Spelling suggestions: "subject:"flagella"" "subject:"flagellar""
21 |
Investigations on the Reptilian Spectaclevan Doorn, Kevin January 2012 (has links)
The eyes of snakes and most geckos, as well as a number of other disparate squamate taxa, are shielded beneath a layer of transparent integument referred to as the “reptilian spectacle.” Derived from the embryonic fusion of palpebral tissues, the spectacle contains a number of specializations of the skin to benefit vision while still allowing it to function as the primary barrier to the environment. For example, in nearly all species that possess it, it is markedly thinned compared to the surrounding integument and its keratinized scale is optically transparent. While the spectacle may thus seem ideally adapted to vision in allowing the eyes to be always unoccluded, it does have a few drawbacks. One such drawback is its vascularity, the implications of which are still not fully understood, but are explored herein. As no recent synthesis exists of the body of knowledge on reptilian spectacles, the first chapter of this thesis consists of a review of spectacle anatomy, physiology, adaptive significance and evolution to help put into context the following chapters that present original research. The second chapter describes the dynamics of blood flow through the spectacle vasculature of colubrid snakes, demonstrating three main points: (1) that the spectacle vasculature exhibits cycles of regular dilation and constriction, (2) that the visual perception of a threat induces vasoconstriction of its vessels, and (3) that spectacle vessels remain dilated throughout the renewal phase. The implications of these points are discussed. The third chapter describes the spectral transmittance of the shed spectacle scale, the only keratinized structure in the animal kingdom to contribute to the dioptric apparatus of the eye, as well as its thickness. Spectacle scale transmittance and thickness was found to differ dramatically between snakes and geckos and found in snakes to vary between families. The adaptive significance of the observed variation is discussed. The fourth chapter describes biochemical analyses of the shed spectacle scales of snakes and geckos and compares their composition to other scales in the integument. Spectacle scales were found to differ significantly from other scales in their keratin composition, and gecko spectacle scales in particular were found to lack ß keratin, that hard corneous protein thought to be common to all reptile scales. The concluding chapter will discuss where this research has brought the state of our knowledge on the spectacle and offers thoughts on potentially useful avenues for further research.
|
22 |
Biophysics of helices : devices, bacteria and virusesKatsamba, Panayiota January 2018 (has links)
A prevalent morphology in the microscopic world of artificial microswimmers, bacteria and viruses is that of a helix. The intriguingly different physics at play at the small scale level make it necessary for bacteria to employ swimming strategies different from our everyday experience, such as the rotation of a helical filament. Bio-inspired microswimmers that mimic bacterial locomotion achieve propulsion at the microscale level using magnetically actuated, rotating helical filaments. A promising application of these artificial microswimmers is in non-invasive medicine, for drug delivery to tumours or microsurgery. Two crucial features need to be addressed in the design of microswimmers. First, the ability to selectively control large ensembles and second, the adaptivity to move through complex conduit geometries, such as the constrictions and curves of the tortuous tumour microvasculature. In this dissertation, a mechanics-based selective control mechanism for magnetic microswimmers is proposed, and a model and simulation of an elastic helix passing through a constricted microchannel are developed. Thereafter, a theoretical framework is developed for the propulsion by stiff elastic filaments in viscous fluids. In order to address this fluid-structure problem, a pertubative, asymptotic, elastohydrodynamic approach is used to characterise the deformation that arises from and in turn affects the motion. This framework is applied to the helical filaments of bacteria and magnetically actuated microswimmers. The dissertation then turns to the sub-bacterial scale of bacteriophage viruses, 'phages' for short, that infect bacteria by ejecting their genetic material and replicating inside their host. The valuable insight that phages can offer in our fight against pathogenic bacteria and the possibility of phage therapy as an alternative to antibiotics, are of paramount importance to tackle antibiotics resistance. In contrast to typical phages, flagellotropic phages first attach to bacterial flagella, and have the striking ability to reach the cell body for infection, despite their lack of independent motion. The last part of the dissertation develops the first theoretical model for the nut-and-bolt mechanism (proposed by Berg and Anderson in 1973). A nut being rotated will move along a bolt. Similarly, a phage wraps itself around a flagellum possessing helical grooves, and exploits the rotation of the flagellum in order to passively travel along and towards the cell body, according to this mechanism. The predictions from the model agree with experimental observations with respect to directionality, speed and the requirements for succesful translocation.
|
23 |
Characterization of the flagellar beat of the single cell green alga Chlamydomonas ReinhardtiiGeyer, Veikko 07 January 2014 (has links) (PDF)
Subject of study: Cilia and flagella are slender appendages of eukaryotic cells. They are actively bending structures and display regular bending waves. These active flagellar bending waves drive fluid flows on cell surfaces like in the case of the ciliated trachea or propels single cell micro-swimmers like sperm or alga.
Objective: The axoneme is the evolutionarily conserved mechanical apparatus within cilia and flagella. It is comprised of a cylindrical arrangement of microtubule doublets, which are the elastic elements and dyneins, which are the force generating elements in the axonemal structure. Dyneins collectively bend the axoneme and must be specifically regulated to generate symmetric and highly asymmetric waveforms.
In this thesis, I address the question of the molecular origin of the asymmetric waveform and test different theoretical descriptions for motor regulation.
Approach: I introduce the isolated and reactivated Chlamydomonas axoneme as an experimental model for the symmetric and asymmetric flagellar beat. This system allows to study the beat in a controlled and cell free environment. I use high-speed microscopy to record shapes with high spatial and temporal resolution. Through image analysis and shape parameterization I extract a minimal set of parameters that describe the flagellar waveform. Using Chlamydomonas, I make use of different structural and motor mutants to study their effect on the shape in different reactivation conditions. Although the isolated axoneme system has many advantages compared to the cell-bound flagellum, to my knowledge, it has not been characterized yet.
Results: I present a shape parameterization of the asymmetric beat using Fourier decomposition methods and find, that the asymmetric waveform can be understood as a sinusoidal beat around a circular arc. This reveals the similarities of the two different beat types: the symmetric and the asymmetric beat. I investigate the origin of the beat-asymmetry and find evidence for a specific dynein motor to be responsible for the asymmetry. I furthermore find experimental evidence for a strong sliding restriction at the basal end of the axoneme, which is important to establish a static bend. In collaboration with P. Sartori and F. Jülicher, I compare theoretical descriptions of different motor control mechanisms and find that a curvature controlled motor-regulation mechanism describes the experimental data best. We furthermore find, that in the dynamic case an additional sliding restriction at the base is unnecessary. By comparing the waveforms of intact cells and isolated reactivated axonemes, I reveal the effect of hydrodynamic loading, and the influence of boundary conditions on the shape of the beating flagella.
|
24 |
Characterization of the flagellar beat of the single cell green alga Chlamydomonas ReinhardtiiGeyer, Veikko 23 October 2013 (has links)
Subject of study: Cilia and flagella are slender appendages of eukaryotic cells. They are actively bending structures and display regular bending waves. These active flagellar bending waves drive fluid flows on cell surfaces like in the case of the ciliated trachea or propels single cell micro-swimmers like sperm or alga.
Objective: The axoneme is the evolutionarily conserved mechanical apparatus within cilia and flagella. It is comprised of a cylindrical arrangement of microtubule doublets, which are the elastic elements and dyneins, which are the force generating elements in the axonemal structure. Dyneins collectively bend the axoneme and must be specifically regulated to generate symmetric and highly asymmetric waveforms.
In this thesis, I address the question of the molecular origin of the asymmetric waveform and test different theoretical descriptions for motor regulation.
Approach: I introduce the isolated and reactivated Chlamydomonas axoneme as an experimental model for the symmetric and asymmetric flagellar beat. This system allows to study the beat in a controlled and cell free environment. I use high-speed microscopy to record shapes with high spatial and temporal resolution. Through image analysis and shape parameterization I extract a minimal set of parameters that describe the flagellar waveform. Using Chlamydomonas, I make use of different structural and motor mutants to study their effect on the shape in different reactivation conditions. Although the isolated axoneme system has many advantages compared to the cell-bound flagellum, to my knowledge, it has not been characterized yet.
Results: I present a shape parameterization of the asymmetric beat using Fourier decomposition methods and find, that the asymmetric waveform can be understood as a sinusoidal beat around a circular arc. This reveals the similarities of the two different beat types: the symmetric and the asymmetric beat. I investigate the origin of the beat-asymmetry and find evidence for a specific dynein motor to be responsible for the asymmetry. I furthermore find experimental evidence for a strong sliding restriction at the basal end of the axoneme, which is important to establish a static bend. In collaboration with P. Sartori and F. Jülicher, I compare theoretical descriptions of different motor control mechanisms and find that a curvature controlled motor-regulation mechanism describes the experimental data best. We furthermore find, that in the dynamic case an additional sliding restriction at the base is unnecessary. By comparing the waveforms of intact cells and isolated reactivated axonemes, I reveal the effect of hydrodynamic loading, and the influence of boundary conditions on the shape of the beating flagella.:Contents
1 Introduction. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Biology of Cilia and Flagella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 The dimensions of flagellated micro-swimmers . . . . . . . . . . . . . . . . . 4
1.1.2 The symmetric and the asymmetric beat . . . . . . . . .. . . . . . . . . . . . 5
1.1.3 Chlamydomonas reinhardtii as a flagella model . . . . . . . . . . 5
1.2 The axoneme is the internal structure in eukaryotic cilia and flagella . . 6
1.3 Structure and function of microtubules and dyneins . . . . . . . . . . . 9
1.3.1 Microtubules: The structural elements in the axoneme . . . . . . 9
1.3.2 Dyneins: The force generators that drive the axonemal beat . . . 10
1.3.3 The asymmetries in the axoneme and consequences for the beat 17
1.4 Axonemal waveform models and mechanisms: from sliding to bending to beating . . . . . . . . . . . . . . 20
1.5 Geometrical representation and parameterization of the axonemal beat . . . . . . . . . . . . . . . 23
2 Questions addressed in this thesis . . . . . . . . . . . . . . 27
3 Material and Methods . . . . . . . . . . . . . . 29
3.1 Chlamydomonas cells: Axoneme preparation and motility assays . . . . 29
3.1.1 Culturing of Chlamydomonas reinhardtii cells . . . . . . . . . . . 29
3.1.2 Isolation, demembranation and storage of axonemes . . . . . . . 33
3.1.3 Reactivation of axonemes in controlled conditions . . . . . . . . . 35
3.1.4 Axoneme gliding assay using kinesin 1 . . . . . . . . . . . . . . . 36
3.2 Imaging and image processing . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 High-speed imaging of the flagella and axonemes . . . . . . . . . 38
3.2.2 Precise tracking of isolated axonemes and the flagella of cells . . 42
3.2.3 High throughput frequency evaluation of isolated axonemes . . . 47
3.2.4 Beat frequency characterization of the reactivated WT axoneme . . . . . . . . . . . . . . 49
4 Results and Discussion . . . . . . . . . . . . . . 53
4.1 The beat of the axoneme propagates from base to tip . . . . . . . . . . . 53
4.1.1 TEM study reveals no sliding at the base of a bend axoneme . . 53
4.1.2 The direction of wave propagation is directly determined from the reactivation of polarity marked axonemes . . . . . . . . . . 57
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 The asymmetric beat is the superposition of a static semi-circular arc and a sinusoidal beat . . . . . . .. . . . . . . . . . . . . . . . . 61
4.2.1 The waveform is parameterized by Fourier decomposition in time . . . . . . . . . . . . . . 61
4.2.2 The 0th and 1st Fourier modes describe the axonemal waveform . . . . . . . . . . . . . . 65
4.2.3 General dependence of shape parameters on axoneme length and beat frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 The isolated axoneme is a good model for the intact flagellum . .. . . . . . . . . . . . . . 71
4.2.5 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 The circular motion is a consequence of the axonemal waveform . . . . . . . . . . . . . . . . . . . 79
4.3.1 Hydrodynamic relations for small amplitude waves explain the relation between swimming and shape of axonemes . . . . 79
4.3.2 The swimming path can be reconstructed using shape information and a hydrodynamic model . . . . . . . . . . . . . . . . 83
4.3.3 Motor mutations alter the direction of rotation of reactivated axonemes. . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.4 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 The molecular origin of the circular mean shape. . . . . . . . . . . . . . 89
4.4.1 Motor Mutations do not abolish the mean shape, a structural mutation does . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 The axoneme is straight in absence of ATP but bend at low ATP concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Viscous load decreases the mean curvature . . . . . . . . . . . . 99
4.4.4 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Curvature-dependent dynein activation accounts for the shape of the beat of the isolated axoneme . . . . . . . . . . . . . . . . 103
5 Conclusions and Outlook . . . . . . . . . . . . . . . . 109
5.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Abbreviations . . . . . . . . . . . . . . . . 111
List of figures . . . . . . . . . . . . . . . . 116
List of tables . . . . . . . . . . . . . . . . 118
Bibliography
|
25 |
Nonlinear dynamics and fluctuations in biological systems / Nichtlineare Dynamik und Fluktuationen in biologischen SystemenFriedrich, Benjamin M. 26 March 2018 (has links) (PDF)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations.
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization.
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn).
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems.
On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden). / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen.
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt.
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.
|
26 |
Nonlinear dynamics and fluctuations in biological systemsFriedrich, Benjamin M. 11 December 2017 (has links)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations.
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization.
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn).
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems.
On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10
1.1 Overview of the thesis 10
1.2 What is biological physics? 12
1.3 Nonlinear dynamics and control 14
1.3.1 Mechanisms of cell motility 16
1.3.2 Self-organized pattern formation in cells and tissues 28
1.4 Fluctuations and biological robustness 34
1.4.1 Sources of fluctuations in biological systems 34
1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36
1.4.3 Cellular navigation strategies reveal adaptation to noise 39
2 Selected publications: Cell motility and motility control 56
2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56
2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57
2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58
2.4 “Sperm navigation in 3D chemoattractant landscapes” 59
3 Selected publications: Self-organized pattern formation in cells and tissues 60
3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60
3.2 “Scaling and regeneration of self-organized patterns” 61
4 Contribution of the author in collaborative publications 62
5 Eidesstattliche Versicherung 64
6 Appendix: Reprints of publications 66 / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen.
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt.
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10
1.1 Overview of the thesis 10
1.2 What is biological physics? 12
1.3 Nonlinear dynamics and control 14
1.3.1 Mechanisms of cell motility 16
1.3.2 Self-organized pattern formation in cells and tissues 28
1.4 Fluctuations and biological robustness 34
1.4.1 Sources of fluctuations in biological systems 34
1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36
1.4.3 Cellular navigation strategies reveal adaptation to noise 39
2 Selected publications: Cell motility and motility control 56
2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56
2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57
2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58
2.4 “Sperm navigation in 3D chemoattractant landscapes” 59
3 Selected publications: Self-organized pattern formation in cells and tissues 60
3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60
3.2 “Scaling and regeneration of self-organized patterns” 61
4 Contribution of the author in collaborative publications 62
5 Eidesstattliche Versicherung 64
6 Appendix: Reprints of publications 66
|
Page generated in 0.0429 seconds