• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 41
  • Tagged with
  • 257
  • 138
  • 113
  • 112
  • 110
  • 71
  • 53
  • 53
  • 44
  • 37
  • 36
  • 29
  • 28
  • 27
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Restvärmetillförsel i Ludvikas Fjärrvärmesystem : Påverkan på befintlig värmeproduktion vid olika inkopplingsscenarier av 60°C restvärme

Karlsson, Kristofer January 2019 (has links)
Energy company Vattenfall AB has set an ambitious goal in trying to transform their business into a climate neutral and more resource effective company - all within thetime frame of one generation. Through the business concept “SamEnergi” within the heat sector, Vattenfall looks for district heating customers who are willing to sell heat at a price corresponding to Vattenfall’s own production cost. This report examines the change in ordinary heat production in the partially Vattenfall-owned district heating system in the city of Ludvika, Sweden, arising from the delivery of waste heat from a data center to the system. The data center delivers 1 MW heat at 60 degrees Celsius which is lower than the desired temperature in the district heating grid. The change in ordinary heat production is evaluated in four different scenarios where each scenario represents a way to connect the heat source to the district heating grid, so that the delivery temperature to the costumer is not affected. In two of the scenarios, the data center is placed on site of the main heat production units. For all four scenarios, the ability to deliver heat during normal annual fluctuations in flow and temperature in the district heating grid are assessed. Also, in one scenario the effecton a flue gas condenser is considered. The heat production for a normal year is then modelled and simulated using an optimization software called BoFiT, with and without the excess heat. The results show that the 1 MW excess heat is worth between 0,9 and 1,8 million SEK depending on how the heat is delivered. The lowest value of the excess heat source comes from the scenario requiring a heat pump. The other three scenarios yield similar savings on the ordinary production. The best scenario is when the waste heat is delivered together with the main production unit.
22

Energianalys av kvarteret Borgen 10 : En utredning av ökande energianvändning med förslag på åtgärder för energieffektivisering

Samuelsson, Therése, Olsson, Robert January 2016 (has links)
No description available.
23

Risk och sårbarhetsanalys av fjärrvärmenätet i Lund

Andersson, Robin January 2014 (has links)
Fjärrvärmenätet i Lunds stad började byggas 1963 och består idag av 238 km parvisa fjärrvärmerör. Den teoretiska livslängden för fjärrvärmerör är uppskattad till mellan 50-100 år varför det nu börjar bli dags att reinvestera vissa delar. En tydlig indikering om var på fjärrvärmenätet man ska lägga ekonomiska medel för reinvestering eller underhåll är skadestatistik från olika ledningstyper och fabrikat. Kartläggning av fjärrvärmenätets kompensatorer har genomförts och en riskmatris är framtagen baserad på deras geografiska placering och dimension. Resultatet är tänkt att finnas som stöd inför kommande budget på Kraftringen om vilka ledningssträckor som är i störst behov av en reinvestering. Grunden i rapporten är hämtad från en forskningsrapport från 1999 med avseende på redan framtagna riskmatriser för ledningstyp och jordart. Riskmatrisen för ledningstyp är modifierad något utefter Lunds lokala skadestatistik för en bättre tillämpning. Skadestatistiken för Lund jämförs med den nationella skadestatistik som Svensk Fjärrvärme samlade in under 1995-2003. Ledningstyper och fabrikat jämförs där den helgjutna betonglådeledningen i Lund uppvisar en betydligt högre skadefrekvens än nationellt. En annan rörledningstyp som sticker med en högre skadefrekvens är direktskummade fasta plastmantelrör av märket Pan-Isovit vilket troligtvis beror på den tidiga utbyggnaden i Lund. Fjärrvärmenätet i Lund var först i Sverige med direktskummade fasta plastmantelrör redan år 1966 av märket Pan-Isovit vilket kan ha föranlett skador på grund av bristande erfarenhet och barnsjukdomar. Varje ledningssträcka i den lokala databasen har tilldelats en risk som baseras på riskmatriserna för ledningstyp, jordart samt skadestatistik för berörd typ och konsekvensen av ett avbrott beroende på ledningsdimension. Det ger en indikering på risken för avbrott samt konsekvensen av ett avbrott för olika ledningssträckor, dock utan hänsyn till en eventuell ringmatning.   För att en reinvestering ska vara motiverad ska utbytet vara lönsamt. Parametrar som påverkar lönsamheten är värmeförluster, skadefrekvens samt goodwill relativt kunderna. Dessa parametrar är beräknade för samtliga ledningssträckor med befintlig ledning och för reinvestering. Vid värdet ett på goodwill, d.v.s. enbart utebliven försäljning uppnås ingen lönsamhet i en reinvestering för någon ledningssträcka. Det är först vid en goodwill-faktor 8 som lönsamhet uppnås. Ett vanligt värde för goodwill hamnar mellan en faktor 50-100 vilket då gör det lönsamt idag att reinvestera 5,7–8,5 % av fjärrvärmenätet.
24

Utredning av potentiell installation av bergvärme / Investigation of potential installation of geothermal heating

Grenbäck, Albin January 2019 (has links)
A housing society in the municipality of Umeå have under a period found interest in lowering their heating costs for the property. The property consists of 4 buildings in total with 3 of them being a multi-family residential containing 36 apartments in total and one of the buildings is an office building. The housing society was interested in knowing what a geothermal heating system would cost and how long the payback time would be. With the help of the old drawings the property was drawn in Revit and used to calculate the heat loss from different layers of the climate barrier and heat loss from the ventilation system. The internal heat generation was calculated by using standard values. When the total heat losses were calculated, and the internal heat generation was known the yearly energy needs were calculated by using a duration diagram. Then the yearly energy needs were compared to the actual yearly energy consumption of district heat and the software Nibe Dim was used to simulate three different alternatives. The investment that showed best result showed that the total cost for the investment would be 1 800 000 SEK and the annual saving 75 000 SEK/year. The payback time for the investment would however be as high as 24 years. / En bostadsrättsförening i Umeå kommun har under längre tid varit intresserade av att sänka kostnaderna för uppvärmningen av fastigheten. Fastigheten består totalt av 4 byggnader där 3 är flerbostadshus med totalt 36 lägenheter och en kontorsbyggnad. Bostadsrättsföreningen var intresserade av att veta vad en installation av bergvärme skulle kosta och hur lång payback-tid det resulterar i. Genom att rita upp fastigheten i Revit med hjälp av ritningar kunde klimatskärmens skikt och drift av ventilation sammanställas för att beräkna energiförlusterna. Den interna värmegenereringen beräknades med hjälp av schablonvärden. Med de totala värmeförlusterna och den interna värmegenereringen kunde det årliga energibehovet beräknas med hjälp av varaktighetsdiagram. När det årliga energibehovet var känt jämfördes det med den årliga fjärrvärmeanvändningen och programmet Nibe Dim användes för att välja ut tre olika alternativ. Billigaste installationen av bergvärme visar att av de tre alternativ som presenteras skulle det innebära en investeringskostnad på 1 800 000 kr med en besparing på 75 000 kr/år. Återbetalningstiden för investeringen blir emellertid så hög som 24 år.
25

Termoelektrisk lagring i system med fjärrvärmeproduktion

Blomqvist, Emelie January 2014 (has links)
With increased deployment ofintermittent renewable energy, such aswind and solar power, energy storagebecomes necessary to help reduceproduction peaks. Thermoelectric EnergyStorage is a method still in researchphase, which stores electricity in hotwater at a temperature of 120 ° C. Thisthesis aims to examine whether theThermoelectric Energy Storage would bepossible to integrate into existingpower generation such as a combined heatand power plant, and how the technologypotentially could function in theelectricity market. ThermoelectricEnergy Storage consists of a chargingprocess and a discharging process, bothoperating by the working fluid CO2. Toincrease the efficiency of theThermoelectric Energy Storage, wasteheat from the district heating networkis integrated. A model of the Thermoelectric EnergyStorage has been developed and it wascalculated by thermodynamic propertiesof the working fluid, CO2, in thevarious process steps. Results of themodel consist of a coefficient ofperformance (COP) of the chargingprocess and an efficiency of thedischarge process. A total roundtripefficiency of the system was alsocalculated. Two cooling alternativeswere examined in the model, an opencycle and a closed cycle. The resultsshow that the most effective systemoption includes waste heat in both thecharging and discharging process. Onaverage, the mentioned system optionresulted in an overall efficiency ofabout 98 per cent for an open cycle and83 per cent for a closed cycle.
26

Analys av storskalig vätgasanläggning för effektbalansering och regional transportsektor : Simulering av ekonomi, storlek och miljö / Analysis of large-scale hydrogen plant for power balancing and regional transport sector : Simulation of economics, size and environment

Runberg, Erik January 2021 (has links)
För att minska de globala utsläppen och klara klimatmålen i Parisavtalet måste fossil elproduktion fasas ut och ersättas av förnybar energi. Förnybara energikällor, exempelvis vindkraft, har ökat kraftigt de senaste åren. Detta introducerar nya utmaningar då elproduktionen inte alltid stämmer överens med elbehovet eftersom förnybara energikällor inte kan kontrolleras på samma sätt som de fossila; vindkraftverken kan inte producera el utan vind. Detta får konsekvensen att elnätets stabilitet och elens kvalité blir sämre, samt att elpriset varierar kraftigare. Problemet kan lösas genom att köpa överskottsel och lagra energin när elbehovet är lågt, för att sedan sälja den när elbehovet är högt. På så sätt jämnas effektvariationerna ut. Att lagra energi i form av vätgas, har pekats ut som den mest lovande metoden för att genomföra detta i tillräckligt stor skala. Vätgas produceras i en elektrolysör av el och vatten när elbehovet, och därmed elpriset (spotpriset) är lågt. Vätgasen lagras sedan i naturliga och konstgjorda bergrum för de största anläggningarna, eller ovan jord i tankar och tuber för mindre anläggningar. När elbehovet och därmed elpriset i stället är högt omvandlas vätgasen till el i en bränslecell. I elektrolysören och bränslecellen produceras även spillvärme som kan utnyttjas exempelvis i ett fjärrvärmenät. Konstruktionen av vätgasanläggningar gör även en omvandling till vätgasdrift inom transportsektorn möjlig, vilket skulle medföra reducerade utsläpp av växthusgaser. Syftet är att visa vätgasens potential att bli en framtida energibärare och buffert i det svenska elnätet genom att studera olika design- och driftparametrar för en tänkt vätgasanläggning integrerad med värmekraftverket Heden, som drivs av Karlstads Energi AB. Den årliga fordonsvätgaskonsumtionen för Värmlandstrafik AB beräknas med hjälp av företagets totala körsträcka under 2020 ihop med kilometerförbrukningen vätgas för vätgasvarianterna av deras fordonstyper. Karlstads Energi AB:s årliga förbrukning beräknas genom att omvandla företagets mängd förbrukat bränsle under 2020 till den mängd vätgas som kan utföra samma arbete. De olika bränsletypernas energitäthet och de olika fordonens verkningsgrader används. För att simulera anläggningens årsintäkt konstrueras en modell i SIMULINK 9.2. Modellen har entimmes tidssteg vilket leder till 8760 tidssteg totalt. Spotpris tas in på timbasis och bestämmer om vätgas ska produceras i elektrolysören, konsumeras i bränslecellen för att producera el eller lagras tills senare. Spillvärmen från elektrolysören och bränslecellen säljs som fjärrvärme. Den beräknade årliga fordonsvätgaskonsumtionen delas upp till en daglig mängd med två fasta årliga nivåer. Värmlandstrafik AB använder en sommartidtabell vilket medför att förbrukningen sjunker under denna period. Anläggningens totala årsintäkt beräknas som såld el, fordonsvätgas och värme, minus köpt el och relaterade elhandelavgifter. Genom att bland annat variera storleken av anläggningens lagerstorlek samt elektrolysörens och bränslecellens märkeffekt byggs olika scenarion upp. Det reducerade utsläppet koldioxidekvivalenter beräknas genom att multiplicera vardera av de nuvarande bränslenas årsförbrukningar med respektive bränsles emissionsfaktor. Vätgasproduktionens utsläpp räknas som livscykelutsläppen för den konsumerade elen. 1360 ton vätgas/år är den årliga fordonsvätgaskonsumtionen som krävs för att tillgodose Värmlandstrafik AB:s och Karlstads Energi AB:s transporter. Den simulerade anläggningens årsintäkt är 51 – 65 MSEK/år beroende av anläggningens dimensioner och vilket spotpris som används. Bränslecellen beräknas ej vara lönsam i syftet att balansera elnätet. Ersättandet av de nuvarande bränslena med vätgas reducerar utsläppen med 4770 ton CO2eq/år räknat med svensk elmix, 1630 ton CO2eq/år räknat med nordisk elmix och 5870 ton CO2eq/år räknat med el köpt med ursprungsgaranti. Den framräknade fordonsvätgaskonsumtionen är stor nog för att installera en vätgasproduktion vid Heden. De miljömässiga fördelarna är också betydande. Med dagens verkningsgrader och avgifter krävs ett ostabilare spotpris för en bränslecell att bli lönsam. De ekonomiska simuleringarna är inte heltäckande nog för att möjliggöra några direkta beslut, men kan användas som grund. Fokus för fortsatta studier bör därför ligga i att inkludera investeringskostnader och avskrivningstider samt räkna på systemtjänsten som en bränslecell utför.
27

Kan restvärme från rörtillverkning tas tillvara till intern fjärrvärme? : En fallstudie för Rörverk 2012 på Sandvik ABs nordvästra industriområde i Sandviken i samarbete med ÅF.

Nordin, Malin January 2016 (has links)
Den globala uppvärmningen ökar i takt med utsläppen från det växande konsumtionssamhället och världen står inför en stor utmaning i att bromsa den negativa utvecklingen. Stålindustrin i Sverige står för industrins näst största energianvändning, efter massaindustrin, och stor del energi går förlorad som restvärme. Restvärme kan definieras som ”värme bunden till vätskor och gaser som släpps ut från en process till omgivningen och som inte utnyttjas”. Ett sätt att ta tillvara restvärme är genom fjärrvärme. En önskad temperatur för att restvärme direkt ska kunna växlas till ett fjärrvärmenät är enligt tidigare studier 90 oC. Lägre temperaturer kan uppgraderas med värmepump för att användas till ändamålet. Examensarbetets syfte var att identifiera potentialen för att använda restvärme från Rörverk 2012 till intern fjärrvärme inom Rörverk 68, Rörverk 98, Rörverk 2012 och transsportavdelningens lokaler. Metoden för arbetet har varit en litteraturstudie och en fallstudie baserad på intervjuer och flödes- och temperaturmätningar i Rörverk 2012. Några tekniska lösningar har inte undersökts närmare. För fallstudien har kartlagts vilka energiflöden som går in i byggnaden och vilka som går ut, även storleken på dessa har bestämts. Både fastighetsrelaterade och processrelaterade flöden har identifierats. Värt att nämna är att lokalen har övertemperaturer under stora delar av året och att den rymmer en ugn som håller 80 oC i ytan dygnet runt, vilket ger ett stort värmetillskott. De höga temperaturerna i lokalen ökar drivkraften för värmetransport genom väggar, vilket kallas transmissionsförluster och okontrollerad ventilation via otätheter och vädring. Undersökningen visar att inte några av energiflödena ut ur byggnaden anses tillräckliga för återvinna värme ur. Om energi däremot skulle tas tillvara ur den varma inomhusluften skulle problemet med övertemperatur i lokalen lösas och drivkrafterna för transmission och okontrollerad ventilation skulle minska, vilket även ger mindre energiförluster. Det finns potential att ta tillvara ca 1,1 GWh ur inomhusluften/år. Detta skulle kunna göras genom att temperaturen uppgraderas med värmepump och förs över till värmesystemet, som binds samman med de andra byggnaderna. Detta skulle ge ökad komfort i lokalen, samt minskad energianvändning för uppvärmning i byggnaderna omkring. Fortsatt undersökning för teknisk lösning behöver göras. / The global warming increases together with the release from the growing consumer society andthe world have a great challenge to stop this negative development. The steel industries have the second highest energy use, the highest user is the mass industries, and a large part of the energy is lost as waste heat. Waste heat can be defined as “heat bound to fluids and gases that is released from a process to the environment and can ́t be used.One way to use the waste heat is through district heating. The temperature to wish for if you want to use it for district heating is according to studies 90oC. Lower temperatures can be upgraded by a heat pump for usage in this purpose.The purpose of this thesis was to identify the possibilities to use waste heat from Rörverk 2012 to local district heating at Rörverk 68, Rörverk 98 and Rörverk 2012 and the transport department. The method for the thesis has been to study literature and a case study based on interviews and measurements at Rörverk 2012. Any technical solutions hasn ́t been looked at.For the case study it has been mapped which energy flows who enters the building and which who leaves, the sizes of them has also been mapped. Both real estate and process related flows have been identified. Worth a mention is that the building has an over temperature during large parts of the year and it contains an oven which has a temperature of 80C at the surface, which gives a great energy addition. The high temperatures in the building increases the driving force for transporting heat through walls, which is called transmissions losses and uncontrolled ventilation through leaks and aeration.This research shows that neither of the energy flows out of the building is seen as big enough to recycle heat from. If energy should be taken care of through the hot indoor air it would solve the problem with over temperature inthe building and the driving forces for transmission and uncontrolled ventilation would decrease, which would lead to smaller energy losses. It would also save energy. It is possible to take care of approximately 1.1 GWh through the indoor air each year. This could be done through an upgrade of the temperature by a heat pump and is transmitted to the heating system, which is connected to the other buildings. This would give a better comfort in the building, and decreased energy usage for the nearby buildings. Further investigations for technical solutions are needed.
28

Effektivisering av rökgaskondensorn : En undersökning av att kyla inkommande fjärrvärmeretur

Topic, Sinisa January 2016 (has links)
This project has been executed as an assignment by Sundsvall Energi AB with the purpose of increasing the efficiency of the flue gas condenser by cooling the incoming district heating return before the flue gas condensing exchanger. The flue gas condenser is part of the heat production. The first production unit is the waste boiler where the steam can be distributed between production of electricity and heat production, depending on how large the costumers needs of electricity and heat are. When the customers’ needs are less than Korstaverkets maximum production, an addition of heat from the flue gas condenser means that a larger portion of the steam can go to the turbine and increase the production of electricity. When the customer’s needs are larger than Korstaverkets maximum capacity, a contribution from the flue gas condenser means that Korstaverket can purchase less heat from SCA (Ostrand and Ortviken). The benefit of cooling the district heating return is that more heat and electricity can be produced. In the early stages of the project, literature and the Internet were used to get a basic understanding of the assignment. The supervisor and the staff at Korsta have given drawings and data of the power plant process, and also given advice regarding the process. Product data sheets from suppliers have been used for doing calculations and for getting information about the construction. Scientific articles and literature were used to get facts and formulas. The study has shown that the additional cooling of the district heating return has contributed to an increased efficiency of the flue gas condenser, from 0.9 % with an average flow of the deionized water to 17.2 % with a maximum flow of the deionized water.  The exam work has shown how complicated an energy system can be. The process can be more complicated then what the drawings show, because a profitable solution in one part of the process can lead to deterioration in another part of the process. The calculations show that the major factor that’s influencing the cooling is the deionized waters flow into the new heat exchanger. The repayment period can get short. High flows generate a profit after only a couple of months, while low flows of 1 liter/second take up to 3.5 years with KE Therms brazed heat exchangers and 2.5 years with Tranters gasketed heat exchangers.
29

Simulering av långtidsvärmelager för drift i kraftvärmesystem

NIlsson, Stefan, Andersson, Johan January 2006 (has links)
<p>Syftet med den här rapporten är att göra en undersökning av möjligheterna för användning av långtidsvärmelager för drift i kraftvärmesystem. Projektet han initierats av adj. professor Heimo Zinko, IKP Energisystem i form av bidrag till ett projekt inom IEA, Annex VIII. Projektet utförs i samarbete med Svensk Fjärrvärme, Tekniska Verken AB i Linköping, ENA Energi AB i Enköping och ZW Energiteknik i Nyköping. Projektet har genomförts av två examensarbetare vid Linköpings Tekniska Högskola under höstterminen 2006.</p><p>Projektet har delats in i två studier där ENA Energi AB i Enköping och Tekniska Verken AB i Linköping har varit de två studieobjekttiven. Modeller för värme- och elproduktion har konstruerats i Microsoft Excell och sedan har manuella simuleringar genomförts. Dels för grundfallen och för investeringsalternativ med olika lagerstorlekar. Det har även gjorts en simulering på Tekniska Verken AB: s data för värmebehov där grundproduktionen skett med en gaskombianläggning.</p><p>Resultaten visar att en investering av ett värmelager är lönsamt då värmeproduktionen för topplaster sker med olja som den gör för Tekniska Verken AB. Om däremot värmeproduktionen för topplaster sker med biobränslen eller andra billiga bränslen är det inte längre lika lönsamt att göra en investering av ett värmelager. Projektet visar även att en investering av ett lager kan minska utsläppen av koldioxid eftersom värmeproduktionen från olja kan minimeras.</p><p>En investering av ett värmelager med storleken 200 000 m3 för Tekniska Verken AB är den mest lönsamma. Den ger ett investeringsutrymme på 11,1 miljoner SEK per år samtidigt som utsläppen av koldioxid minskar med 8 300 ton. För ENA Energi AB är endast en investering av ett lager med storlek à 100 000 m3 lönsam. Den ger ett investeringsutrymme på 3,2 miljoner SEK per år. För det tredje fallet med gaskombianläggningen visade det sig att alla investeringar skulle vara lönsamma.</p>
30

Fjärrvärmesystem

Holmström, Susanne January 2008 (has links)
<p>This is a report written for an examination project C-level, on the subject of energy. The examination project is a product of the FVB Sweden AB (district heating bureau). It started with a meeting with Stefan Jonsson FVB Sweden AB, were he explained the content of the project, and from this a presentation of the problem was made. The problem that needed to be solved was how they could control the valves in the system to provide heating to everyone in the system. The valves are often oversized so the pump in the heating plant would have to be enormous to be able to provide enough flow to be sufficient, if everyone in the system had there valves fully opened.</p><p> </p><p>I came up with two solutions to the problem, one was a wireless network that could keep track of the valves and the other solution was an extra sensor that was placed on the radiator. The purpose for that was to open the valve if the temperature dropped more than one degree inside. With the help of a program called IDA it was calculated that, if the temperature drop five degrees, they would have sixteen hours at the heating power plant to open the flow before the sensor open the valves.</p><p> </p><p>After careful consideration I came up with the conclusion that the wireless network must be the best solution. Mostly because you can monitor all the clients in the system from the heating power plant and that will make it easier to discover faults and temperature differences.</p><p>Wireless networks is already a well tested solution in form of wireless controlled electricity meters so it shouldn’t be to much of a problem connecting these sensors to it either.</p>

Page generated in 0.0645 seconds