Spelling suggestions: "subject:"filtragem""
51 |
FILTRAGE ADAPTATIF ET DIFFUSION ANISOTROPE POUR L'AIDE A L'INTERPRETATION DES DONNEES SISMIQUESDargent, Régis 17 July 2006 (has links) (PDF)
Ce mémoire traite du rehaussement d'images sismiques tridimensionnelles, constituées d'un empilement de couches géologiques, elles-mêmes interrompues par des failles sismiques. L'objectif, en apparence contradictoire, est de lisser les couches géologiques, tout en préservant certaines discontinuités : les failles. Les méthodes de filtrage adaptatif – couramment employées dans le domaine de l'imagerie sismique – ainsi que la diffusion anisotrope sont bien adaptés à cette problématique car elles permettent une prise en compte de l'orientation des couches, ainsi que de critères indiquant la possible présence de failles. Reprenant les points clefs des approches précédentes, nous proposons une équation d'évolution fondée sur la définition de trois zones de comportement différentié à l'intérieur du voisinage de chaque point. La première contient les points appartenant à la même couche géologique que le point central, la deuxième ceux correspondant aux couches voisines et la troisième les points incertains. La définition de ces zones est réalisée en chaque point à l'aide de l'orientation estimée des couches géologiques. Une évolution de cette méthode consiste à sélectionner, dans le voisinage défini précédemment, la sous-partie qui présente le moins de chances d'être traversée par une faille. Cette nouvelle approche permet non seulement de lisser l'image, mais également de renforcer la visibilité des failles. Les performances des méthodes proposées sont comparées à celles des approches classiques à l'aide d'un estimateur objectif de gain de qualité, employé sur des images de synthèse. Une comparaison visuelle de résultats obtenus sur des données réelles est également réalisée.
|
52 |
Assimilation de données par filtrage pour les systèmes hyperboliques du second ordre - Applications à la mécanique cardiaqueMoireau, Philippe 12 December 2008 (has links) (PDF)
L'objectif est de formuler des méthodes d'assimilation de données adaptées à la simulation du comportement mécanique du coeur tout au long d'un battement cardiaque, afin de bénéficier du développement des techniques d'imagerie et de l'intérêt croissant des cliniciens pour la simulation numérique. Nous présentons une stratégie originale par filtrage, adaptée à l'estimation de systèmes mécaniques, et plus généralement de systèmes hyperboliques du second ordre, avec des conditions initiales et des paramètres inconnus. La trajectoire est estimée via des observateurs de Luenberger efficaces exploitant la stabilisation par feedback à des fins d'estimation. A la différence d'approches Kalmaniennes classiques, ces filtres peuvent être numériquement adaptés à des systèmes issus de la discrétisation d'EDPs, et la stabilité exponentielle du système de l'erreur d'observation assure la convergence de l'estimateur. Ainsi, nous analysons en particulier la stratégie collocalisée du "Direct Velocity Feedback" utilisée en contrôle des structures. Nous formulons aussi une méthode originale dans le cas de mesures de positions, et par extension de contours dans une image. Pour les paramètres, nous étendons ensuite l'estimateur en ajoutant une dynamique paramétrique fictive. Les observateurs d'état précédents restreignent alors l'incertitude à l'espace paramétrique afin d'y appliquer des filtres de rang réduit H2 ou Hinfini. La convergence de l'estimateur en résultant est mathématiquement démontrée, et illustrée en estimant des paramètres distribués de type raideurs et contractilités, avec la perspective d'aide au diagnostic de régions infarcies du muscle cardiaque.
|
53 |
Modélisation et utilisation des erreurs de pseudodistances GNSS en environnement transport pour l'amélioration des performances de localisationViandier, Nicolas 07 June 2011 (has links) (PDF)
Les GNSS sont désormais largement présents dans le domaine des transports. Actuellement, la communauté scientifique désire développer des applications nécessitant une grande précision, disponibilité et intégrité.Ces systèmes offrent un service de position continu. Les performances sont définies par les paramètres du système mais également par l'environnement de propagation dans lequel se propagent les signaux. Les caractéristiques de propagation dans l'atmosphère sont connues. En revanche, il est plus difficile de prévoir l'impact de l'environnement proche de l'antenne, composé d'obstacles urbains. L'axe poursuivit par le LEOST et le LAGIS consiste à appréhender l'environnement et à utiliser cette information en complément de l'information GNSS. Cette approche vise à réduire le nombre de capteurs et ainsi la complexité du système et son coût. Les travaux de recherche menés dans le cadre de cette thèse permettent principalement de proposer des modélisations d'erreur de pseudodistances et des modélisations de l'état de réception encore plus réalistes. Après une étape de caractérisation de l'erreur, plusieurs modèles d'erreur de pseudodistance sont proposés. Ces modèles sont le mélange fini de gaussiennes et le mélange de processus de Dirichlet. Les paramètres du modèle sont estimés conjointement au vecteur d'état contenant la position grâce à une solution de filtrage adaptée comme le filtre particulaire Rao-Blackwellisé. L'évolution du modèle de bruit permet de s'adapter à l'environnement et donc de fournir une localisation plus précise. Les différentes étapes des travaux réalisés dans cette thèse ont été testées et validées sur données de simulation et réelles.
|
54 |
Filtrage particulaire et ouverture synthétique inverse sur cibles RADAR non-coopérativesChamon, Marco Antonio 17 December 1996 (has links) (PDF)
Dans ce mémoire, on utilise la résolution particulaire du filtrage non-linéaire optimal pour le traitement du signal radar. Cette méthode, dite Filtrage Particulaire, permet de traiter de modèles non-linéaires sans restrictions sur la nature des non-linéarités ou sur la distribution des processus aléatoires qui représentent la dynamique du modèle et le bruit d'observation. Le principe du filtrage particulaire est de construire la probabilité conditionnelle aux mesures des variables à estimer par un peigne de Dirac généralisé, dont les supports suivent le flot stochastique de la variable, et dont les masses sont issues de la correction Bayesienne due aux mesures. L'application de cette nouvelle méthode aux techniques radar d'ouverture synthétique inverse (ISAR) permet d'estimer conjointement la trajectoire et l'image d'une cible non-coopérative à de faibles rapports signal/bruit. Dans ce cas, chaque particule dans l'espace d'état est porteuse d'une grille rigide qui représente la cible et dont la vraisemblance fournit le poids. Selon la finesse de la grille, l'algorithme peut être adapté aux problème d'imagerie radar ou simplement de poursuite d'une cible en présence de glint.
|
55 |
Etude et conception d’une structure BIST pour convertisseur analogique-numérique / BIST structure study and design dedicated to analog-to-digital converterMechouk, Nicolas 26 October 2010 (has links)
Le test de circuits analogiques et mixtes est de plus en plus difficile du fait de l’intégration d’un nombre croissant de composants complexes au sein d’un même système. Les techniques de BIST permettent la réalisation d’un test efficace en intégrant au système les ressources nécessaires au test. Dans cette thèse, nous présentons une structure BIST pour les Convertisseurs Analogiques-Numériques (CAN) tout numérique. Le générateur de stimuli est un oscillateur Sigma-Delta numérique délivrant, après un simple filtrage analogique, une sinusoïde. L’analyse de la réponse se fait au moyen d’un banc de filtres numériques séparant les différentes composantes harmoniques du signal issu du CAN. A partir de ces composantes harmoniques, différents paramètres spectraux sont calculés. Afin de valider cette structure, différents prototypes ont été conçu sur FPGA. Les résultats expérimentaux confirment la capacité de notre structure à tester efficacement un CAN 12 bits ayant un SNR de 70 dB. / Analog and mixed circuit testing is more and more difficult because of the integration of agrowing number of complex components in one system. BIST techniques allow the realizationof an effective test system by integrating the test resources to the system. In this thesis, wepresent a BIST Structure for Analog to Digital Converters (ADC). The stimuli generatoris a digital Sigma-Delta oscillator delivering a sine wave after a simple analog filtering. Abank of digital filters separating the different harmonic components of the signal from theADC is used to analyze of the response. From these harmonic components, different spectralparameters are calculated. To validate this structure, different prototypes have been designedon FPGA. The experimental results confirm the ability of our structure to effectively test a12-bit ADC with a 70-dB-SNR.
|
56 |
Estimation du rapport signal à bruit d'un signal GPS par filtrage non linéaire / Estimation of the noise ratio from GPS signal by non linear filterBourkane, Abderrahim 17 December 2015 (has links)
Un signal GPS est modulé par une porteuse et est étalé par un code pseudo aléatoire. Sa puissance, qui est portée en dessous du niveau du bruit, ne peut pas être directement mesurée. Les estimateurs classiques de la littérature utilisent les paramètres statistiques du maximum de la corrélation, obtenus après le désétalement du signal pour mesurer la puissance du signal reçu. Ces estimateurs nécessitent une longue période d'intégration pour être précis. De plus, ils ne tiennent pas compte de l'effet de la fréquence Doppler et du nombre de satellites visibles sur la statistique du maximum de la corrélation. Ces effets perturbateurs faussent l'estimation de la valeur C/N0 et limitent les applications qui utilisent cette grandeur telle que la réflectométrie des signaux GNSS. Ce travail de thèse propose un estimateur du rapport signal à bruit propre à chaque satellite, à partir d'un signal GPS L1. Pour présenter cet estimateur, nous avons adopté une approche en deux étapes. On suppose dans la première étape que le signal GPS est numérisé sur 1 bit, et on établit une fonction reliant l'amplitude du signal reçu au maximum de corrélation. Cette fonction non linéaire est déduite de l'architecture radio du récepteur GPS et des paramètres du signal qui sont : la fréquence Doppler et le déphasage du signal reçu. En effet, le rapport signal à bruit est une mesure relative, et pour pouvoir estimer l'amplitude du signal, on suppose que le bruit est blanc, gaussien, centré et de variance unitaire. La fonction proposée étant fortement non linéaire, nous proposons dans une deuxième étape, un estimateur dynamique de l'amplitude du signal, qui utilise le filtrage d'état non linéaire et les observations du maximum de la corrélation. Deux filtres sont évalués à cet effet ; le friltrage de Kalman sans parfum et le filtrage particulaire. / A gps signal es modulated by a carrier and is spreaded by a pseudo random code. Its power, which is carried below the level of noise, can't be directly measured. Conventional estimators literature using the statistical parameters of the maximum of the correlation, obtained after despreading of the signal to measure the received signal strength. These estimators require a long period of integration to be precise. Moreover, they do not take into account the effect of the Doppler frequency and the number of visible satellites on the statistical maximum of the correlation. These disruptive effects falsify the estimated value of C/N0 and limit the applications of the reflectometry. This thesis proposes an estimator of the signal to noise ratio own to each satellite, from a GPS L1 signal. To present this estimator, we have adopted a two-step approach. it is assumed in the first stage that the GPS signal is digitized on 1 bit, and sets a function relating the amplitude of the signal received to maximum correlation knowing the parameters of the GPS signal which are : the Doppler frequency and the phase shift of the received signal. indeed, the signal to noise ratio is a relative measure, and to estimate the signal amplitude is assumed that the noise is white, Gaussian, centered and unit variance. The proposed function is highly non-linear. We propose in a second step a dynamic estimator of the signal amplitude, which uses the non-linear state filter and the observations of the maximum correlation. Two filters are assessed in this case the Unscented Kalman filter and a particle filter.
|
57 |
Estimation circulaire multi-modèles appliquée au Map matching en environnement contraint / Circular estimation multiple models applied to Map matching in constrained areasEl Mokhtari, Karim 08 January 2015 (has links)
La navigation dans les environnements contraints tels que les zones portuaires ou les zones urbainesdenses est souvent exposée au problème du masquage des satellites GPS. Dans ce cas, le recours auxcapteurs proprioceptifs est généralement la solution envisagée pour localiser temporairement le véhiculesur une carte. Cependant, la dérive de ces capteurs met rapidement en défaut le système de navigation.Pour localiser le véhicule, on utilise dans cette thèse, un magnétomètre pour la mesure du cap dans unrepère absolu, un capteur de vitesse et une carte numérique du réseau de routes.Dans ce contexte, le premier apport de ce travail est de proposer la mise en correspondance desmesures de cap avec la carte numérique (map matching) pour localiser le véhicule. La technique proposéefait appel à un filtre particulaire défini dans le domaine circulaire et à un préfiltrage circulairedes mesures de cap. On montre que cette technique est plus performante qu’un algorithme de map matchingtopologique classique et notamment dans le cas problématique d’une jonction de route en Y. Ledeuxième apport de ce travail est de proposer un filtre circulaire multi-modèles CIMM défini dans uncadre bayésien à partir de la distribution circulaire de von Mises. On montre que l’intégration de cettenouvelle approche dans le préfiltrage et l’analyse des mesures de cap permet d’améliorer la robustesse del’estimation de la direction pendant les virages ainsi que d’augmenter la qualité du map matching grâce àune meilleure propagation des particules du filtre sur le réseau de routes. Les performances des méthodesproposées sont évaluées sur des données synthétiques et réelles. / Navigation in constrained areas such as ports or dense urban environments is often exposed to theproblem of non-line-of-sight to GPS satellites. In this case, proprioceptive sensors are generally used totemporarily localize the vehicle on a map. However, the drift of these sensors quickly cause the navigationsystem to fail. To localize the vehicle, a magnetometer is used in this thesis for heading measurementunder an absolute reference together with a velocity sensor and a digital map of the road network.In this context, the first contribution of this work is to provide a matching of the vehicle’s headingwith the digital map (map matching) to localize the vehicle. The proposed technique uses a particle filterdefined in the circular domain and a circular pre-filtering on the heading measurements. It is shown thatthis technique is more efficient than a conventional topological map matching algorithm, particularly inambiguous cases like a Y-shape road junction. The second contribution of this work is to propose a circularmultiple model filter CIMM defined in a Bayesian framwork from the von Mises circular distribution.It is shown that the integration of this new approach in the pre-filtering and analysis of the heading observationsimproves the robustness of the heading’s estimation during cornering and increases the mapmatching’s quality through a better propagation of the particles on the road network. The performancesof the proposed methods are evaluated on synthetic and real data.
|
58 |
Mures : Un système de recommandation de musiqueArnautu, Octavian Rolland 11 1900 (has links)
Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes. / In the last decade we have seen an incredible transformation of the world of music, from cassette tapes and compact discs to online digital music. With the explosion of the digital music we need music recommender systems to select those probably preferred songs from these huge online or personal databases. Currently, most music recommender systems use either collaborative (social) filtering or content-based algorithms. In this work we propose an original hybrid collaborative and tag-based algorithm improved by the context-of-use filtering technique in order to generate better playlists. Our approach assumes that user preferences change depending on the context of use. For example, a user listen one kind of music while driving to work, another type while traveling with the family on vacation, another one in a romantic evening or at parties. Additionally, if the playlist was generated for more than one user (family trip, party) the system will propose songs depending on the preferences of all these users. The main goal of our system is to recommend music to the user from the personal music collection or new music from system music collection, new releases and incoming concerts. Another goal of our system it will be to gather data from external sources based on crawling techniques and RSS Feeds to provide music related content like: new releases, incoming concerts, lyrics, similar artists. We’ll try to interlink some free available datasets on the web like listening habits from Last.fm, music database from MusicBrainz and tags from MusicStrands in order to obtain unique identifiers for songs, albums and artists.
|
59 |
Mures : Un système de recommandation de musiqueArnautu, Octavian Rolland 11 1900 (has links)
Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes. / In the last decade we have seen an incredible transformation of the world of music, from cassette tapes and compact discs to online digital music. With the explosion of the digital music we need music recommender systems to select those probably preferred songs from these huge online or personal databases. Currently, most music recommender systems use either collaborative (social) filtering or content-based algorithms. In this work we propose an original hybrid collaborative and tag-based algorithm improved by the context-of-use filtering technique in order to generate better playlists. Our approach assumes that user preferences change depending on the context of use. For example, a user listen one kind of music while driving to work, another type while traveling with the family on vacation, another one in a romantic evening or at parties. Additionally, if the playlist was generated for more than one user (family trip, party) the system will propose songs depending on the preferences of all these users. The main goal of our system is to recommend music to the user from the personal music collection or new music from system music collection, new releases and incoming concerts. Another goal of our system it will be to gather data from external sources based on crawling techniques and RSS Feeds to provide music related content like: new releases, incoming concerts, lyrics, similar artists. We’ll try to interlink some free available datasets on the web like listening habits from Last.fm, music database from MusicBrainz and tags from MusicStrands in order to obtain unique identifiers for songs, albums and artists.
|
60 |
Filtering of thin objects : applications to vascular image analysis / Filtrage d'objets fins : applications à l'analyse d'images vasculairesTankyevych, Olena 19 October 2010 (has links)
Le but de ce travail est de filtrer les objets fins et curvilinéaires dans les images numériques. Leur détection est en soit difficile du fait de leur finesse spatiale. De plus, le bruit, les artefacts de l'acquisition et les occlusions induites par d'autres objets introduisent des déconnexions. De ce fait, la reconnection des objets fins est également nécessaire. Dans ce but, une méthode hybride à base de dérivés secondes et de filtrage linéaire morphologique est proposée dans le cadre de la théorie espace-échelle. La théorie des filtres morphologiques spatialement variants et des algorithmes sont présentés. Du point de vue applicatif, notre travail est motivé par le diagnostic, la planification du traitement et le suivi des maladies vasculaires. La première application étudie les malformations artero-veineuses (MAV) dans le cerveau. L'analyse de telles données est rendue difficile par la petite taille, la complexité des vaisseaux couplés à diverses sources de bruit et à leur topologie, sans compter les artefacts d'acquisition et l'hétérogénéité du signal sanguin. Ainsi, nous nous sommes intéressés à l'amélioration et la segmentation des images angiographiques cérébrales dans le but d'aider à l'étude des MAVs cérébrales. La seconde application concerne le traitement des images en rayons X à faible dose utilisées en radiologie interventionelle dans le cas de l'insertion de guides dans les vaisseaux sanguins des patients. De telles procédures sont utilisées dans les traitements des anévrismes, des obstructions de tumeurs et d'autres procédures similaires. Dû au faible ratio signal à bruit, la détection des guides est indispensable pour leurs visualisations et leurs reconstructions. Dans ce travail, nous comparons la performance des algorithmes de filtrage d'objets linéiques. Le but étant de sélectionner les méthodes de détection les plus prometteuses dans le cadre de cette application médicale. La seconde application concerne le traitement des images X-ray à faible dose utilisées en radiologie interventionelle dans le cas d'insertion de guides dans les vaisseaux de patients. De telles procédures sont utilisées dans les traitements des anévrysmes, obstructions des tumeurs et d'autres procédures. Dû au faible ratio du signal-bruit, la détection des guides est indispensable pour leurs visualisations et leurs reconstructions. Dans ce travail, nous comparons la performance des algorithmes de filtrage d'objets linéaires. Le but est de sélectionner les méthodes de détection les plus prometteuses dans le cadre de cette application médicale / The motivation of this work is filtering of elongated curvilinear objects in digital images. Their narrowness presents difficulties for their detection. In addition, they are prone to disconnections due to noise, image acquisition artefacts and occlusions by other objects. This work is focused on thin objects detection and linkage. For these purposes, a hybrid second-order derivative-based and morphological linear filtering method is proposed within the framework of scale-space theory. The theory of spatially-variant morphological filters is discussed and efficient algorithms are presented. From the application point of view, our work is motivated by the diagnosis, treatment planning and follow-up of vascular diseases. The first application is aimed at the assessment of arteriovenous malformations (AVM) of cerebral vasculature. The small size and the complexity of the vascular structures, coupled to noise, image acquisition artefacts, and blood signal heterogeneity make the analysis of such data a challenging task. This work is focused on cerebral angiographic image enhancement, segmentation and vascular network analysis with the final purpose to further assist the study of cerebral AVM. The second medical application concerns the processing of low dose X-ray images used in interventional radiology therapies observing insertion of guide-wires in the vascular system of patients. Such procedures are used in aneurysm treatment, tumour embolization and other clinical procedures. Due to low signal-to-noise ratio of such data, guide-wire detection is needed for their visualization and reconstruction. Here, we compare the performance of several line detection algorithms. The purpose of this work is to select a few of the most promising line detection methods for this medical application
|
Page generated in 0.0643 seconds