• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 21
  • 9
  • 9
  • 7
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 35
  • 34
  • 33
  • 29
  • 23
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

FIBRONECTIN MECHANICS AND SIGNALING IN TGF-β1-INDUCED EPITHELIAL TO MESENCHYMAL TRANSITION

Griggs, Lauren 01 January 2018 (has links)
Epithelial to Mesenchymal Transition (EMT) is a dynamic process by which a distinct change in the phenotype and function of epithelial cells render them as mesenchymal cells. Characteristics of mesenchymal cells include the ability to invade, increased migratory kinetics and heightened resistance to apoptosis. Therefore, there is a strong need to fully understand the mechanism for the induction of EMT in pathological conditions such as carcinoma progression. Recent advances highlight two pivotal contributors, soluble growth factor (gf) signals, and mechanical signals, in the process. However, to date, no clear mechanism exists linking the two in epithelial transdifferentiation. Transforming Growth Factor-β1 (TGF-β1), a gf known to induce EMT in breast cancer formation, induces EMT on rigid surfaces and apoptosis on compliant surfaces. It is our belief that a combination of mechanical signals, gf signals, and the type of extracellular matrix (ECM) proteins assembled by cells together drive the process of EMT. Here we investigated the role of the ECM protein fibronectin (FN) in EMT. Upon assembly into elastic, insoluble fibrils through cell-generated forces which become larger on stiffer surfaces, FN is able to serve as a gf delivery system. We examined the following hypothesis: Increased tissue stiffness drives FN assembly, which exposes cryptic binding sites for various gfs, such as TGF-β1, and creates a high concentration of these gfs at the cell surface, which in turn drives EMT. In this project we investigated three aims: (1) evaluate the effect of inhibiting FN fibrillogenesis and gf localization on TGF-β1-induced EMT, (2) assess the effect of TGF-β1 concentration on spatial patterning of ECM dynamics, cell phenotype and adherens junctional force, and (3) probe the role of the FN matrix in TGF-β1-induced spatial patterning of EMT. Results showed that both inhibition of FN fibril assembly and blocking the gf binding site on fibrils significantly attenuated the downstream effects of EMT. In microcontact patterns of epithelial colonies, increasing gf concentration led to spatial patterning of FN fibrils, cell phenotype and cell-cell junctional force. Elimination of FN fibrils effectively attenuated TGF-β1-induced spatial patterning. The knowledge acquired through these studies serves as an addition to an increasingly important body of work aimed at elucidating how physical changes within the microenvironment regulate physiology and pathology. By establishing a novel mechanism by which gf signaling induces EMT through interaction with the extracellular matrix, this research serves to combat the development and initiation of pathological phenomena, such as metastasis.
92

Cell Type and Substrate Dependence of Fibronectin Properties and Mechanotransduction

Saini, Navpreet S 01 January 2019 (has links)
Fibronectin is an important protein that is able to bind to other fibronectin molecules and to cell surface receptors. In doing so, the interactions fibronectin can perform is important for the processes of cell migration and tissue formation. Understanding the properties of fibronectin and fibril assembly is useful for areas such as wound healing, where fibronectin molecules are assembled to protect the tissue and to perform other tasks. Because of these reasons, it is important to understand how fibronectin is assembled and how its properties affect the fibril assembly, which in return affects the way the cell matrix operates. Previously published papers illustrate that the properties of fibronectin affect the mechanotransduction process, the cell conversion of mechanical stimulus to chemical, and this leads to various changes of the fibril assembly. However, the question that now comes to focus is what variables affect the fibril assembly? The two main variables that come into question is the substrate stiffness (ksub) (pN/nm) and the actin velocity (Vu) (nm/s). In order to test this hypothesis, several fibril assembly simulations were performed via MATLAB based upon the Weinberg-Mair-Lemmon Fibronectin Model. These simulations were performed by varying the parameters of substrate stiffness and actin velocity as well as fibril size, which affect the various measurements of the fibronectin, such as stretched length, relaxed length, etc. Through these various experiments, it was determined that the actin velocity and fibril size had the greatest impacts in affecting the fibronectin’s properties and its assembly.
93

Migration on extracellular matrix surface and infiltration into matrix - two distinguishable activities of human T cells

Ivanoff, Jyrki January 2003 (has links)
<p>Migration of T-lymphocytes on a surface coated with extracellular matrix (ECM) components (two-dimensional (2-D) migration) and migration (infiltration) into a matrix (Three-dimesional (3-D) migration) are complex events and the underlying mechanisms are not yet fully understood. Here 2-D and 3-D migration were studied by use of seven leukemic T-cell lines representing discrete differentiation stages, a non-leukemic T-cell clone, and normal peripheral blood T cells. peripheral blood lymphocytes and the T-cell clone produced nanogram quantities of various chemokines, as compared to a production of ≤ 0.05 ng/ml by the T leukemia cell lines. In a Boyden chamber system, the leukemic T-cell lines showed haptotactic migration on fibronectin. The migration was augmented bu exposure to chemokines, including RANTES, MIP-1α, MIP-1β, and IL-8. The T-cell lines showed a peak response at a chemokine concentration of 10-50 ng/ml, whereas the T-cell clone responded optimally at 100 ng/ml. In contrast to a general capability of T-cells to migrate on 2-D ECM, only some of the T-cell lines were capable of 3-D migration into Matrigel or a collagen matrix. The infiltrative capacity was unrelated to the capacity to migrate on or adhere to the substrata. T-cell lines with a capacity to infiltrate produced matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), whereas non-infiltrating cell lines did not produce MMP-9. T-cell lines capable of infiltrating Matrigel or collagen responded to chemokines exposure with increased infiltration, but the chemokines did not render non-infiltrative cell lines infiltrative. Stimulation of infiltration of T-cell lines into collagen by the chemokine SDF-1α was inhibited by somatostatin, a neuropeptide with immunosuppressive properties. In conclusion, the ability to migrate on 2-D substrata and to infiltrate into 3.D substrata was found to be distinguishable properties of T cells. failure of some T-cell lines to infiltrate correlated with the lack of expression of MMP-9. Chemokines stimulated infiltration of infiltrative T-cell lines into collagen and Matrigel but did not render non-infiltrative T-cell lines infiltrative. Finally, a possible physiological mechanism for modulation of the chemokine-stimulated 3-D migration was demonstrated.</p>
94

Migration on extracellular matrix surface and infiltration into matrix - two distinguishable activities of human T cells

Ivanoff, Jyrki January 2003 (has links)
Migration of T-lymphocytes on a surface coated with extracellular matrix (ECM) components (two-dimensional (2-D) migration) and migration (infiltration) into a matrix (Three-dimesional (3-D) migration) are complex events and the underlying mechanisms are not yet fully understood. Here 2-D and 3-D migration were studied by use of seven leukemic T-cell lines representing discrete differentiation stages, a non-leukemic T-cell clone, and normal peripheral blood T cells. peripheral blood lymphocytes and the T-cell clone produced nanogram quantities of various chemokines, as compared to a production of ≤ 0.05 ng/ml by the T leukemia cell lines. In a Boyden chamber system, the leukemic T-cell lines showed haptotactic migration on fibronectin. The migration was augmented bu exposure to chemokines, including RANTES, MIP-1α, MIP-1β, and IL-8. The T-cell lines showed a peak response at a chemokine concentration of 10-50 ng/ml, whereas the T-cell clone responded optimally at 100 ng/ml. In contrast to a general capability of T-cells to migrate on 2-D ECM, only some of the T-cell lines were capable of 3-D migration into Matrigel or a collagen matrix. The infiltrative capacity was unrelated to the capacity to migrate on or adhere to the substrata. T-cell lines with a capacity to infiltrate produced matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), whereas non-infiltrating cell lines did not produce MMP-9. T-cell lines capable of infiltrating Matrigel or collagen responded to chemokines exposure with increased infiltration, but the chemokines did not render non-infiltrative cell lines infiltrative. Stimulation of infiltration of T-cell lines into collagen by the chemokine SDF-1α was inhibited by somatostatin, a neuropeptide with immunosuppressive properties. In conclusion, the ability to migrate on 2-D substrata and to infiltrate into 3.D substrata was found to be distinguishable properties of T cells. failure of some T-cell lines to infiltrate correlated with the lack of expression of MMP-9. Chemokines stimulated infiltration of infiltrative T-cell lines into collagen and Matrigel but did not render non-infiltrative T-cell lines infiltrative. Finally, a possible physiological mechanism for modulation of the chemokine-stimulated 3-D migration was demonstrated.
95

Interactions between titanium surfaces and biological components

Pegueroles Neyra, Marta 16 September 2009 (has links)
El conocimiento de las interacciones entre célula/proteína/biomaterial es fundamental para la ingeniería de superficies debido a las numerosas aplicaciones biomédicas y biotecnológicas que se están desarrollando así como al éxito clínico que han alcanzado muchos implantes. La respuesta biológica final inducida por los implantes está fuertemente influenciada por las interacciones superficiales entre los componentes biológicos y el material sintético. Las propiedades físicas y químicas de la superficie de un biomaterial, en lugar de las propiedades en su masa, influyen directamente en la capa de proteínas que se adsorben sobre el biomaterial y, como consecuencia de ello, en la respuesta celular a la misma, tanto in vitro como in vivo.El objetivo de esta tesis doctoral es profundizar en el conocimiento de las interacciones material-biosistema, con el énfasis en el descubrimiento de relaciones entre las propiedades superficiales de las superficies de titanio y su respuesta biológica in vitro.El titanio comercialmente puro (Ti c.p.) está siendo ampliamente utilizado con éxito durante muchos años como biomaterial para implantes en cirugía ósea. Su excelente biocompatibilidad se basa en sus adecuadas propiedades mecánicas y, con mayor importancia, en su excelente resistencia a la corrosión. Esta última se debe principalmente a la formación espontanea de una fina película de óxido de titanio que le confiere protección natural contra los ataques degradativos. La modificación de la topografía de la superficie del titanio ha sido objeto de investigación en el pasado con el fin de mejorar la osteointegración. El granallado de partículas es una de las tecnologías más utilizadas para conferir rugosidad a las superficies del titanio. La rugosidad óptima y el tipo de partículas abrasivas del granallado para una respuesta óptima in vitro e in vivo fue previamente determinada en nuestro laboratorio. Sin embargo, todavía están por determinar cuáles son las causas últimas que llevan al biomaterial a su exitosa respuesta biológica.En este trabajo se han estudiado superficies pulidas y rugosas de Ti c.p. obtenidas mediante el granallado con partículas abrasivas de diferente composición química(Al2O3 y SiC) y diferentes tamaños (212-300&#956;m; 425-600&#956;m; 1000-1400&#956;m). La completa caracterización de las propiedades física y química de la superficie, incluyendo la rugosidad, la composición química, la mojabilidad/energía libre y la carga eléctrica de las superficies ensayadas ha llevado a una serie de relevantes conclusiones. Entre ellas, cabe destacar que a) la composición química de las partículas de granallado, así como el método de esterilización fueron los principales factores que influyeron en la mojabilidad y la energía libre superficial de las superficies de titanio estudiadas, b) el método de esterilización cambió en la energía superficial el carácter de donante de electrones de las superficies mediante el cambio de la cantidad y la naturaleza de las sustancias adsorbidas, y c) la composición química de las partículas de granallado no influyó en la carga eléctrica a pH fisiológico ni en el punto isoeléctrico de las superficies.Un segundo paso consistió en el uso de una microbalanza de cristal de cuarzo con monitorización de la energía de disipación, para el estudio de la cinética de adsorción (cantidad y conformación) y de los procesos de adsorción competitiva de tres proteínas de especial interés en los procesos de curación del hueso - la albúmina de suero bovino (BSA), el fibrinógeno (Fbg), y la fibronectina (Fn)- en sensores lisos recubiertos de TiO2. Se determinaron diferentes modelos de procesos de adsorción con una, dos o múltiples pasos distinguibles en función de las proteínas en solución. La capa adsorbida de BSA mostró los cambios más significativos en sus propiedades mecánicas, de conformación y de incorporación de agua hasta que se alcanzaron las condiciones estables de adsorción de proteínas. La BSA, la más pequeña de las proteínas ensayadas, desplazó la Fn y el Fbg cuando se ensayó en condiciones de la competencia por la adsorción, indicando su mayor afinidad por las superficies de TiO2. También se emplearon técnicas de marcaje fluorescente para el estudio de la adsorción proteica en superficies rugosas granalladas. En este estudio, por un parte, se pudo determinar que la cantidad de Fn y BSA adsorbidas en las superficies granalladas está directamente correlacionada con su energía superficial. Por otra parte, se visualizó la adsorción de fibronectina en solución sobre muestras granalladas rugosas de Ti. La Fn formó un patrón irregular de adsorción con una mayor cantidad de proteína adsorbida en los picos que en los valles de la topografía.También se evaluó la organización espacial de la matriz extracelular de los osteoblastos, ECM, sobre superficies de Ti lisas y rugosas por medio de la visualización de las fibrillas de Fn teñidas con marcador fluorescente. Las células osteoblásticas depositaron las fibrillas de Fn con un determinado patrón organizado dentro de la matriz total secretada. Aparecen como una película que cubre la parte superior de las diferentes superficies rugosas de titanio. Un resultado relevante es que el espesor de esta capa aumentó con la rugosidad de la topografía subyacente. Sin embargo no más de la mitad de la máxima distancia pico-valle se cubrió con la proteína secretada y/o reorganizada.Por último, teniendo en cuenta las diferencias en la organización de la ECM y laadsorción de Fn en las superficies ensayadas de Ti, se realizó un estudio de qRT-PCR para determinar la influencia de las propiedades superficiales del titanio, con y sin preadsorción de Fn, en la respuesta osteoblástica. La expresión génica de la subunidad &#61537;5 de la integrina celular, como marcador de la adhesión celular, se incrementó en las superficies granalladas con SiC en comparación con las granalladas con alúmina. Este resultado fue correlacionado con la mayor cantidad de Fn adsorbida debido a la mayor energía superficial de las superficies granalladas con SiC. El aumento de la rugosidad, así como la presencia de partículas de alúmina en las superficies rugosas incrementó la actividad de ALP y la expresión génica de ALP mRNA por los osteoblastos, y por lo tanto su diferenciación. / The understanding of cell/protein/biomaterial interactions is critical to the engineering of substrates for numerous biomedical and biotechnological applications and to the clinical success of implants. The final biological response induced by implants is strongly influenced by the biological-components/synthetic-material surface interactions. It is well accepted that the physical and chemical surface properties of a biomaterial rather than its bulk properties will influence the protein adlayer and then the cell response to it, both in vitro and in vivo.The aim of this PhD thesis is to gain an increased understanding of the materialbiosystem interactions, with an emphasis on establishing correlations between surface properties of titanium surfaces and its in vitro biological response.Commercially pure titanium (c.p. Ti) is being widely and successfully used implant biomaterial in bone surgery over many years. Its excellent biocompatibility is based in its appropriate mechanical properties and, more importantly, in its excellent corrosion resistance, which is mainly due to the presence of a naturally-occurring thin protective titanium oxide film. Modification of titanium surface topography has been a subject of research in the past with the purpose of improving its osseointegration. Grit blasting is one of the most used technologies to roughen titanium surfaces for this purpose. The optimal roughness and type of abrasive blasting-particles for a better in vitro and in vivo response was previously determined in our lab. However, which and how different relevant surface properties of the blasted titanium surfaces induce that optimal biological behavior is still poorly understood.Smooth/polished and rough c.p. Ti surfaces obtained by blasting with abrasiveparticles of different chemical composition (Al2O3 and SiC) and different sizes (212-300&#956;m; 425-600&#956;m; 1000-1400&#956;m) were studied. The comprehensive characterization of physical and chemical surface properties, including roughness, chemical composition, wettability/free energy and electrical charge of the tested surfaces led to a series of relevant conclusions. Among them, it is worth noting that a) the chemical composition of the grit-blasting particles as well as the method of sterilization were found the main factors influencing wettability and surface free energy of the titanium surfaces; b) the sterilization method changed the electron donor character of the surfaces by changing the amount/nature of physisorbed substances on the surfaces, and c) the chemical composition of the blasting particles did not influence on the electrical charge at physiological pH and the isoelectric point of the surfaces.A second step consisted in the use of a quartz crystal microbalance with monitoring of the energy dissipation to study the adsorption kinetics (amount and conformation) and adsorption competition processes of three proteins of special interest in the healing processes of bone -bovine serum albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)-on smooth TiO2-coated sensors. Different patterns of adsorption with processes in one, two or multiple distinguishable steps were determined depending of the protein in solution. The BSA adlayers showed the most significant changes in their mechanical properties/conformation/incorporation of water until steady protein-adsorption conditions were reached. BSA, the smallest of the tested proteins, displaced Fn and Fbg when in competition for adsorption, which is an indication of its higher affinity for TiO2 surfaces. Fluorescent labelling techniques where used to study protein adsorption on blasted rough surfaces. Most significantly, the amount of Fn and BSA adsorbed on blasted surfaces was positively correlated with their surface energy. The adsorption of fibronectin from solution on shot-blasted rough titanium surfaces resulted in an irregular pattern of adsorption with a higher amount of protein adsorbed on peaks than on valleys of the topography.Further, the spatial organization of the osteoblast extracellular matrix, ECM, on smooth and rough Ti surfaces was evaluated by visualizing fluorescently-stained Fn-fibrils. Osteoblast-like cells deposited Fn- fibrils in a specific facet-like pattern that was organized within the secreted total matrix. It appeared as a film overlying the top of the different rough titanium surfaces. Interestingly, the thickness of this layer increased with the roughness of the underlying topography, but no more than half of the total maximum peak-to-alley distance was covered.Finally, taking into consideration the differences in ECM organization and Fn adsorption on the tested Ti surfaces a qRT-PCR study was carried out to elucidate the influence of titanium surface properties with and without Fn-precoatings on the osteoblast response. The expression of &#61537;5 integrin subunit gene, as a marker for cell adhesion, was increased in SiC-blasted surfaces compared to alumina-blasted surfaces. This was related to the higher amount of adhesive-protein Fn adsorbed caused by the higher surface energy of SiC-blasted surfaces. The increase of roughness as well as the presence of alumina particles on blasted surfaces increased ALP activity and ALP mRNA gene expression by osteoblasts, and so their differentiation.This research work contribute to increase our knowledge on the interactions taking place at the bio/non-bio interface between different biological components -water, proteins, cells- and materials of clinical relevance, such as rough titanium. Theintertwined effects of the different properties of the synthetic surfaces appear as a challenge to unravel the ultimate causes that determine the fate of cells on synthetic biomaterials.
96

The role of extracellular matrix proteins in traumatic brain injury and cell transplantation

Tate, Ciara Caltagirone 03 July 2006 (has links)
With over 50,000 deaths and 80,000 disorders annually in the United States resulting from traumatic brain injury (TBI), there is a demand for improved therapeutic strategies. Cell transplantation offers the potential to treat TBI by targeting multiple mechanisms in a sustained fashion. However, efforts are needed to improve survival and integration of transplanted cells, and ultimately enhance functional recovery. Using tissue engineering strategies, we aimed to mimic key aspects of fetal tissue grafts by combining neural stem cells with a fibronectin or laminin based scaffold that could be delivered to the injured brain in a minimally invasive fashion. We found that the incorporation of extracellular matrix proteins into a cell transplantation paradigm led to improved donor cell survival and restored cognitive ability for treated animals. To begin to examine how fibronectin and laminin mediate these improvements, we first examined the endogenous role of these two proteins in the injured brain. Using a clinically-relevant model of TBI, we found both proteins are increased in the injured brain at acute time points. The spatial localization of fibronectin and laminin with specific support cells in the brain suggests a role for these proteins in repair, warranting further investigation. Using conditional plasma fibronectin knockout animals, we found that fibronectin is neuroprotective to the traumatically injured brain. Specifically, injured fibronectin knockout animals had more severe motor and cognitive deficits, increased cell death, and decreased retention of phagocytic cells compared to injured wild type animals. Thus, we have identified novel therapeutic treatments for TBI which utilize tissue engineered transplants and/or exploit endogenous repair mechanisms for fibronectin.
97

Etude du rôle des étapes initiales d'adhérence des plaquettes sanguines et du flux pulsatile dans l'agrégation plaquettaire / Role of the initial steps of platelet adhesion and importance of pulsatile flow in platelet aggregation

Maurer, Éric 31 March 2014 (has links)
Lors d'une lésion vasculaire, les plaquettes adhèrent, s’activent et agrègent pour former un clou hémostatique qui stoppe le saignement. Dans un contexte pathologique, l’agrégation plaquettaire mène à la formation d’un thrombus qui peut obstruer une artère malade et entrainer des pathologies ischémiques graves. Les agents antiplaquettaires actuels, qui ciblent l’activation et l’agrégation des plaquettes, ont une efficacité reconnue, mais ont pour limites, la récurrence d'événements ischémiques et le risque hémorragique. L’objectif central de ma thèse a été d’explorer l’importance des étapes initiales d’adhérence des plaquettes aux protéines sous-endothéliales et du rôle du flux sanguin dans l’agrégation des plaquettes. J’ai pu montrer qu’un anticorps dirigé contre la GPIbβ, RAM.1, réduit la signalisation du complexe GPIb-V-IX et la formation de thrombi sans affecter l'hémostase. J’ai également mis en évidence que la fibronectine cellulaire fibrillaire est une surface thrombogène qui assure l’adhérence, l'activation, l'agrégation et l'activité pro-coagulante des plaquettes. Enfin, mes travaux indiquent que la pulsatilité du flux sanguin possède un rôle inverse sur la croissance des thrombi en conditions physiologique et pathologique. En conclusion, ce travail met en lumière l’importance des étapes initiales d’adhérence des plaquettes et de la pulsatilité du flux sanguin dans l’agrégation plaquettaire. / Following vascular injury, blood platelets adhere, become activated and aggregate to form a hemostatic plug which stops the bleeding. In a pathological context, platelet aggregation can also lead to the formation of an occlusive thrombus, responsible for lifethreatening ischemic events. Current antiplatelet drugs targeting platelet activation and aggregation, have a recognized efficacy, but also present some limitations including the recurrence of ischemic events and the risk of bleeding. The aim of my thesis was to explore the importance of the initial step of platelet adhesion to subendothelial proteins and the role of pulsatile blood flow in platelet aggregation. I provided evidence that RAM.1 an antibody directed against GPIbβ, reduces GPIb signaling and thrombus formation without affecting hemostasis. My work also showed that fibrillar cellular fibronectin is a thrombogenic surface which supports efficient adhesion, activation, aggregation and procoagulant activity of platelets. Finally, I observed that the pulsatility of the blood flow has an inverse role in the growth of thrombi in physiological and pathological settings. In conclusion, this work highlights the importance of initial stages of platelet adhesion and of the blood flow pulsatility in platelet aggregation.
98

Effect of Topography on Mouse Embryonic Stem Cells During Pluripotency and Neural Differentiation

Nasir, Wafaa 01 October 2018 (has links)
No description available.
99

Targeting Extradomain B Fibronectin for Detection and Characterization of Head and Neck Squamous Cell Carcinoma with Magnetic Resonance Imaging

Hall, Ryan Christopher 26 May 2023 (has links)
No description available.
100

Surface Modification of PLGA Electrospun Scaffolds for Wound Healing and Drug Delivery Applications

Iselin, Jacob A. January 2008 (has links)
No description available.

Page generated in 0.0711 seconds