately 3,400,000 Nm3of biogas was produced at the plant, of which most was upgraded to vehicle fuel. Theconsumption of vehicle fuel is increasing in Uppsala and thus there is a need forincreased biogas production. The aim of this master thesis was to investigate two waysto increase the efficiency and consequently the gas production at the biogas plant atKungsängens gård. Firstly, it was studied if an increased organic loading rate (OLR)would give an increased biogas production, without disturbing the process. This wasdone in two lab scale reactors, where the load was increased gradually in one. Secondly,the possibility to decrease the energy consumption by means of a change of sanitizationmethod was studied. The substrate has to be sanitized before it is fed to the digesters,currently this is done by pasteurization. This process is, however, energy-demandingand there are plans to change the method of sanitization. It is, however, important toconsider whether the methane potential differs for the pasteurized and the nonpasteurizedsubstrate. This was studied in small scale biogas batch reactors.Through all stages of increased OLR (from 3 to 6 kg VS/m3, d) the biogas productionincreased, and at the largest load the increase was 100 % compared to the present level.Other important process parameters, such as specific methane production, CO2/CH4-ratio, pH, levels of fatty acids and degree of digestion, were at regular levels and thisindicates that the process was maintained stable in spite of the increased load. The testin the small scale biogas batch reactors showed that pasteurization of the substrate hadno effect on the methane potential, probably due to that the substrate already is readilybiodegradable. The estimation of the energy consumption showed that the use of energyshould decrease with approx. 33 % if the sanitization was replaced.
|
5 |
Investigation of the effects of co-digesting of biodegradable waste and swine manure on the biogas processOjong, Pascal January 2011 (has links)
Biomass and biomass-derived waste are important renewable energy sources which plays a vital role in greenhouse gas reduction from fossil fuel. Biomass can be degraded in a process known as anaerobic digestion (AD) to produce biogas. Biogas is a mixture of methane and carbon dioxide which is utilized as a renewable source of energy. This project was based on the investigation of AD process in Nordvästra Skånes Renhållnings AB (NSR) a biogas facility in Helsingborg Sweden. A lab simulation of NSR digesters was conducted to evaluate the effects of swine manure on AD using two continuously stirred tank reactors (CSTR) R1 (control) and R2 with a working volume of 4L for 21 weeks. The study was divided into 4 periods and the investigation was carried out by increasing the organic loading rate (OLR) step wise from 2.5 to 3.6 gVSL-1day-1. To assess the effects of swine manure, the performance and stability of the reactors were monitored by collecting data from process parameters. These process parameters included biogas production, pH, volatile fatty acids, methane yield, methane content and organic solids (total and volatile solids). Increase in OLR resulted in increase biogas production in both reactors, however R2 with additional swine manure (15%) produced more biogas than R1. Methane yield was fairly stable during the experiment and had a similar trend in both reactors, but however R2 had a slightly higher average yield (730±60 mLCH4 gVS-1) than R1 (690±60 mLCH4 gVS-1) during the entire experiment. Increase OLR resulted in increase VFA in period 2; R2 with additional swine manure had a lower peak VFA concentration of 25 mM as compared to 33mM in R1. The characteristics of NSR substrate mix and swine manure provided a good buffering system (stable pH), and reactors were still running stably at 3.6 gVSL-1day-1. Furthermore swine manure was investigated to contain macro-nutrients and trace metals which might have enhanced the AD process in R2 containing more Co, Zn, Ni and Mo than R1. Since this investigation was a simulation, the waste mix used at NSR contained 7% swine manure, this made it difficult to give clearer conclusions about the effects of co-digestion of swine manure on the biogas process since the control (R1) had 7% swine manure. Keywords: Anaerobic digestion, co-digestion, swine manure, substrate mix, organic loading rate, biogas production, methane yield, VFA, process parameters, CSTR.
|
6 |
Produção de biohidrogênio e biometano em AnSBBR a partir da codigestão de glicerina e soro de leite / Co-digestion of glycerin and whey in AnSBBR for biohydrogen and biomethane productionGiovanna Lovato 23 February 2018 (has links)
A presente pesquisa teve como proposta avaliar o reator anaeróbio, operado de forma descontínua ou descontínua alimentada, contendo biomassa imobilizada em suporte inerte e com recirculação da fase líquida (AnSBBR) aplicado à produção de biohidrogênio a partir da codigestão de glicerina (efluente da produção de biodiesel) e soro de leite (efluente da produção de laticínios). A estabilidade, os índices de desempenho (referentes à produtividade e rendimento molar do hidrogênio) e o fator de conversão (entre biogás produzido e matéria orgânica consumida) foram analisados em função da composição afluente (porcentagem de cada substrato alimentado ao sistema), da variação da carga orgânica, do tempo de enchimento e da temperatura (20, 25, 30 e 35ºC). Os ensaios foram realizados em diferentes proporções dos substratos utilizando-se variadas cargas orgânicas volumétricas (10,3; 17,1 e 24,0 gDQO.L-1.d-1), as quais foram modificadas em função: (i) da concentração afluente (3, 5 e 7 gDQO.L-1) e (ii) do tempo de ciclo (4, 3 e 2 h, ou seja, 6, 8 e 12 ciclos diários). Também foram realizados ensaios para a produção de biometano a partir da codigestão proposta nesta pesquisa (com COAV de 7,6 gDQO.L-1.d-1) em diferentes proporções de mistura. Para a produção de biometano, a condição com 75% de soro e 25% de glicerina (base DQO) obteve os melhores resultados: produtividade molar de 101,8 molCH4.m-3.d-1 e rendimento por carga aplicada de 13,3 molCH4.kgDQO-1; o que representa um aumento de produtividade de cerca de 9% e 30% quando comparado com a digestão anaeróbia de soro e glicerina puros, respectivamente. A produção de metano no melhor ensaio aconteceu predominantemente pela rota hidrogenotrófica. Para a produção de biohidrogênio, a maior produtividade e rendimento do reator foram obtidas no ensaio operado com razão de mistura de 75% soro e 25% glicerina, com 7 gDQO.L-1 de concentração afluente, tempo de ciclo de 3 h e tempo de enchimento de 1,5 h (modo batelada alimentada - COAV de 23,9 kgDQO.m-3.d-1), a 30°C: foi obtida uma produtividade molar de 129,0 molH2.m-3.d-1 e rendimento de 5,4 molH2.kgDQO-1. Esses resultados representam um aumento de produtividade de 145% em relação a mono-digestão do soro na condição inicial, o que indica o benefício significativo da adição de glicerina ao afluente, provavelmente devido à sua capacidade tamponante, e a otimização das condições operacionais. A adição de glicerina e o aumento da COAV balancearam as rotas de produção de hidrogênio, sendo produzido de forma mais equilibrada pelas vias do ácido acético, butírico e valérico. A caracterização do consórcio microbiano desse ensaio indicou que a comunidade microbiana presente no AnSBBR foi dominada por Ethanoligenens e Megasphaera. / The current research evaluated an anaerobic reactor, operated in batch or fed-batch mode, containing immobilized biomass in inert support and with recirculation of the liquid phase (AnSBBR), applied to the production of biohydrogen co-digesting glycerin (effluent from biodiesel production process) and whey (effluent from dairy industry). Stability, performance (regarding productivity and molar hydrogen yield) and conversion factor (between biogas produced and organic matter consumed) were analyzed according to the percentage of each substrate fed to the system, organic loading rate, filling time and temperature (20, 25, 30 and 35ºC). Assays were carried out using different substrates proportions and organic loading rates (10.3; 17.1 and 24.0 gCOD.L-1.d-1), which have been modified in function of: (i) influent concentration (3, 5 and 7 gCOD.L-1) and (ii) cycle length (4, 3 and 2 h, i.e. 6, 8 and 12 cycles daily). Assays were also carried out aiming for biomethane production using the proposed co-digestion (with AVOL of 7.6 gDQO.L-1.d-1) with different proportions of substrate mixture. For biomethane production, the assay conducted with 75% whey and 25% glycerin (COD basis) obtained the best results: molar productivity of 101.8 molCH4.m-3.d-1 and yield per applied load of 13.3 molCH4. kgCOD-1; which is an increase in productivity of about 9% and 30% when compared with the anaerobic mono-digestion of whey and glycerin, respectively. Methane production in this assay came mainly from the hydrogenotrophic route. For biohydrogen production, the highest productivity and yield were achieved in the assay operated with 75% whey and 25% glycerin, with 7 gCOD.L-1 of influent concentration, 3 h of cycle time and filling time of 1.5 h (fed batch mode - AVOL of 23.9 kgCOD.m-3.d-1), at 30°C: a molar productivity of 129.0 molH2.m-3.d-1 and yield of 5.4 molH2.kgCOD-1 were obtained. These results represent a productivity increase of 145% in relation to whey mono-digestion at its initial condition, which indicates the significant benefit of glycerin addition to the influent, probably due to its buffering capacity, and improvement of operational conditions. The addition of glycerin and the increase in AVOL balanced the hydrogen production routes, since hydrogen was produced similarly by the acetic, butyric and valeric acid routes. The characterization of the microbial consortium of this assay indicated that the microbial community present in the AnSBBR was dominated by Ethanoligenens and Megasphaera.
|
7 |
Influência da carga orgânica e do tempo de enchimento na produção de biohidrogênio em AnSBBR com agitação tratando água residuária sintética / Influence of organic loading rate and fill time on biohydrogen production in an AnSBBR with agitation treating synthetic wastewaterInoue, Rafael Katsunori 28 March 2013 (has links)
Este estudo investigou a aplicação de um reator anaeróbio operado em bateladas sequenciais com biomassa imobilizada (AnSBBR) com agitação na produção de biohidrogênio tratando água residuária sintética a base de sacarose, sendo o desempenho do biorreator avaliado de acordo com a influência conjunta do tempo de alimentação, do tempo de ciclo, da concentração afluente e da carga orgânica volumétrica aplicada (COVAS). O biorreator, com capacidade útil de 5,6 L, foi dividido em 3 partes: volume de meio tratado por ciclo de 1,5 L, volume residual de meio de 2,0 L e volume de suporte inerte com biomassa de 2,1 L. Foram aplicadas 6 condições experimentais de COVAS de 9,0 a 27,0 gDQO.L-1.d-1, combinado diferentes concentrações afluentes (3500 e 5400 mgDQO.L-1), tempos de ciclo (4, 3 e 2h), sendo tempo de enchimento do reator (tC) correspondente a 50% ao tempo de ciclo. Os resultados mostraram que o aumento COVAS contribuiu para a queda no consumo de sacarose de 99% para 86% e para o aumento do rendimento molar por carga removida (RMCRC,n) de 1,02 molH2.molSAC-1 na COVAS de 9,0 gDQO.L-1.d-1 até atingir o valor máximo de 1,48 molH2.molSAC-1 na COVAS de 18,0 gDQO.L-1.d-1 com queda a partir desse ponto. O aumento da COVAS resultou no aumento da produtividade molar volumétrica (PrM) de 24,5 para 81,2 molH2.m-3.d-1. A maior produtividade molar específica (PrME) obtida foi de 8,71 molH2.kgSVT-1.d-1 para a COVAS de 18,0 gDQO.L-1.d-1. A diminuição do tempo de ciclo resultou na diminuição do consumo de sacarose e no aumento da PrM. Foi verificado também que a diminuição do tC de 4h para 3h contribuiu para o aumento da PrME. O aumento da concentração afluente resultou na diminuição do consumo de sacarose apenas na faixa de 2h, no aumento do RMCRC,n e da PrM em todas as faixas de tC, e no aumento da PrME nas faixas de 4h e 3h. A estratégia de alimentação mostrou ser um parâmetro operacional de grande importância, sendo o aumento do tempo de enchimento responsável pelo aumento do consumo de sacarose, da PrM, da PrME e do RMCRC,n para todas as COAVS investigadas. Em todas as condições, houve o predomínio do ácido acético seguido pelo etanol, ácido butírico e propiônico. / This study investigated the feasibility of an anaerobic sequencing batch biofilm reactor (AnSBBR) with agitation on biohydrogen production treating synthetic wastewater from sucrose, the performance of the bioreactor was evaluated according the combined influence of fill time, cycle period, influent concentration and applied organic loading rate (COAVS) . The bioreactor, with working volume of 5,6L, was divided in 3 parts: 1,5L of fed volume per cycle, 2,0L of residual medium and 2,1L of inert support and biomass. The reactor was operated under six operating conditions with different COAVS ranging from 9,0 to 27,0 gCOD.L-1.d-1, obtained by the combination of different influent concentrations (3500 e 5400 mgCOD.L-1), cycle periods (4, 3 e 2h) and fill time corresponding to 50% of cycle period. The results showed that increasing COAVS resulted in lesser sucrose removal from 99% to 86% and improved yield per removed loading rate (RMCRC,n) of 1,02 molH2.molSUC-1 in COAVS of 9,0 gCOD.L-1.d-1 to maximum value of 1,48 molH2.molSUC-1 in COAVS of 18,0 gCOD.L-1.d-1 decreasing after that. Increasing COAVS improved molar productivity (PrM) from 24,5 to 81,2 molH2.m-3.d-1. The higher specific molar productivity (PrME) obtained was 8,71 molH2.kgTVS-1.d-1 in COAVS of 18,0 gCOD.L-1.d-1. Decreasing cycle period resulted in less sucrose consumption and increased PrM. It was observed that decreasing cycle period of 4h to 3h improved PrME. Increasing influent concentration resulted in less sucrose degradation only on range of 2h, in an increase of RMCRC,n and in an increase of PrM in all ranges of tC, and increased PrME on ranges of 4h and 3h. In all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric and propionic acids. The feeding strategy had a great effective on hydrogen production, longer fill times resulted in better sucrose removal, PrM, PrME and RMCRC,n for all COAVS investigated.
|
8 |
Kinetik der Biogasproduktion aus nachwachsenden Rohstoffen und GülleMähnert, Pia 09 August 2007 (has links)
Die anaerobe Vergärung von nachwachsenden Rohstoffen und Gülle zur Biogasproduktion als regenerative Energiequelle erfährt seit einigen Jahren einen erheblichen Boom. Dabei werden in Deutschland in der Regel Nassvergärungs-Biogasanlagen betrieben, in denen kontinuierlich Energiepflanzen und Rinder- oder Schweinegülle gemeinsam eingesetzt werden (Kovergärung). Aber auch die alleinige Nassvergärung von Energiepflanzen ohne Gülle (Monovergärung) ist möglich. Häufig fehlen jedoch belastbare Daten zur Auslegung der Biogasanlage und für die Früherkennung kritischer Belastungszustände. Im vorliegenden Projekt sollen Kenntnisse über die Kinetik der Biogasbildung aus nachwachsenden Rohstoffen in Laborversuchen unter praxisrelevanten Prozessbedingungen gewonnen werden. Über diskontinuierliche Batch-Gärtests lassen sich Biogas- und Methanausbeuten unterschiedlicher Substrate auf einfache Weise ermitteln. Bei einheitlichen Laborbedingungen ist damit eine gute Vergleichbarkeit gegeben. Kontinuierliche Belastungssteigerungsversuche sind hingegen nur als Langzeitversuche möglich. Sie geben jedoch zusätzlich Auskunft über den Einfluß der täglichen Belastung des Biogasreaktors mit organischer Substanz und erlauben mit Einschränkungen Aussagen über die optimale Betriebsweise. Die Versuche wurden mit Mais, Rüben und Roggen in Form von Silage als Mono- und Kosubstrat in der Mischung mit Rinder- und Schweinegülle bei meso- und thermophilen Temperaturstufen durchgeführt. Die Versuchsergebnisse konnten ein neu hergeleitetes kinetisches Modell weitgehend bestätigen, das den Zusammenhang zwischen Biogasausbeute und Raumbelastung in Abhängigkeit von den substrat- und prozessspezifischen Parametern wie maximal mögliche Biogasausbeute, Zulaufkonzentration, Dichte des Biogases und des Ablaufes sowie Reaktionsgeschwindigkeitskonstante aufzeigt. Dies kann damit Betreibern von Biogasanlagen als Richtlinie für eine stabile Prozessführung mit hoher energetischer Effizienz dienen. / Anaerobic digestion of energy crops for biogas production has attracted much interest in recent years. In Germany, the most common process is the continuous wet-fermentation of energy crops with cattle slurry or pig slurry (co-digestion). But also the digestion of energy crops as single substrate without slurry (mono-digestion) becomes more important. Because of the great diversity of substrates and the danger of an overload of the reactor at the digestion of high-energetic substrates, sufficient experience for energy crops is still missing. This project should investigate the kinetics of biogas production from energy crops in lab-scale experiments. Biogas and methane yield of different substrates can be estimated easily by discontinuous batch-experiments. These experiments allow a good comparability in case of equal conditions. On the other hand, the influence of the reactor performance and the optimal operational mode can be identified only by continuous long-term experiments with loading increase. Therefore, long-term lab-scale experiments were conducted with maize silage, whole-crop rye silage and fodder beet silage as mono-substrate and co-substrate in a mixture with both cattle slurry and pig slurry under mesophilic and thermophilic conditions. For calculation of biogas yield as function of the organic loading rate, a hyperbolic equation was developed on base of a first order reaction rate for substrate degradation. The biogas yield also depends on the corresponding maximum biogas yield, the concentration of volatile solids of the input, the density of the effluent, the density of the biogas and the reaction rate constant which are all substrate- and process-specific. The results of the experiments approve this model and allow an estimation of the parameters. This is helpful as a guideline for a stable and efficient biogas process.
|
9 |
Two-phase Anaerobic Digestion Of Semi-solid Organic WastesDogan, Eylem 01 February 2008 (has links) (PDF)
The objective of this study is to illustrate that phase separation improves the efficiency of an anaerobic system which digests semi-solid organic wastes. Organic fraction of municipal solid waste (OFMSW) was the semi-solid organic waste investigated. In the first part of the study, the optimum operational conditions for acidified reactor were determined by considering the volatile solid (VS) reductions and average acidification percentages at the end of two experimental sets conducted. Organic loading rate (OLR) of 15 g VS/L.day, pH value of 5.5 and hydraulic retention time (HRT) of 2 days were determined to be the optimum operational conditions for the acidification step. Maximum total volatile fatty acid and average acidification percentage were determined as 12405 mg as HAc/L and 28%, respectively in the reactor operated at optimum conditions. In the second part, an acidification reactor was operated at the optimum conditions determined in the first part. The effluents taken from this reactor as well as the waste stock used to feed this reactor were used as substrate in the biochemical methane potential (BMP) test. The results of BMP test revealed that the reactors fed by acidified samples indicated higher total chemical oxygen demand (tCOD) removals (39%), VS reductions (67%) and cumulative gas productions (265 mL).
The result of this study indicated that the separation of the reactors could lead efficiency enhancement in the systems providing that effective control was achieved on acidified reactors.
|
10 |
Produção de hidrogênio a partir da manipueira em reator anaeróbico de leito fluidificado / Hydrogen production from manipueira in anaerobic fluidized bed reactorAmorim, Norma Candida dos Santos 21 June 2012 (has links)
Hydrogen has been studying as an alternative energy source to replace fossil fuels. This is justified because, in its combustion is generating primarily water vapor and by its energy content is approximately 2.5 times greater than any fossil fuel. Besides these advantages, hydrogen can be produced from renewable sources, such as various types of industrial and domestic waste rich in carbohydrates. Thus, the purpose of this study was to evaluate the production of hydrogen from a substrate real, the manipueira (wastewater processing cassava), as carbon source in anaerobic fluidized bed reactor (AFBR) operated under a progressive increase in the organic loading rate (OLR). The support material for the adhesion of biomass has been expanded clay (2.8 to 3.35 mm) and the reactor was inoculated with anaerobic sludge thermal pretreatment. The reactor was operated for 164 days and gradually increasing the organic loading rate was obtained by maintaining a constant influent COD (4000 mg. L-1) throughout the operation of the reactor and varying the hydraulic retention time (HRT) of 8 to 1 hour. The production of hydrogen ranged from 0.20 to 2.04 L.h-1.L-1, when the HRT reduced from 8 h to 1 h. The yield had an increase from 0.31 to 1.91 mol H2.mol glucose-1 by reducing the HRT from 8 to 2 h. By lowering the HRT for 1 h, the yield was reduced, reaching a value of 1.20 mol H2.mol glucose-1. The soluble metabolites present during the operation of the reactor were acetic acid, butyric acid, propionic acid and ethanol. The microscopic analysis indicated the presence of bacilli, which are morphologies similar to species of the genus Clostridium sp. and Enterobacter sp., which are known as potential production of hydrogen in fermentation processes. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O hidrogênio vem sendo estudado como fonte alternativa de energia em substituição aos combustíveis fósseis. Isso porque, na sua combustão há geração principalmente de vapor de água e por seu conteúdo energético ser aproximadamente 2,5 vezes maior do que qualquer combustível fóssil. Além dessas vantagens, o hidrogênio pode ser produzido a partir de fontes renováveis, tais como os diversos tipos de resíduos industriais e domésticos ricos em carboidratos. Dessa forma, o objetivo da pesquisa foi avaliar a produção de hidrogênio a partir de um substrato real, a manipueira (água residuária do processamento da mandioca), como fonte de carbono em reator anaeróbio de leito fluidificado (RALF) operado sob aumento progressivo da taxa de carregamento orgânico (TCO). O material suporte para a aderência da biomassa foi argila expandida com diâmetro entre 2,8 3,35 mm e o reator foi inoculado com lodo anaeróbio pré-tratado termicamente. O reator foi operado por 164 dias e o aumento progressivo da taxa de carregamento orgânico foi realizado mantendo a DQO afluente constante (4000 mg. L-1) durante toda a operação do reator e variando o tempo de detenção hidráulica (TDH) de 8 horas até 1 hora. Foi constatado que a produção volumétrica de hidrogênio aumentou de 0,20 até 2,04 L.h-1.L-1, quando foi reduzido o TDH de 8 h para 1 h. E o rendimento sofreu um incremento de 0,31 até 1,91 mol H2.mol glicose-1, com a redução do TDH de 8 para 2 h. Ao reduzir o TDH para 1 h, o rendimento sofreu uma redução, atingindo o valor de 1,20 mol H2.mol glicose-1. Os metabólitos solúveis presentes durante a operação do reator foram o ácido acético, ácido butírico, ácido propiônico e etanol. As análises microscópicas indicaram a presença de bacilos, os quais são morfologias semelhantes às espécies dos gêneros Clostridium sp. e Enterobacter sp., que são conhecidas como potenciais produtoras de hidrogênio em processos fermentativos.
|
Page generated in 0.1292 seconds