• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 460
  • 94
  • 34
  • 21
  • 17
  • 13
  • 8
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 762
  • 762
  • 519
  • 309
  • 293
  • 277
  • 207
  • 160
  • 143
  • 107
  • 102
  • 84
  • 79
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Charge transport in organic multi-layer devices under electric and optical fields

Park, June Hyoung 17 July 2007 (has links)
No description available.
542

PCB-Based Heterogeneous Integration of PFC/Inverter

Wang, Shuo 05 April 2023 (has links)
State-of-the-art silicon-based power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in further improvements. Most products are custom designed with significant non-recurrent engineering and manufacturing processes that are labor intensive. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In certain cases, EMI filter design even requires a trial-and-error process. With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. In a power factor correction (PFC) rectifier/inverter, the totem-pole configuration with critical conduction mode (CRM) operation to realize zero-voltage switching (ZVS) is deemed most desirable for a switching frequency 10 times higher than current practice. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible. However, a PCB winding-based inductor has a fundamental limitation in terms of its power handling capability. The winding loss is proportional to the magnetomotive force (MMF), which is Ni. That is to say, with the number of layers (turns) and currents increased, winding loss is increased nonlinearly. Furthermore, for a large-size planar inductor, flux distribution is usually non-uniform, resulting in dramatically increased hysteresis loss and eddy loss. Thus, current designs are challenged by the capability to increase their power range. To address those issues, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes were observed in the plates. The proposed approach has a similar loss to a conventional litz wire-based design but features a higher power density and can be easily assembled in automation. A 3 kW high frequency PFC converter with 99% efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided. Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises associated with the high dv/dt of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer design. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to a point where the parasitic ringing between the inductor and its winding capacitor is observed. This dissertation presents an improved balance technique in a PCB-based coupled inductor design that compensates for the detrimental effect of the interwinding capacitors. A CM noise model is established to simplify the convoluted couplings into a decoupled representation so as to illustrate the necessary conditions for realizing a balanced network. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz. The parasitic oscillation of inductors, known to be detrimental for CM noise reduction, is circumvented with the improved magnetic structure. By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. This dissertation further offers an in-depth study on reducing the unwanted near-field couplings between the CM/DM inductors and DM filter capacitors, as well as unwanted self-parasitics such as the ESL of the DM capacitors. An exhaustive finite element analysis (FEA) and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects by means of physical placement of these filter components. Thus, for the first time, a single-stage EMI filter is demonstrated to meet the EMI standard in an off-line 1 kW, 12 V server power supply. With the academic contributions in this dissertation, a PCB winding-based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies. / Doctor of Philosophy / State-of-the-art silicon device-based switching power supplies have reached a point of maturity in performance. Efficiency, power density, and cost are major trade-offs involved in performance improvements. Most products are custom designed, requiring significant non-recurrent engineering and labor-intensive manufacturing processes. In particular, conventional magnetic components, including transformers and inductors, have largely remained the same for the past five decades. Those large and bulky magnetic components are major roadblocks toward an automated manufacturing process. In addition, there is no specific approach to reduce electromagnetic interference (EMI) in conventional practices. In consequence, a large multi-stage EMI filter is usually adopted between the power converter and the grid to reduce the EMI noise. It generally occupies 1/4-1/3 of the total converter volume. In certain cases, EMI filter design even requires a trial-and-error process. Suffice it to say, EMI is still regarded as both science and art. With recent advances in wide-bandgap (WBG) power semiconductor devices, namely, SiC and GaN, we have witnessed significant improvements in efficiency and power density, compared to their silicon counterparts. With GaN devices, the switching frequency of a PFC converter is able to be increased by 10 times compared to the state-of-the-art design without compromising efficiency. With a significantly higher operating frequency, the integration of inductors with embedded windings in the printed circuit board (PCB) is feasible. However, the state-of-the-art PCB winding-based inductor has a fundamental limitation in power range. Its winding loss and core loss increase dramatically in high powers. To address this issue, a modular building block approach is proposed in this dissertation. A planar PCB inductor is formed by an array of pillars that are integrated into one magnetic core, where each pillar handles roughly 750 W of power. The winding loss is reduced by limiting the number of turns for each pillar. The core loss is minimized with a proposed planar magnetic structure where rather uniformly distributed fluxes have been observed in the magnetic core plates. A 3 kW high-frequency PFC converter with a 99% peak efficiency is demonstrated as an example. Furthermore, PCB-based designs up to 6 kW are provided. Another challenge in a WBG-based PFC/inverter is the high common-mode (CM) noises caused by the high switching speed of the WBG devices. Symmetry and cancellation techniques are often employed to suppress CM noises in switching power converters. Meanwhile, shielding technique has been demonstrated to effectively suppress CM noises in an isolated converter with PCB-based transformer. However, for non-isolated converters, such as PFC circuits, none of the techniques mentioned above are deemed applicable or justifiable. Recently, the balance technique has been demonstrated to effectively suppress CM noises up to several MHz. However, the CM noise reduction is not effective beyond that. This dissertation presents an improved balance technique in a PCB-based coupled inductor to circumvent the limits. In the given 1 kW PFC example, CM noise suppression is effective in the frequency range of interest up to 30 MHz. By applying the balance technique to a PFC converter and the shielding technique to an LLC DC/DC converter, significant noise reductions were realized. This provides the opportunity to use a simple one-stage EMI filter to achieve the required EMI noise attenuation for a server power supply. It features a smaller volume compared to a conventional multi-stage filter. To further enhance the filter's performance at high frequencies, an exhaustive finite element analysis and near field measurements are conducted to better understand the effect of frequency on the polarization of the near field due to the displacement current. The knowledge gained in this study enables one to minimize unwanted mutual coupling effects through physical placement of these filter components. Several approaches for improving the filter performance at high frequency are conducted. With these approaches applied, a single-stage filter is demonstrated in an off-line 1 kW, 12 V server power supply. Thus, for the first time, a single-stage EMI filter can be contemplated to meet the EMI standard in server power supplies. With the academic contributions in this dissertation, a PCB-winding based inductor can be successfully applied to a high-frequency PFC/inverter to achieve high efficiency, high power density, automation in manufacturing, lower EMI, and lower cost. Suffice it to say, the proposed approach in this work enables a paradigm shift in the designing and manufacturing of a PFC/inverter for the next generation of power supplies.
543

An Ion-Sensitive Field Effect Transistor And Ion-Selective Polymer Membrane For Continuous Potassium Monitoring

Le, Huy Van 01 March 2024 (has links) (PDF)
Ion sensitive field effect transistors (ISFETs) are semiconductor sensors that have the capability to determine the selected concentration of a specific ion in a solution. Most modern ISFETs utilize their ion selective properties for glucose monitors for diabetics. However, in this thesis, the ISFET fabricated is for the selective detection of K+. The goals of this thesis are to develop a functioning ion-selective polymer membrane, manufacture a working FET device, and implement the two aspects together into a working bench-top K+ selective ISFET device. Properties of a polymer composed of 33 wt.% polyvinyl chloride (PVC) 66 wt.% dioctyl sebacate (DOS) and 1 wt.% valinomycin applied to an ion-sensitive electrode (ISE) were investigated. The membrane generated a sensitivity value of -9.864E-08 Ω/log10(CK). Though this data set was affected by both the maximum resolution of the I-V curve tracing device and the thin-membrane effect. Selectivity tests following the IUPAC two-solution method in the presence of Na+ as the interfering ion, provided selectivity values of 0.228 and 0.443 with higher ratios of primary ion to interfering ion resulting in higher selectivity coefficients. Additionally, utilizing an illumination test, dielectric constants of 17.71 and 10.88 were calculated dependent on the amount of solvent used during formulation. Fabrication of the FET device also resulted in developments in metal contact materials, nitride film processing, and physical vapor deposition (PVD) processes. With further improvements, it is possible to fabricate a biocompatible, wearable K+-selective monitor for continuously testing dialysis patients.
544

Advanced Modeling and Characterization of Organic Crystalline Transistors for Enhanced and Consistent Performance

Donnhäuser, Shabnam 22 August 2024 (has links)
Despite significant advances in the field of organic electronic devices, a complete and thorough theoretical understanding of their operation is still missing. This study aims to deepen the understanding of the underlying physics of organic field-effect transistors (OFETs) through analytical modeling, numerical device simulations and experimental validations of contact-induced performance improvements and traps. The thesis presents a comprehensive methodology for reliable parameter extraction for the contact resistance of OFETs using conventional extraction methods originally developed for silicon-based transistors. A benchmarking strategy is proposed for accurate and reliable parameter extraction, involving a comparative study of different extraction techniques to ensure the most precise results. The study investigates the experimentally proven performance gain of OFETs with contact engineering on oxidized metal electrodes. Theoretical analysis is performed to identify the root causes of the observed performance enhancement, providing valuable insight into the underlying physics of contact engineering and its impact on OFET performance. In addition, the thesis explores the impact of dynamic trapping on highfrequency transistor performance and presents innovative methods for characterizing traps. Through the use of TCAD simulations, a comprehensive study of the internal quantities of organic transistors is conducted. The study provides a critical step towards developing a physics-based compact model for OFETs that can capture the essential physics of the device. Overall, this thesis provides comprehensive guidelines for reliable parameter extraction and performance improvement of OFETs. It makes significant contributions to the understanding of their underlying physics and lays the foundation for the development of physics-based compact models for OFETs, which could potentially revolutionize the field of organic electronics.
545

New materials and processes for flexible nanoelectronics

Ingram, Ian David Victor January 2013 (has links)
Planar electronic devices represent an attractive approach towards roll-to-roll printed electronics without the need for the sequential, precisely aligned, patterning steps inherent in the fabrication of conventional ‘3D’ electronic devices. Self-switching diodes (SSDs) and in-plane-gate field-effect transistors (IPG-FETs) can be patterned using a single process into a substrate precoated with semiconductor.These devices function in depletion mode, requiring the semiconductor to be doped in order for the devices to function. To achieve this, a reliable and controllable method was developed for doping organic semiconducting polymers by the immersion of optimally deposited films in a solution of dopant. The process was shown to apply both semicrystalline and air-stable, amorphous materials indicating that the approach is broadly applicable to a wide range of organic semiconductors.Simultaneously with the development of the doping protocol specialised hot-embossing equipment was designed and constructed and a high-yielding method of patterning the structures of IPG-FETs and SSDs was arrived at. This method allowed for consistent and reliable patterning of features with a minimum line-width of 200nm.Following the development of these doping and patterning processes these were combined to fabricate controllably doped, functioning planar devices. SSDs showed true zero-threshold rectification behaviour with no observed breakdown in the reverse direction up to 100 V. IPG-FETs showed switching behaviour in response to an applied gate potential and were largely free of detectable gate leakage current, verifying the quality of the patterning process.Furthermore, high-performance semiconducting polymer PAAD was synthesised and characterised in field-effect transistors as steps towards its use in planar electronic devices. It was also shown that this material could be doped using the developed immersion doping protocol and that this protocol was compatible with top-gated device architectures and the use of fluoropolymer CYTOP as a dielectric.
546

Μελέτη και κατασκευή ηλεκτρονικού μετατροπέα ισχύος για την οδήγηση και τον έλεγχο κινητήρα τύπου DC brushless / Study and construction of a three phase inverter for driving and control of a DC brushless motor

Τσούμας, Ευάγγελος 13 October 2013 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη, το σχεδιασμό, την πρσοομοίωση και την κατασκευή κυκλώματος για την οδήγηση και τον έλεγχο στροφών κινητήρα τύπου DC Brushless.Η εργασία αυτή εκπονήθηκε στο εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών Υπολογιστών. Σκοπός της παρούσας εργασίας είναι η μελέτη και η κατασκευή κυκλώματος τριφασικού αντιστροφέα ισχύος για να επιτύχουμε οδήγηση και έλεγχο κινητήρα τύπου DC Brushless. Ο κινητήρας αυτού του τύπου είναι Σύγχρονος κινητήρας Μόνιμου Μαγνήτη. Για το λόγο αυτό το πρώτο πράγμα που μελετήθηκε στην παρούσα εργασία είναι κάποιες θεμελιώδεις ιδιότητες του μαγνητικού πεδίου, καθώς και τα χαρακτηριστικά των μαγνητικών υλικών που χρησιμοποιούνται σε τέτοιους τύπους κινητήρων. Στην συνέχεια αναλύονται οι κινητήρων Brushless DC ως προς την κατασκευή τους καθώς και τη λειτουργία τους. Παρατίθενται οι εξισώσεις που περιγράφουν τη λειτουργία τους και οι χαρακτηριστικές ροπής-ταχύτητας και επιπλέον γίνεται σύγκριση αυτών με κινητήρες άλλων τύπων. Ακολουθεί η περιγραφή της προσομοίωσης του συστήματος η οποία πραγματοποιήθηκε στο πρόγραμμα προσομοίωσης ηλεκτρικών κυκλωμάτων Simulink του Matlab. Αναλύεται η λογική στην οποία βασιστήκαμε για την προσομοίωση και παρατίθενται οι κυματομορφές της τάσης και του ρεύματος σε διάφορα σημεία του κυκλώματος. Έπειτα γίνεται μια θεωρητική ανάλυση του κυκλώματος του αντιστροφέα που κατασκευάστηκε καθώς και όλων των άλλων κυκλωμάτων και στοιχείων που απαιτήθηκαν για τη λειτουργία της διάταξης. Επιπλέον περιγράφεται η μέθοδος παλμοδότησης που χρησιμοποιήθηκε για την έναυση/σβέση των διακοπτικών στοιχείων ισχύος. Τέλος γίνεται αναλυτική παράθεση του τελικού κυκλώματος που κατασκευάστηκε. Προχωράμε με την περιγραφή των ιδιοτήτων και δυνατοτήτων του μικροελεγκτή που χρησιμοποιήθηκε στην πλακέτα μας, καθώς επίσης και με τη λογική που ακολουθήθηκε κατά τον προγραμματισμό του. Τέλος παραθέτονται τα αποτελέσματα των πειραμάτων και τα παλμογραφήματα που ελήφθησαν κατά τη διεξαγωγή τους. Γίνεται σχολιασμός των αποτελεσμάτων αυτών και αξιολόγηση της κατασκευής. / This thesis is focused in the study and development of a Drive System for a DC Brushless motor. This work was conducted in the Laboratory of Electromechanical Energy Conversion, at the department of Electrical and Computer Engineering, in the University of Patras, Greece. DC Brushless motors, have been used in the last years they are used in a number of applications. They combine all the benefits of a DC motor, such as their operation simplicity and their linear characteristics, avoiding the brushes and the necessary excitation of DC motors, making them a suitable choice for low and medium power applications. The main purpose of this project is the Study and Construction of a Three-Phase Voltage Source Inverter for the control of the performance of a DC Brushless Motor by the implementation of a Scalar control. This thesis began with the simulation of the motor, since it is necessary for the understanding of its dynamic behavior. Then an analysis on the design and construction of the required circuit boards is done. Finally the used microcontroller (dsPIC family) was studied thoroughly, before writing the necessary code(C & assembly) for open and closed loop control. Finally, measurements were taken for the open loop control system. Conclusions were made as far as the behavior of the motor and ways to optimize the control were discussed.
547

Towards an optimal contact metal for CNTFETs

Fediai, Artem, Ryndyk, Dmitry A., Seifert, Gotthard, Mothes, Sven, Claus, Martin, Schröter, Michael, Cuniberti, Gianaurelio 07 April 2017 (has links) (PDF)
Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20–50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT–metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT–metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal–CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT–metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.
548

Simulations of electron transport in GaN devices

Arabshahi, Hadi January 2002 (has links)
This thesis deals with the development and application of Monte Carlo simulations to study electron transport in bulk GaN in the wurtzite crystal structure and the properties of field effect transistors made from the material. There is a particular emphasis on transport in the high electric field regime and transistors operating at high voltages. The simulation model includes five sets of non-parabolic conduction band valleys which can be occupied by electrons during high field transport. The effects on electron transport of impurities and the relevant phonon scattering mechanisms have been considered. Results for electron transport at both low and high electric field are presented and compared with the properties of GaN in the zincblende structure, of other group-III nitride semiconductors, and of GaAs. The dependence of the transport properties on the material parameters is discussed and also with regard to the temperature, donor concentration and electric field magnitude and direction. The transport properties of electrons in wurtzite GaN n+-i(n)-n+ diodes are also explored, including the effect of the upper valleys and the temperature on hot electron transport. Simulations have also been carried out to model the steady-state and transient properties of GaN MESFETs that have recently been the subject of experimental study. It has been suggested that traps have a substantial effect on the performance of GaN field effect transistors and we have developed a model of a device with traps to investigate this suggestion. The model includes the simulation of the capture and release of electrons by traps whose charge has a direct effect on the current flowing through the transistor terminals. The influence of temperature and light on the occupancy of the traps and the /- V characteristics are considered. It is concluded that traps are likely to play a substantial role in the behaviour of GaN field effect transistors. Further simulations were performed to model electron transport in AlGaN/GaN hetero-junction FETs. So called HFET structures with a 78 nm Alo.2Gao.8N pseudomorphically strained layer have been simulated, with the inclusion of spontaneous and piezoelectric polarization effects in the strained layer. The polarization effects are shown to not only increase the current density, but also improve the electron transport by inducing a higher electron density close to the positive charge sheet that occurs in the channel.
549

Nanomaterials for Biological Applications: Drug Delivery and Bio-sensing

Ma, Hui 17 May 2013 (has links)
The idea of utilizing nanomaterials in bio-related applications has been extensively practiced during the recent decades. Magnetic nanoparticles (MPs), especially superparamagnetic iron oxide nanoparticles have been demonstrated as promising candidates for biomedicine. A protective coating process with biocompatible materials is commonly performed on MPs to further enhance their colloidal and chemical stability in the physiological environment. Mesoporous hollow silica is another class of important nanomaterials that are extensively studied in drug delivery area for their ability to carry significant amount of guest molecules and release in a controlled manner. In this study, different synthetic approaches that are able to produce hybrid nanomaterials, constituting both mesoporous hollow silica and magnetite nanoparticles, are described. In a two-step approach, pre-synthesized magnetite nanoparticles are either covalently conjugated to the surface of polystyrene beads and coated with silica or embedded/enclosed in the porous shell during a nanosized CaCO3 templated condensation of silica precursors, followed by acid dissolution to generate the hollow structure. It was demonstrated that the hollow interior is able to load large amount of hydrophobic drugs such as ibuprofen while the mesoporous shell is capable of prolonged drug. In order to simplify the fabrication procedure, a novel in-situ method is developed to coat silica surface with magnetite nanoparticles. By refluxing the iron precursor with mesoporous hollow silica nanospheres in polyamine/polyalcohol mixed media, one is able to directly form a high density layer of magnetite nanoparticles on silica surface during the synthesis, leaving reactive amine groups for further surface functionalization such as fluorescence conjugation. This approach provides a convenient synthesis for silica nanostructures with promising potential for drug delivery and multimodal imaging. In addition to nanoparticles, nanowires also benefit the research and development of instruments in clinical diagnosis. Semiconductive nanowires have demonstrated their advantage in the fabrication of lab-on-a-chip devices to detect many charge carrying molecules such as antibody and DNA. In our study, In2O3 and silicon nanowire based field effect transistors were fabricated through bottom-up and top-down approaches, respectively, for ultrasensitive bio- detection of toxins such as ricin. The specific binding and non-specific interaction of nanowires with antibodies were also investigated.
550

Nouvelles générations de structures en diamant dopé au bore par technique de delta-dopage pour l'électronique de puissance : croissance par CVD et caractérisation / New generations of boron-doped diamond structures by delta-doping technique for power electronics : CVD growth and characterization

Fiori, Alexandre 24 October 2012 (has links)
Dans ce projet de thèse, qui s'appuie sur l'optimisation d'un réacteur de croissance du diamant et la construction d'un prototype, nous avons démontré l'épitaxie par étapes de couches de diamant, orientées (100), lourdement dopées au bore sur des couches de dopage plus faible dans le même processus, sans arrêter le plasma. Plus original, nous avons démontré la situation inverse. Nous présentons aussi des croissances assez lentes pour l'épitaxie de films d'épaisseur nanométriques avec de grands sauts de dopage, appelé delta-dopage. L'accent a été porté sur le gain en raideur des interfaces. Nous démontrons la présence d'interfaces fortement abruptes, issues de gravures in-situ optimisées, par une analyse conjointe en spectrométrie de masse à ionisation secondaire et en microscopie électronique en transmission à balayage en champ sombre annulaire aux grands angles. Des super-réseaux de dopages abrupts montrent des pics satellites de diffraction X typiques de la super-période. / The aim of this PhD thesis was to better understand the boron delta-doping of diamond over building a new Microwave Plasma Chemical Vapour Deposition reactor prototype. We succeed to grow step by step heavy on low, and more original, low on heavy boron-doped layers of (100)-oriented diamond in the same process and without stopping the plasma. We also settled growth parameters for a growth rate slow enough to get nanometre-thick homoepitaxial films with boron doping jumps over several orders of magnitude, called delta-doping. We demonstrated the presence of super-sharp interfaces, after optimized in situ etching, by joint Secondary Ion Mass Spectrometry and Scanning Tunneling Electron Microscopy at High-Angle Annular Dark Field analysis. Finally superlattices with abrupt boron doping levels have been grown; they show satellite peaks of X-ray diffraction representative of a super-period.

Page generated in 0.0992 seconds