Spelling suggestions: "subject:"fieldeffect"" "subject:"fields:effect""
521 |
Filmes automontados de nanotubos de carbono aplicados em sensores / Layer-by-Layer assembly of carbon nanotubes applied in sensingJosé Roberto Siqueira Junior 23 February 2010 (has links)
Nanotubos de carbono (CNTs) têm se mostrado versáteis para melhorar propriedades de outros materiais. A integração de CNTs com materiais biológicos, por exemplo, permite obter biossensores com propriedades e sensibilidade otimizadas. Com a manipulação de CNTs em filmes nanoestruturados, pode-se formar nanocompósitos híbridos, cuja interação sinérgica requer métodos experimentais com controle da arquitetura molecular. Neste estudo, utilizamos a técnica de automontagem para obter dois tipos de sensores incorporando CNTs. No primeiro, filmes automontados de CNTs de parede múltiplas (MWNTs) dispersos em poliamidoamina (PAMAM) e alternados com ftalocianina tetrassulfonada de níquel (NiTsPc) foram usados como sensores amperométricos para detectar o neurotransmissor dopamina. As propriedades eletroquímicas obtidas com voltametria cíclica indicaram que a incorporação de MWNTs no filme PAMAM-NT/NiTsPc eleva a corrente de pico redox em três vezes e diminui em 50 mV o potencial de oxidação da dopamina. Isso permitiu detectar dopamina na presença de um interferente típico, o ácido ascórbico. Os sensores apresentaram limite de detecção de 0,5 mol L-1 e alta estabilidade. No segundo, filmes nanoestruturados de PAMAM com nanotubos de carbono de parede única (SWNTs), funcionalizados com grupos carboxílicos, foram fabricados sobre dispositivos de efeito de campo do tipo electrolyte-insulator-semiconductor (EIS) e light-addressable potentiometric sensors (LAPS). Estes dispositivos modificados foram usados em biossensores de penicilina G, após imobilização da enzima penicilinase. A morfologia do filme PAMAM/SWNT era típica de uma estrutura porosa, com grande área superficial, apropriada para adsorção da enzima e facilitar a penetração de íons H+ no filme. Esses biossensores exibiram alta sensibilidade ao pH de 55-58 mV/pH e propriedades melhoradas para a detecção de penicilina G, com sensibilidade de 100 mV/década e melhor desempenho com menor tempo de resposta e sinal mais estável. / Carbon nanotubes (CNTs) are versatile in enhancing the properties of other materials. They can be integrated with biological materials, for instance, in the fabrication of biosensors with optimized sensitivity and performance. With manipulation of CNTs in nanostructured films, one may form hybrid nanocomposites whose synergistic interaction requires experimental methods with control of molecular architecture. In this study, we used the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of multi-walled carbon nanotubes (MWNTs) dispersed in polyamidoamine (PAMAM) dendrimers and alternated with nickel phthalocyanine (NiTsPc) layers were used in the amperometric detection of the neutransmitter dopamine. The electrochemical properties obtained with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of dopamine. The latter permitted the detection of dopamine even in the presence of a typical interferent, the ascorbic acid. These sensors exhibited a limit of detection of ca. 0.5 mol L-1 and high stability. In the second type, LbL films of PAMAM and single-walled carbon nanotubes (SWNTs), functionalized with carboxylic groups, were deposited on field-effect devices, using electrolyte-insulator-semiconductor (EIS) and light-addressable potentiometric sensors (LAPS). These modified devices were employed as biosensors to detect penicillin G, after immobilizing the enzyme penicillinase. The PAMAM/SWNT film exhibited a highly porous morphology with large surface area, being suitable for enzyme adsorption, in addition to facilitating the penetration of H+ ions through the film. Such biosensors had a high pH sensitivity of ca. 55-58 mV/pH and improved properties toward penicillin G, with sensitivity of 100 mV/decade and enhanced performance, with faster response time and higher stability.
|
522 |
Desenvolvimento de materiais e métodos de fabricação de sensores químicos/bioquímicos baseados em silício e nanoestruturas de carbono (ISFET, CNTFET e GraFET) = Development of materials and methods of fabrication of chemical/biochemical sensors based on silicon and carbon nanostructures (ISFET, CNTFET and GraFET) / Development of materials and methods of fabrication of chemical/biochemical sensors based on silicon and carbon nanostructures (ISFET, CNTFET and GraFET)Souza, Jair Fernandes de 21 August 2018 (has links)
Orientadores: Peter Jürgen Tatsch, José Alexandre Diniz / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-21T00:22:30Z (GMT). No. of bitstreams: 1
Souza_JairFernandesde_D.pdf: 13128989 bytes, checksum: 25325c1093f208d379ae77adc08c90ff (MD5)
Previous issue date: 2012 / Resumo: Este trabalho teve como objetivo o desenvolvimento de materiais e métodos avançados de fabricação de sensores químicos/bioquímicos. Utilizando equipamentos disponíveis no Centro de Componentes Semicondutores da UNICAMP, foram desenvolvidos e caracterizados filmes finos de alta constante dielétrica e filmes metálicos. Os materiais desenvolvidos foram empregados na fabricação de sensores baseados em transistores de efeito de campo sensíveis a íons (ISFET) e em dispositivos de efeito de campo que incorporam nanoestruturas de carbono como elemento funcional [grafeno (GraFET) e nanotubos de carbono (CNTFET)]. A aplicação dos materiais como camada sensível, dielétrico de porta e eletrodos, assim como a utilização de nanoestruturas, tem por objetivo aumentar a sensibilidade e a biocompatibilidade dos dispositivos, construir dispositivos robustos que possam ser empregados em ambientes agressivos e obter sensores com resposta linear e estável com o tempo e temperatura. Foram fabricados, caracterizados e encapsulados ISFET's com camada sensível constituída por filmes finos de nitreto de silício (SiNx)/nitreto de alumínio (AlN) e com eletrodos formados por filmes metálicos de alumínio. Filmes finos de óxido de titânio (TiOx) e óxido de tântalo (TaOx), cujas características são de interesse para aplicação como filme sensível em determinadas aplicações, também foram estudados. Os filmes foram obtidos pelas técnicas de deposição química em fase vapor (LPCVD), sputtering dc e oxidação térmica rápida (RTO). Foram desenvolvidas técnicas de fabricação de dispositivos de efeito de campo baseados em grafeno e nanotubos de carbono, utilizando como dielétrico de porta os filmes finos desenvolvidos para formar a camada sensível dos ISFET's. Entretanto, os eletrodos foram construídos empregando-se filmes finos de nitreto de tântalo (TaN) depositados por sputtering dc. Filmes sensíveis de SiNx são quimicamente estáveis e tornam os sensores robustos com sensibilidade em tensão próxima ao limite de Nernst (59 mV/pH). Entretanto, a grande sensibilidade em tensão obtida (50 mV/pH) não é transformada em alta sensibilidade em corrente (1,35 ?A/pH), devido ao baixo valor de transcondutância observado (19 ?S). Por outro lado, quando se utiliza AlN depositado a temperatura ambiente, tem-se um baixo valor de sensibilidade em tensão (20 mV/pH) que é transformado em uma alta sensibilidade em corrente (28 ?A/pH), em razão da alta transcondutância dos dispositivos (329 ?S). GraFET's e CNTFET's demonstraram a modulação da corrente entre os eletrodos de fonte e dreno pela ação do campo elétrico perpendicular, aplicado com o auxílio do eletrodo de porta. Entretanto, o efeito de campo observado é ambipolar, ou seja, existem dois regimes possíveis de operação dos dispositivos, um regime dominado pelo transporte de lacunas e outro dominado pelo transporte de elétrons. A característica ambipolar possibilita a detecção de moléculas carregadas positiva e negativamente, enquanto que o baixo coeficiente de temperatura do filme de TaN possibilita a utilização dos dispositivos em processos realizados em altas temperaturas / Abstract: The main aim of this work is the development of advanced materials and methods for the fabrication of chemical/biochemical sensors. By using equipments available in the Center of Semiconductor Components of UNICAMP, high dielectric constant thin films and metallic films have been developed and characterized. The materials developed were employed in the fabrication of sensors based on ion-sensitive field effect transistors (ISFET) and in field-effect devices incorporating carbon nanostructures as functional elements [Graphene (GraFET) and carbon nanotubes (CNTFET)]. The application of these materials as sensitive layer, gate dielectric and electrodes, as well as the use of nanostructures, aims to increase the sensitivity and biocompatibility of the devices, to build robust devices that can be used in harsh environments and obtain sensors with linear and stable response over time and temperature. ISFET's with sensitive layer consisting of thin films of silicon nitride (SiNx)/aluminum nitride (AlN) and with electrodes formed by aluminum metallic films were fabricated, characterized and packaged. Thin films of titanium oxide (TiOx) and tantalum oxide (TaOx), whose characteristics are interesting in certain applications, were also studied. The films were obtained by chemical deposition techniques in vapor phase (LPCVD), dc sputtering and rapid thermal oxidation (RTO). Techniques have been developed for manufacturing field effect devices based on graphene and carbon nanotubes, the thin films developed to form the ISFET's sensitive layer were used as gate dielectric. However, the electrodes were built by using thin film of tantalum nitride (TaN) deposited by dc sputtering. SiNx sensitive films are chemically stable and make sensors robust with sensitivity in voltage near to the Nernst limit (59 mV/pH). However, the great sensitivity in voltage (50 mV/pH) is not transformed into high current sensitivity (1.35 ?A/pH), due to the low value of transconductance (19 ?S). On the other hand, when AlN deposited at room temperature is used, a low voltage sensitivity value is obtained (20 mV/pH) that is transformed into a high sensitivity in current (28 ?A/pH), due to high transconductance of the devices (329 ?S). GraFETs and CNTFETs demonstrated the current modulation between the source and drain electrodes by the action of perpendicular electric field, applied with the aid of the gate electrode. However, the field effect observed is ambipolar, in other words, there are two possible operation regime, a regime dominated by the transport of holes and another dominated by transport of electrons. The ambipolar feature enables the detection of positively and negatively charged molecules, while the low temperature coefficient of TaN film allows the use of devices in processes carried out at high temperatures / Doutorado / Eletrônica, Microeletrônica e Optoeletrônica / Doutor em Engenharia Elétrica
|
523 |
Synthèse et caractérisation de dérivés d'oligothiophènes pour leur utilisation dans des transistors à effet de champLeroy, Julie 24 April 2008 (has links)
Le developpement des transistors a effet de champ organiques est limite par les performances des semi-conducteurs organiques disponibles sur le marche, la mobilite des charges electriques (mu) atteinte de maniere reproductible est de 1cm2/Vs. Un des principaux frein est la presence de defauts lies a l'organisation moleculaire. Les oligothiophenes sont a l'heure actuelle parmis les semi-conducteurs organiques les plus performants, c'est pourquoi nous avons decide de baser notre recherche sur des derives du terthiophenes et du quaterthiophene. Ces composes s'organisent de maniere a permettre une conduction a deux dimensions. Mais la mobilite de charge est limitee par des defauts de plan au sein du reseau moleculairemais aussi aux defauts dus aux irregularite de l'interface dielectrique/semi-conducteur.<p>Afin de remedier a ce probleme, nous avons envisage deux approche: l'une pour la diminution des defauts de plan par l'utilisation de phase cristal liquides; l'autre vise la diminution des defauts dus aux irregularites de la surface du substrat, par l'utilisation de systemes pi relies par un pont covalent.<p>Les 5,5'-dialkylterthiophenes (chaines allant du propyle au dodecyle) et le 5,5'- dihexylquaterthiophene sont conus pour former des phases cristal liquides. Mais ces dernieres n'apparaissent cependant qu'a des temperatures superieures a 45degC. LEs chaines alkyles utilisees etant toutes des chaines lineaires, notre premiere idee a ete de synthetiser de nouveaux derives avec des chaines alkyles ou alkenyles branchees. Une voie de synthese 'one-pot' permettant de varier aisement les chaines alkyles greffees dans les positions alfa et beta des bi-, ter- et quaterthiophene a ete mise au point. La reaction d'alkylation se fait en presence de n-BuLi et t-BuOK avec des rendements variant entre 80 et 90%. LEs composes obtenus par cette methode ne presentent pas les proprietes requises, c'est pourquoi une nouvelle modification structurale a ete envisagee: la dyssymetrisation. Cette fois les chaines greffees sur les positions alfa et beta sont differentes. De nouvelles voies de synthese ont ete etablies dans ce but. Elles sont basees sur l'heterocouplage de Suzuki qui va permettre la formation d'un lien carbone-carbone entre deux unites oligothiophenes. Ce couplage donne des rendements compris entre 35 et 65%. <p>Notre connaissance de la formation de comnposes dissymetriques va etre directement appliquee a la formation des unites oligothiophenes reliees par un pont covalent. Quelque soit la nature du pont, il est necessaire de passer par un oligothiophene subtsitue en position alfa et pas omega. Deux types de ponts covalents ont ete utilises, un pont etylene et un pont disulfure, ce qui a requis la mise au point de deux schemas de synthese differents. POur les composes possendant un pont ethylene, un des synthon comporte deja un pont, l'etape finale consiste en un couplage de Suzuki. En ce qui concerne les derives possedant un pont sulfure, la formation du pont se fait lors de la derniere etape. <p><p>Les proprietes thermotropes de tous les composes synthetises ont ete mesurees, cela nous a permis de faire une etude comparative dans le but de relier la structure aux proprietes thermotropes. La taille du corps aromatique, la longueur des chaines alkyles, la presence de branchements, d'insaturations sur les chaines laterales, de meme que la dissymetrisation ont ete etudies. Nous avons tentes de correler l'evolution des proprites thermotropes de nos composes avec l'evolution des temperatures de fusion des alcanes et alcenes correspondant. Cela donne de bons resultats pour les derives du terthiophenes, mais l'augmentation de la taille du corps aromatique complique fortement les resultats, LEs constatations les plus importantes sont que la presence de branchements sur les chaines alkyles provoque la diminution des temperatures de transistions des terthiophenes et des quaterthiophenes. Meme si en plus, ces branchements provoquent la perte du caractere fluide pour les terthiophenes. Il est incontestable que la methode qui permet de modifier de facon plus fine les temperatures de transition est la dissymetrisation. Cela nous permet d'obtenir des composes possedant les proprietes rechercheesa a savoir une phase cristal liquide a temperature ambiante. Sans toutefois comprendre le lien subtil entre la structure moleculaire et les proprietes thermotropes. <p>Afin de comprendre les proprietes de semi-conduction des composes synthetises, nous avons fabriques des transistors a effet de champ avec trois d'entre eux; le 5,5'-dihexylquaterthiophene sert de compose modele, un derive du quaterthiophene possedant une phase cristal liquide a temperature ambiante et derive compose de deux unites hexylquaterthiophene relies par un pont ethylene. Les resultats pour le compose presentant une phase cristal liquide sont peu concluants. IL ne montre aucune proprietes de semi-conduction, ce qui peut s'expliquer par la difference de longueur des chaines alkyles greffees ,qui induit un deplacement lateral defavorable au transport de charges. Pour le compose ponte une mobilite de charge de 0.015cm2/V.s. a ete mesuree ( compose de reference 0.013 cm2/V.s.) avec un dielectrique de rugosite nulle. Nous pouvons conclure que le compose ponte possede bien les proprietes de semi-conduction desirees. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
524 |
Filmes automontados de nanotubos de carbono aplicados em sensores / Layer-by-Layer assembly of carbon nanotubes applied in sensingSiqueira Junior, José Roberto 23 February 2010 (has links)
Nanotubos de carbono (CNTs) têm se mostrado versáteis para melhorar propriedades de outros materiais. A integração de CNTs com materiais biológicos, por exemplo, permite obter biossensores com propriedades e sensibilidade otimizadas. Com a manipulação de CNTs em filmes nanoestruturados, pode-se formar nanocompósitos híbridos, cuja interação sinérgica requer métodos experimentais com controle da arquitetura molecular. Neste estudo, utilizamos a técnica de automontagem para obter dois tipos de sensores incorporando CNTs. No primeiro, filmes automontados de CNTs de parede múltiplas (MWNTs) dispersos em poliamidoamina (PAMAM) e alternados com ftalocianina tetrassulfonada de níquel (NiTsPc) foram usados como sensores amperométricos para detectar o neurotransmissor dopamina. As propriedades eletroquímicas obtidas com voltametria cíclica indicaram que a incorporação de MWNTs no filme PAMAM-NT/NiTsPc eleva a corrente de pico redox em três vezes e diminui em 50 mV o potencial de oxidação da dopamina. Isso permitiu detectar dopamina na presença de um interferente típico, o ácido ascórbico. Os sensores apresentaram limite de detecção de 0,5 mol L-1 e alta estabilidade. No segundo, filmes nanoestruturados de PAMAM com nanotubos de carbono de parede única (SWNTs), funcionalizados com grupos carboxílicos, foram fabricados sobre dispositivos de efeito de campo do tipo electrolyte-insulator-semiconductor (EIS) e light-addressable potentiometric sensors (LAPS). Estes dispositivos modificados foram usados em biossensores de penicilina G, após imobilização da enzima penicilinase. A morfologia do filme PAMAM/SWNT era típica de uma estrutura porosa, com grande área superficial, apropriada para adsorção da enzima e facilitar a penetração de íons H+ no filme. Esses biossensores exibiram alta sensibilidade ao pH de 55-58 mV/pH e propriedades melhoradas para a detecção de penicilina G, com sensibilidade de 100 mV/década e melhor desempenho com menor tempo de resposta e sinal mais estável. / Carbon nanotubes (CNTs) are versatile in enhancing the properties of other materials. They can be integrated with biological materials, for instance, in the fabrication of biosensors with optimized sensitivity and performance. With manipulation of CNTs in nanostructured films, one may form hybrid nanocomposites whose synergistic interaction requires experimental methods with control of molecular architecture. In this study, we used the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of multi-walled carbon nanotubes (MWNTs) dispersed in polyamidoamine (PAMAM) dendrimers and alternated with nickel phthalocyanine (NiTsPc) layers were used in the amperometric detection of the neutransmitter dopamine. The electrochemical properties obtained with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of dopamine. The latter permitted the detection of dopamine even in the presence of a typical interferent, the ascorbic acid. These sensors exhibited a limit of detection of ca. 0.5 mol L-1 and high stability. In the second type, LbL films of PAMAM and single-walled carbon nanotubes (SWNTs), functionalized with carboxylic groups, were deposited on field-effect devices, using electrolyte-insulator-semiconductor (EIS) and light-addressable potentiometric sensors (LAPS). These modified devices were employed as biosensors to detect penicillin G, after immobilizing the enzyme penicillinase. The PAMAM/SWNT film exhibited a highly porous morphology with large surface area, being suitable for enzyme adsorption, in addition to facilitating the penetration of H+ ions through the film. Such biosensors had a high pH sensitivity of ca. 55-58 mV/pH and improved properties toward penicillin G, with sensitivity of 100 mV/decade and enhanced performance, with faster response time and higher stability.
|
525 |
Biosenzory na bázi funkcionalizovaného grafenu / Biosensors based on functionalized graphenePavlásková, Lucie January 2021 (has links)
V této práci byl demonstrován grafenový polem řízený transistor (GFET) jako platforma pro detekci glukózy. Sukcinimidyl ester pyrenbutanové kyseliny (PSE) sloužící jako nosič a enzym glukóza oxidáza (GOx) byly úspěšně použity k funkcionalizaci grafenového kanálu ve FE transistoru. Enzym GOx byl imobilizován na kanálu pro glukózovou detekci, jelikož indukuje selektivní katalytickou reakci glukózy. Proces funkcionalizace byl charakterizován pomocí Ramanovy spektroskopie a Atomární silové mikroskopie (AFM). Vyrobený biosenzor na bázi grafenu umožnil elektrickou detekci glukózy ve dvou různých uspořádáních. V uspořádní FET prostřednictvím posunu Diracova bodu ve voltampérové charakteristice, jakož i v nastavení pro kotinuální monitorování v reálném čase prostřednictvím změny odporu grafenového kanálu. Tato studie naznačuje, že grafen je slibným materiálem pro vývoj nanoelektronických biosenzorů včetně aplikací pro monitorování hladiny glukózy.
|
526 |
COMPUTATIONAL DESIGN AND EXPERIMENTAL VALIDATION OF DIAMOND-BASED QUANTUM EMITTERSOluseye Akomolede (11706230) 15 November 2021 (has links)
<p>The enhancement of the emission from nitrogen vacancy color
centers will help facilitate advancements in quantum information technology. To
this end, the reduction of the excited state lifetimes of NVs as well as the
design of devices which support electroluminescence of nitrogen vacancies, as
well as the broadband enhancement of the emission from these centers is of
great importance.</p>
<p> </p>
<p>In this study, we create diamond thin films containing
nitrogen vacancy color centers using salt-assisted ultrasonic disaggregation
techniques and electrophoretic deposition. These films are implanted with xenon
atoms and the resulting structures are characterized optically. We report a
reduction in the bulk emission lifetime of nitrogen vacancy color centers of
two orders of magnitude. A coupled-mode theory approach is used to analyze the
emission from the xenon-doped nanodiamond species. It is determined that the
lifetime reduction occurs due to coupling between nitrogen vacancy color
centers and xenon color centers within the diamond lattice.</p>
<p> </p>
<p>A diamond field effect transistor is investigated via
simulations utilizing Sentaurus TCAD software. The device is scaled by three
orders of magnitude from previous experiments involving the same structure.
Transport characteristics are obtained from simulation results. We confirm the
existence of a decreasing saturation voltage with a decrease in gate length in
the diamond field effect transistor. Further investigation into the device’s
viability as a quantum emitter is conducted. </p>
<p> </p>
<p>The design of a single photon source utilizing plasmonic
structures to enhance emission from nitrogen vacancy color centers is proposed.
The plasmonic structure is investigated to extract operating parameters and to
quantify the optical coupling and propagation characteristics for various
physical dimensions</p>
<p> </p>
The design of a plasmonic device which features
both electroluminescence via nitrogen vacancy color centers and their
enhancement via plasmonic effects is numerically simulated. The device features
large Purcell enhancement factor and good photon emission rate. In summary,
this work paves the way towards the advancement of the nitrogen vacancy color center
as a stable source of room temperature photons for quantum information
applications.
|
527 |
Studium vztahu mezi strukturou a vlastnostmi derivátů diketopyrolopyrolů / Study of structure-property relationship of diketopyrrolopyrrole derivativesVrchotová, Jana January 2011 (has links)
This master´s thesis deals with new perspective organic molecular materials. A theoretical part contains search themed on organic materials for optical and electronic devices with emphasis on diketopyrrolopyrrole derivatives. The aim of the experimental part was preparation of solutions, thin layers and prototypical planar electronic components from chosen diketopyrrolopyrrole derivatives and their optical and electric characterization. Obtained results are interpreted with perspective on application in organic electronic.
|
528 |
Thermal deposition approaches for graphene growth over various substratesPang, Jinbo 07 March 2017 (has links)
In the course of the PhD thesis large area homogeneous strictly monolayer graphene films were successfully synthesized with chemical vapor deposition over both Cu and Si (with surface oxide) substrates. These synthetic graphene films were characterized with thorough microscopic and spectrometric tools and also in terms of electrical device performance. Graphene growth with a simple chemo thermal route was also explored for understanding the growth mechanisms.
The formation of homogeneous graphene film over Cu requires a clean substrate. For this reason, a study has been conducted to determine the extent to which various pre-treatments may be used to clean the substrate. Four type of pre-treatments on Cu substrates are investigated, including wiping with organic solvents, etching with ferric chloride solution, annealing in air for oxidation, and air annealing with post hydrogen reduction. Of all the pretreatments, air oxidation with post hydrogen annealing is found to be most efficient at cleaning surface contaminants and thus allowing for the formation of large area homogeneous strictly monolayer graphene film over Cu substrate.
Chemical vapor deposition is the most generally used method for graphene mass production and integration. There is also interest in growing graphene directly from organic molecular adsorbents on a substrate. Few studies exist. These procedures require multiple step reactions, and the graphene quality is limited due to small grain sizes. Therefore, a significantly simple route has been demonstrated. This involves organic solvent molecules adsorbed on a Cu surface, which is then annealed in a hydrogen atmosphere in order to ensure direct formation of graphene on a clean Cu substrate. The influence of temperature, pressure and gas flow rate on the one-step chemo thermal synthesis route has been investigated systematically. The temperature-dependent study provides an insight into the growth kinetics, and supplies thermodynamic information such as the activation energy, Ea, for graphene synthesis from acetone, isopropanol and ethanol. Also, these studies highlight the role of hydrogen radicals for graphene formation. In addition, an improved understanding of the role of hydrogen is also provided in terms of graphene formation from adsorbed organic solvents (e.g., in comparison to conventional thermal chemical vapor deposition).
Graphene synthesis with chemical vapor deposition directly over Si wafer with surface oxide (Si/SiOx ) has proven challenging in terms of large area and uniform layer number. The direct growth of graphene over Si/SiO x substrate becomes attractive because it is free of an undesirable transfer procedure, necessity for synthesis over metal substrate, which causes breakage, contamination and time consumption. To obtain homogeneous graphene growth, a local equilibrium chemical environment has been established with a facile confinement CVD approach, inwhich two Si wafers with their oxide faces in contact to form uniform monolayer graphene. A thorough examination of the material reveals it comprises facetted grains despite initially nucleating as round islands. Upon clustering these grains facet to minimize their energy, which leads to faceting in polygonal forms because the system tends to ideally form hexagons (the lowest energy form). This is much like the hexagonal cells in a beehive honeycomb which require the minimum wax. This process also results in a near minimal total grain boundary length per unit area. This fact, along with the high quality of the resultant graphene is reflected in its electrical performance which is highly comparable with graphene formed over other substrates, including Cu. In addition the graphene growth is self-terminating, which enables the wide parameter window for easy control.
This chemical vapor deposition approach is easily scalable and will make graphene formation directly on Si wafers competitive against that from metal substrates which suffer from transfer. Moreover, this growth path shall be applicable for direct synthesis of other two dimensional materials and their Van der Waals hetero-structures.:Contents
Quotation v
Kurzfassung vii
Abstract xi
Contents xiii
Acronyms xvii
1 Aims and objectives 1
2 Introduction 5
2.1 Carbon allotropes 6
2.1.1 Hybridized sp 2 carbon nanomaterials 6
2.1.2 Graphene 7
2.2 Properties of graphene 8
2.2.1 Crystalline structure 8
2.2.2 Electrical transport 10
2.2.3 Optical transparency 11
2.2.4 Other properties 12
2.3 Graphene deposition methods 13
2.3.1 Synthesis approaches 13
2.3.2 Chemical vapor deposition 14
2.3.3 Substrate selection 15
2.3.4 Substrate pretreatments 16
2.3.5 Carbon feedstock 17
2.3.6 Thermal chemical vapor deposition 17
2.3.7 Plasma chemical vapor deposition 18
2.3.8 Transfer protocol 19
2.4 Chemical vapor deposition for graphene growth 21
2.4.1 Thermodynamics 22
2.4.2 Arrhenius plots 22
2.4.3 Activation energy 24
2.4.4 Growth kinetics 25
2.4.5 Reaction mechanisms over Cu 27
2.4.6 Reaction mechanisms over Ni 29
2.4.7 Reaction mechanisms over non-metals 31
2.4.8 Reaction mechanisms of free-standing graphene 35
2.5 Summary 35
2.6 Scope of the thesis 36
3 Experimental setup and characterization techniques 37
3.1 Experimental setup of chemical vapor deposition 37
3.2 Optical microscopy 39
3.3 Scanning electron microscopy 40
3.4 Atomic force microscopy 41
3.5 Transmission electron microscopy 42
3.5.1 Selected area electron diffraction 44
3.5.2 Dark field transmission electron microscopy 46
3.6 Raman spectroscopy 47
3.7 Ultraviolet-Visible spectrophotometry 49
3.8 Electrical transport measurements 49
4 CVD growth of graphene on oxidized Cu substrates 51
4.1 Motivation 52
4.2 Experimental protocol 53
4.3 Influence of Cu pretreatments on graphene formation 54
4.4 Influence of Cu oxidation on graphene growth 60
4.5 Effect of oxidation pretreatment on Cu surface cleaning 64
4.6 Summary 66
5 Chemo-thermal synthesis of graphene from organic adsorbents 67
5.1 Motivation 67
5.2 Experimental protocol 69
5.3 Influence of reaction temperature on graphene growth 75
5.4 Influence of reaction pressure on graphene growth 78
5.5 Influence of reaction flow rate on graphene growth 80
5.6 Summary 81
6 Monolayer graphene synthesis directly over Si/SiO x 83
6.1 Motivation 83
6.2 Experimental protocol 86
6.3 Influence of substrate confinement configuration 87
6.4 Time dependent evolution for graphene formation 91
6.5 Grain boundaries in graphene film 95
6.6 Bubble clustering of faceted graphene grains 98
6.7 Electrical and optical performance of graphene 100
6.8 Summary 102
7 Conclusions 103
8 Outlook 107
A Graphene synthesis over Cu and transfer to Si/SiO x substrate 111
B Chemo-thermal synthesis of graphene over Cu 115
C CVD graphene growth directly over Si/SiO x substrate 127
Bibliography 147
List of Figures 193
List of Tables 197
Acknowledgements 199
List of publications 203
Erklaerung 205 / Im Zuge dieser Doktorarbeit wurden großflächige und homogene Graphen-Monolagen mittels chemischer Gasphasenabscheidung auf Kupfer- (Cu) und Silizium-(Si) Substraten erfolgreich synthetisiert. Solche monolagigen Graphenschichten wurden mithilfe mikroskopischer und spektrometrischer Methoden gründlich charakterisiert. Außerdem wurde der Wachstumsmechanismus von Graphen anhand eines chemo-thermischen Verfahrens untersucht.
Die Bildung von homogenen Graphenschichten auf Cu erfordert eine sehr saubere Substratoberfläche, weshalb verschiedene Substratvorbehandlungen und dessen Einfluss auf die Substratoberfläche angestellt wurden. Vier Vorbehandlungsarten von Cu-Substraten wurden untersucht: Abwischen mit organischen Lösungsmitteln, Atzen mit Eisen-(III)-Chloridlösung, Wärmebehandlung an Luft zur Erzeugung von Cu-Oxiden und Wärmebehandlung an Luft mit anschließender Wasserstoffreduktion. Von diesen Vorbehandlungen ist die zuletzt genannte Methode für die anschließende Abscheidung einer großflächigen Graphen-Mono-lage am effektivsten.
Die chemische Gasphasenabscheidung ist die am meisten verwendete Methode zur Massenproduktion von Graphen. Es besteht aber auch Interesse an alternativen Methoden, die Graphen direkt aus organischen, auf einem Substrat adsorbierten Molekülen, synthetisieren konnen. Jedoch gibt es derzeit nur wenige Studien zu derartigen alternativen Methoden. Solche Prozessrouten erfordern mehrstufige Reaktionen, welche wiederrum die Qualität der erzeugten Graphenschicht limitieren, da nur kleine Korngrößen erreicht werden konnen. Daher wurde in dieser Arbeit ein deutlich einfacherer Weg entwickelt. Es handelt sich dabei um ein Verfahren, bei dem auf einer Cu-Substratoberfläche adsorbierte, organische Lösungsmittelmoleküle in einer Wasserstoffatmosphäre geglüht werden, um eine direkte Bildung von Graphen auf einem sauberen Cu-Substrat zu gewahrleisten.Der Einfluss von Temperatur, Druck und Gasfluss auf diesen einstufigen chemothermischen Syntheseweg wurde systematisch untersucht. Die temperaturabhängigen Untersuchungen liefern einen Einblick in die Wachstumskinetik und thermodynamische Größen, wie zum Beispiel die Aktivierungsenergie Ea, für die Synthese von Graphen aus Aceton, Isopropanol oder Ethanol. Diese Studien untersuchen außerdem die Rolle von Wasserstoffradikalen auf die Graphensynthese. Weiterhin wurde ein verbessertes Verständnis der Rolle von Wasserstoff auf die Graphen-synthese aus adsorbierten, organischen Lösungsmitteln erlangt (beispielsweise im Vergleich zur konventionellen thermischen Gasphasenabscheidung).
Die direkte Graphensynthese mittels chemischer Gasphasenabscheidung auf Si-Substraten mit einer Oxidschicht (Si/SiOx ) ist extrem anspruchsvoll in Bezug auf die großflächige und einheitliche Abscheidung (Lagenanzahl) von Graphen-Monolagen. Das direkte Wachstum von Graphen auf Si/SiOx -Substrat ist interessant, da es frei von unerwünschten Übertragungsverfahren ist und kein Metall-substrat erfordert, welche die erzeugten Graphenschichten brechen lassen können. Um ein homogenes Graphenwachstum zu erzielen wurde durch den Kontakt zweier Si-Wafer, mit ihren Oxidflachen zueinander zeigend, eine lokale Umgebung im chemischen Gleichgewicht erzeugt. Diese Konfiguration der Si-Wafer ist nötig, um eine einheitliche Graphen-Monolage bilden zu können. Eine gründliche Untersuchung des abgeschiedenen Materials zeigt, dass trotz der anfänglichen Keimbildung von runden Inseln facettierte Körner erzeugt werden. Aufgrund der Bestrebung der Graphenkörner ihre (Oberflächen-) Energie zu minimieren, wird eine Facettierung der Körner in polygonaler Form erzeugt, was darin begründet liegt, dass das System idealerweise eine Anordnung von hexagonal geformten Körnern erzeugen würde (niedrigster Energiezustand). Der Prozess ist vergleichbar mit der sechseckigen Zellstruktur einer Bienenstockwabe, welche ein Minimum an Wachs erfordert. Dieser Prozess führt auch zu einer nahezu minimalen Gesamtkorn-grenzlänge pro Flächeneinheit. Diese Tatsache zusammen mit der hohen Qualität der resultierenden Graphenschicht spiegelt sich auch in dessen elektrischer Leistungsfähigkeit wider, die in hohem Maße mit der auf anderen Substraten gebildeten Graphenschichten (inklusive Cu-Substrate) vergleichbar ist. Darüber hinaus ist das Graphenwachstum selbstabschliessend, wodurch ein großes Parameterfenster für eine einfache und kontrollierte Synthese eröffnet wird.
Dieser Ansatz zur chemischen Gasphasenabscheidung von Graphen auf Si- Substraten ist leicht skalierbar und gegenüber der Abscheidung auf Metallsubstraten konkurrenzfähig, da keine Substratübertragung notig ist. Darüber hinaus ist dieser Prozess auch für die direkte Synthese anderer zweidimensionalen Materialien und deren Van-der-Waals-Heterostrukturen anwendbar.:Contents
Quotation v
Kurzfassung vii
Abstract xi
Contents xiii
Acronyms xvii
1 Aims and objectives 1
2 Introduction 5
2.1 Carbon allotropes 6
2.1.1 Hybridized sp 2 carbon nanomaterials 6
2.1.2 Graphene 7
2.2 Properties of graphene 8
2.2.1 Crystalline structure 8
2.2.2 Electrical transport 10
2.2.3 Optical transparency 11
2.2.4 Other properties 12
2.3 Graphene deposition methods 13
2.3.1 Synthesis approaches 13
2.3.2 Chemical vapor deposition 14
2.3.3 Substrate selection 15
2.3.4 Substrate pretreatments 16
2.3.5 Carbon feedstock 17
2.3.6 Thermal chemical vapor deposition 17
2.3.7 Plasma chemical vapor deposition 18
2.3.8 Transfer protocol 19
2.4 Chemical vapor deposition for graphene growth 21
2.4.1 Thermodynamics 22
2.4.2 Arrhenius plots 22
2.4.3 Activation energy 24
2.4.4 Growth kinetics 25
2.4.5 Reaction mechanisms over Cu 27
2.4.6 Reaction mechanisms over Ni 29
2.4.7 Reaction mechanisms over non-metals 31
2.4.8 Reaction mechanisms of free-standing graphene 35
2.5 Summary 35
2.6 Scope of the thesis 36
3 Experimental setup and characterization techniques 37
3.1 Experimental setup of chemical vapor deposition 37
3.2 Optical microscopy 39
3.3 Scanning electron microscopy 40
3.4 Atomic force microscopy 41
3.5 Transmission electron microscopy 42
3.5.1 Selected area electron diffraction 44
3.5.2 Dark field transmission electron microscopy 46
3.6 Raman spectroscopy 47
3.7 Ultraviolet-Visible spectrophotometry 49
3.8 Electrical transport measurements 49
4 CVD growth of graphene on oxidized Cu substrates 51
4.1 Motivation 52
4.2 Experimental protocol 53
4.3 Influence of Cu pretreatments on graphene formation 54
4.4 Influence of Cu oxidation on graphene growth 60
4.5 Effect of oxidation pretreatment on Cu surface cleaning 64
4.6 Summary 66
5 Chemo-thermal synthesis of graphene from organic adsorbents 67
5.1 Motivation 67
5.2 Experimental protocol 69
5.3 Influence of reaction temperature on graphene growth 75
5.4 Influence of reaction pressure on graphene growth 78
5.5 Influence of reaction flow rate on graphene growth 80
5.6 Summary 81
6 Monolayer graphene synthesis directly over Si/SiO x 83
6.1 Motivation 83
6.2 Experimental protocol 86
6.3 Influence of substrate confinement configuration 87
6.4 Time dependent evolution for graphene formation 91
6.5 Grain boundaries in graphene film 95
6.6 Bubble clustering of faceted graphene grains 98
6.7 Electrical and optical performance of graphene 100
6.8 Summary 102
7 Conclusions 103
8 Outlook 107
A Graphene synthesis over Cu and transfer to Si/SiO x substrate 111
B Chemo-thermal synthesis of graphene over Cu 115
C CVD graphene growth directly over Si/SiO x substrate 127
Bibliography 147
List of Figures 193
List of Tables 197
Acknowledgements 199
List of publications 203
Erklaerung 205
|
529 |
Acceptor Moieties With Extended Conjugation For Semiconducting PolymersXuyi Luo (12463584) 27 April 2022 (has links)
<p>New acceptor moieties with extended conjugation have been developed for further understanding of structure-property relationships in donor-acceptor type semiconducting polymers. These diketopyrrolopyrrole or isoindigo based conjugated polymers have been demonstrated as functional materials in organic field effect transistors, photoacoustic imaging and organic electrochemical transistors. With demonstrations of semiconducting molecular design, we hope to spark new research directions especially on deeper investigation of charge transport dependence on chemical structures, and new design strategies of acceptor moieties with extended conjugation could be applied for targeted applications.</p>
|
530 |
Nano-composants à base de films minces organiques électrogreffés : Fabrication, caractérisation, étude du transport électronique et intégration / Organic electrografted thin films based nano-devicesLebon, Florian 30 September 2019 (has links)
Le principal objectif de cette thèse est de montrer le potentiel pour l’électronique organique de films moléculaires minces liés de façon covalente au substrat et déposés par greffage électro- chimique. Ces couches organiques de 5 à 100 nm d’épaisseur visent à proposer une alternative aux films minces organiques d’épaisseur supérieure à 100 nm et aux couches mono-moléculaires autoassemblées d’épaisseur comprise entre 1 et 5 nm.Ce travail a d’abord permis d’établir les conditions optimales de greffage de trois différents sels de diazonium : un dérivé de la tris-bipyridine fer (II), un sel de diazonium comportant une longue chaîne fluorée et un autre comportant une fonction thiol. En particulier, un contrôle fin de l’épaisseur des films est démontré sur des électrodes patternées micrométriques adaptées à la réalisation de dispositifs.L’électrogreffage de doubles couches est ensuite étudié. Il consiste à utiliser une électrode electrogreffée par des molécule électroactives, ici le dérivé de la tris-bipyridine fer (II), comme électrode de travail pour l’électrogreffage d’un second sel de diazonium. Cette technique permet de former des couches organiques d’épaisseur contrôlée par la première couche et présentant des fonctions terminales contrôlées par le choix du second composé (ici, fonctions thiols ou chaînes fluorées). L’intérêt de ces couches fonctionnelles est ensuite évalué dans des jonctions verticales métal-molécules-métal utilisant différents types d’électrodes supérieures : des électrodes imprimées à partir d’une solution de nanoparticules d’or, suivant un procédé élaboré dans cette thèse, et des électrodes fabriquées à partir de métaux évaporés sous vide. Enfin, des transistors à base de MoS2 utilisant 30 nm de ces couches greffées comme diélectrique de grille sont fabriqués et étudiés. Leurs performances (mobilité électronique de 46 cm2.(V.s)-1, rapport ION/IOFF de 9.107, etc.) confirment la qualité de ces isolants organiques électrogreffés. La méthode s’avère ainsi efficace et versatile pour la préparation de couches organiques robustes d’épaisseur contrôlée et aux propriétés de surface ajustables. / The main objective of this PhD thesis is to show the potential for organic electronics of molecular thin films covalently bounded and formed by electrochemical grafting. These 5 to 100 nm thick layers aim to propose an alternative to organic thin films of thickness above 100 nm and to self-assembled monolayers of thickness between 1 and 5 nm.This work first establishes the optimal electrografting conditions of three diazonium salts : a derivative from the tris-bipyridine iron (II), a diazonium salt with a long fluorinated chain and another with a thiol function). In particular, a fine tuning of the thickness of the resulting layers is demonstrated on micrometric patterned electrodes.Double layer electrografting is then studied. It consists in using an electrode electrografted with electroactive molecules, here the tris-bipyridine iron (II) derivative, as a working electrode for the electrografting of a second diazonium salt. This technique allows the formation of organic double-layers of thickness controlled by the first layer and presenting terminal functions controlled by the choice of the second compound (here, thiol functions or fluorinated chains).The potential of these layers is then evaluated in vertical metal-molecules-metal junctions using various top electrodes : electrodes printed from an aqueous gold nanoparticle ink through a method developed in this thesis, and electrodes made by metal evaporation in vacuum. To conclude, field-effect transistors based on MoS2 using these electrografted thin layers as gate-dielectric are fabricated and studied. Their performances (electronic mobility of 46 cm2.(V.s)-1, ION/IOFF ratio of 9.107,etc.) confirm the quality of these organic electrografted insulators. The method is thus efficient and versatile for the preparation of robust organic layers with adjustable surface properties and thickness.
|
Page generated in 0.0874 seconds