• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 10
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
12

Fabrication and Characterization of Polycrystalline Silicon Thin Film Transistor with Novel Buried-Oxide Structure

Huang, Kuo-Dong 04 July 2008 (has links)
This thesis is mainly proposed and discussed the characteristics of polycrystalline silicon thin film transistor putting forward and probing into four kinds of novel buried-oxide structures. Because of the shortcoming of the traditional polycrystalline silicon thin film transistor, like leakage current (On/Off state current), subthreshold swing, floating body effect (kink effect), self-heating effect, and short channel effect etc.. Thus, we propose and fabricate four kinds of novel structural polycrystalline silicon thin film transistors that are involved in the following, indicating to improve the critical issues of polycrystalline silicon thin film transistor mentioned above. 1. We propose and fabricate the multiple/dual trenched-body polycrystalline silicon thin film transistor. This proposed structure is demonstrated to obviously suppress the off-state leakage up to 70% reduction, comparing with the conventional device. Also, we survey the reliability of this proposed device included temperature and DC hot-carrier stress effects. We found that the trenched-body TFTs perform more rapid degradation than the conventional TFT does after the temperature and stress durations, but their electrical characteristics are still superior to the conventional counterparts. Importantly, we demonstrate that this proposed device have a dramatic potential to be a novel capacitorless 1T-DRAM, because of its large floating-body-charge storages. As the experiment, the large threshold voltage shift is examined apparently after a certain write and erase operations, leading to a manifest programming window. 2. We propose and fabricate the block-oxide polycrystalline silicon thin film transistor. This proposed structure can not only improve the leakage issue of conventional device seriously, but also avoid fluctuating threshold voltage attributed from the ultra-thin film effect. 3. We propose and fabricate the floating-body contact polycrystalline silicon thin film transistor. This structure is modified by the conventional contact window in order to effectively improve the kink effect, utilizing the bottom gate polycrystalline silicon thin film transistor. 4. Finally, we propose and simulate the non-continuous buried layer polycrystalline silicon thin film transistor. This structure built upon the field oxidation layer can effectively improve the self-heating effect and kink effect. Furthermore, this structure is simple to fabricate, practical, and completely compatible on CMOS technology.
13

Estudo do efeito de elevação atípica da transcondutância na região linear de polarização em dispositivos SOI nMOSFETS ultra-submicrométricos. / Study of gate induced floating body effect in the linear bias region in deep submicrometer nMOSFETs devices.

Agopian, Paula Ghedini Der 27 November 2008 (has links)
Este trabalho apresenta o estudo do efeito de elevação atípica da transcondutância na região linear de polarização devido ao efeito de corpo flutuante induzido pela porta (Gate Induced Floating Body Effect - GIFBE) de transistores da tecnologia SOI nMOSFET. Este estudo foi realizado com base em resultados experimentais e em simulações numéricas, as quais foram essenciais para o entendimento físico deste fenômeno. Além de contribuir com a explicação física deste fenômeno, este trabalho explora o efeito de corpo flutuante em diferentes estruturas (transistor de porta única, transistor de porta gêmea, transistor de múltiplas portas e transistores de canal tensionado), diferentes tecnologias e em função da temperatura (100K a 450K). A partir do estudo realizado em dispositivos SOI de porta única analisouse a influência das componentes da corrente de porta que tunelam através do óxido de porta do dispositivo, o potencial da região neutra do corpo do transistor, a taxa de recombinação de portadores, o impacto da redução da espessura do óxido de porta e também as dimensões físicas do transistor. Na análise feita da redução do comprimento de canal, verificou-se também que o GIFBE tende a ser menos significativo para dispositivos ultra-submicrométricos. Analisou-se também o efeito da elevação atípica da transcondutância para transistores SOI totalmente depletados, para os quais, este efeito ocorre apenas quando a segunda interface está acumulada, para as duas tecnologias estudadas (65nm e 130nm). A análise dos dispositivos de porta gêmea, que tradicionalmente são usados com a finalidade de minimizar o efeito de elevação abrupta de corrente de dreno, mostrou uma redução do GIFBE para este tipo de estrutura quando comparada à de porta única devido ao aumento da resistência série intrínseca à estrutura. O efeito de corpo flutuante também foi avaliado em função da temperatura de operação dos dispositivos. Para temperaturas variando de 100K a 450K, notou-se que o valor do limiar de GIFBE aumentou tanto para temperaturas acima de 300K quanto abaixo da mesma. Quando estes resultados são apresentados graficamente, observa-se que o comportamento do limiar de GIFBE com a temperatura resulta no formato de uma letra C, onde o valor mínimo está a 300K. Este comportamento se deve à competição entre o processo de recombinação e a degradação efetiva da mobilidade. Uma primeira análise do GIFBE em diferentes estruturas de transistores também foi realizada. Apesar dos transistores de canal tensionado apresentarem o efeito para valores menores de tensão de porta, este efeito se manifesta com menor intensidade nestes transistores, devido a alta degradação da mobilidade efetiva apresentada pelo mesmo. Entretanto, quando o foco são os transistores de múltiplas portas, os resultados obtidos demonstram que apesar destes dispositivos terem sido fabricados com dielétrico de porta de alta constante dielétrica, o GIFBE ainda ocorre. Esta ocorrência do GIFBE em FinFETs é fortemente dependente da largura do Fin, da dopagem da região de canal e conseqüentemente do acoplamento das portas laterais com a superior. / This work presents the study of the Gate Induced Floating Body Effect (GIFBE) that occurs in the SOI MOSFET technology. This study has been performed based on experimental results and on numerical simulations, which were an essential auxiliary tool to obtain a physical insight of this effect. Besides the contribution on the physical explanation of this phenomenon, in this work, the floating body effect was evaluated for different structures (single gate and twin-gate transistors), different technologies (130nm and 65nm SOI CMOS technology) and as a function of the temperature (100K to 450K). From the study of the single gate devices, it was evaluated the gate tunneling current influence on GIFBE, the body potential in the neutral region, the recombination rate, the front gate oxide thickness reduction impact, besides the physical dimensions of the transistor. In the performed analysis, taking into account the channel length reduction, it was verified that the GIFBE tends to be less important for ultra-submicron devices. The GIFBE only occurs for fully depleted devices when the second interface is accumulated. In this situation, the floating body effect influence on fully depleted devices was also studied for both technologies (65nm and 130nm). The twin-gate devices analysis, that traditionally are used in order to minimize the Kink effect, show a GIFBE reduction for this structure when it is compared to the single gate one. This enhance in the electrical characteristics is due to the series resistance increase that is intrinsic of this structures. When the temperature variation from 100K to 450K was analyzed, it was obtained the C shape behavior for the floating body effect due to a competition between the recombination process and the effective mobility degradation factor. A first evaluation of the GIFBE occurrence in new devices was also performed. When the focus is the strained silicon transistor, a occurrence of GIFBE was obtained for a lower gate voltage. Although, the GIFBE occurs earlier for strained transistor. This effect is less pronounced in this device because it presents strong effective mobility degradation. When the focus is FinFETs, the results show that although this device was fabricated with a high-k gate dielectric, the GIFBE still occurs and is strongly dependent on the device channel width.
14

Estudo do efeito de elevação atípica da transcondutância na região linear de polarização em dispositivos SOI nMOSFETS ultra-submicrométricos. / Study of gate induced floating body effect in the linear bias region in deep submicrometer nMOSFETs devices.

Paula Ghedini Der Agopian 27 November 2008 (has links)
Este trabalho apresenta o estudo do efeito de elevação atípica da transcondutância na região linear de polarização devido ao efeito de corpo flutuante induzido pela porta (Gate Induced Floating Body Effect - GIFBE) de transistores da tecnologia SOI nMOSFET. Este estudo foi realizado com base em resultados experimentais e em simulações numéricas, as quais foram essenciais para o entendimento físico deste fenômeno. Além de contribuir com a explicação física deste fenômeno, este trabalho explora o efeito de corpo flutuante em diferentes estruturas (transistor de porta única, transistor de porta gêmea, transistor de múltiplas portas e transistores de canal tensionado), diferentes tecnologias e em função da temperatura (100K a 450K). A partir do estudo realizado em dispositivos SOI de porta única analisouse a influência das componentes da corrente de porta que tunelam através do óxido de porta do dispositivo, o potencial da região neutra do corpo do transistor, a taxa de recombinação de portadores, o impacto da redução da espessura do óxido de porta e também as dimensões físicas do transistor. Na análise feita da redução do comprimento de canal, verificou-se também que o GIFBE tende a ser menos significativo para dispositivos ultra-submicrométricos. Analisou-se também o efeito da elevação atípica da transcondutância para transistores SOI totalmente depletados, para os quais, este efeito ocorre apenas quando a segunda interface está acumulada, para as duas tecnologias estudadas (65nm e 130nm). A análise dos dispositivos de porta gêmea, que tradicionalmente são usados com a finalidade de minimizar o efeito de elevação abrupta de corrente de dreno, mostrou uma redução do GIFBE para este tipo de estrutura quando comparada à de porta única devido ao aumento da resistência série intrínseca à estrutura. O efeito de corpo flutuante também foi avaliado em função da temperatura de operação dos dispositivos. Para temperaturas variando de 100K a 450K, notou-se que o valor do limiar de GIFBE aumentou tanto para temperaturas acima de 300K quanto abaixo da mesma. Quando estes resultados são apresentados graficamente, observa-se que o comportamento do limiar de GIFBE com a temperatura resulta no formato de uma letra C, onde o valor mínimo está a 300K. Este comportamento se deve à competição entre o processo de recombinação e a degradação efetiva da mobilidade. Uma primeira análise do GIFBE em diferentes estruturas de transistores também foi realizada. Apesar dos transistores de canal tensionado apresentarem o efeito para valores menores de tensão de porta, este efeito se manifesta com menor intensidade nestes transistores, devido a alta degradação da mobilidade efetiva apresentada pelo mesmo. Entretanto, quando o foco são os transistores de múltiplas portas, os resultados obtidos demonstram que apesar destes dispositivos terem sido fabricados com dielétrico de porta de alta constante dielétrica, o GIFBE ainda ocorre. Esta ocorrência do GIFBE em FinFETs é fortemente dependente da largura do Fin, da dopagem da região de canal e conseqüentemente do acoplamento das portas laterais com a superior. / This work presents the study of the Gate Induced Floating Body Effect (GIFBE) that occurs in the SOI MOSFET technology. This study has been performed based on experimental results and on numerical simulations, which were an essential auxiliary tool to obtain a physical insight of this effect. Besides the contribution on the physical explanation of this phenomenon, in this work, the floating body effect was evaluated for different structures (single gate and twin-gate transistors), different technologies (130nm and 65nm SOI CMOS technology) and as a function of the temperature (100K to 450K). From the study of the single gate devices, it was evaluated the gate tunneling current influence on GIFBE, the body potential in the neutral region, the recombination rate, the front gate oxide thickness reduction impact, besides the physical dimensions of the transistor. In the performed analysis, taking into account the channel length reduction, it was verified that the GIFBE tends to be less important for ultra-submicron devices. The GIFBE only occurs for fully depleted devices when the second interface is accumulated. In this situation, the floating body effect influence on fully depleted devices was also studied for both technologies (65nm and 130nm). The twin-gate devices analysis, that traditionally are used in order to minimize the Kink effect, show a GIFBE reduction for this structure when it is compared to the single gate one. This enhance in the electrical characteristics is due to the series resistance increase that is intrinsic of this structures. When the temperature variation from 100K to 450K was analyzed, it was obtained the C shape behavior for the floating body effect due to a competition between the recombination process and the effective mobility degradation factor. A first evaluation of the GIFBE occurrence in new devices was also performed. When the focus is the strained silicon transistor, a occurrence of GIFBE was obtained for a lower gate voltage. Although, the GIFBE occurs earlier for strained transistor. This effect is less pronounced in this device because it presents strong effective mobility degradation. When the focus is FinFETs, the results show that although this device was fabricated with a high-k gate dielectric, the GIFBE still occurs and is strongly dependent on the device channel width.
15

Descriptions of Floating Bodies in 2 Dimensions

Bertka, Christopher M. 01 July 2020 (has links)
No description available.
16

Estudo de transistores UTBOX SOI não auto-alinhados como célula de memória. / Study of the extensionless UTBOX SOI transistors as memory cell.

Nicoletti, Talitha 19 June 2013 (has links)
O objetivo principal deste trabalho é o estudo de transistores UTBOX SOI não auto-alinhados operando como célula de memória de apenas um transistor aproveitando-se do efeito de corpo flutuante (1T-FBRAM single Transistor Floating Body Random Access Memory). A caracterização elétrica dos dispositivos se deu a partir de medidas experimentais estáticas e dinâmicas e ainda, simulações numéricas bidimensionais foram implementadas para confirmar os resultados obtidos. Diferentes métodos de escrita e leitura do dado 1 que também são chamados de métodos de programação do dado 1 são encontrados na literatura, mas com intuito de se melhorar os parâmetros dinâmicos das memórias como o tempo de retenção e a margem de sensibilidade e ainda, permitir um maior escalamento dos dispositivos totalmente depletados, o método de programação utilizado neste trabalho será o BJT (Bipolar Junction Transistor). Uma das maiores preocupações para a aplicação de células 1T-DRAMs nas gerações tecnológicas futuras é o tempo de retenção que diminui juntamente com a redução do comprimento de canal do transistor. Com o intuito de solucionar este problema ou ao menos retardá-lo, é apresentando pela primeira vez um estudo sobre a dependência do tempo de retenção e da margem de sensibilidade em função do comprimento de canal, onde se observou que esses parâmetros dinâmicos podem ser otimizados através da polarização do substrato e mantidos constantes para comprimentos de canal maiores que 50 no caso dos dispositivos não auto-alinhados e 80 nos dispositivos de referência. Entretanto, observou-se também que existe um comprimento de canal mínimo que é dependente do tipo de junção (30 no caso dos dispositivos não auto-alinhados e 50 nos dispositivos de referência) de modo que para comprimentos de canal abaixo desses valores críticos não há mais espaço para otimização dos parâmetros, degradando assim o desempenho da célula de memória. O mecanismo de degradação dos parâmetros dinâmicos de memória foi identificado e atribuído à amplificação da corrente de GIDL (Gate Induced Drain Leakage) pelo transistor bipolar parasitário de base estreita durante a leitura e o tempo de repouso do dado 0. A presença desse efeito foi confirmada através de simulações numéricas bidimensionais dos transistores quando uma alta taxa de geração de portadores surgiu bem próxima das junções de fonte e dreno somente quando o modelo de tunelamento banda-a-banda (bbt.kane) foi considerado. Comparando o comportamento dos dispositivos não auto-alinhados com os dispositivos de referência tanto nos principais parâmetros elétricos (tensão de limiar, inclinação de sublimiar, ganho intrínseco de tensão) como em aplicações de memória (tempo de retenção, margem de sensibilidade, janela de leitura), constatou-se que a estrutura não auto-alinhada apresenta melhor desempenho, uma vez que alcança maior velocidade de chaveamento devido a menor inclinação de sublimiar; menor influência das linhas de campo elétrico nas cargas do canal, menor variação da tensão de limiar, até mesmo com a variação da temperatura. Além disso, constatou-se que os dispositivos não auto-alinhados são mais escaláveis do que os dispositivos de referência, pois são menos susceptíveis à corrente de GIDL, apresentando menor campo elétrico e taxa de geração próximos das junções de fonte e dreno que os dispositivos de referência, alcançando então um tempo de retenção de aproximadamente 6 e margem de sensibilidade de aproximadamente 71 A/m. Segundo as especificações da International Technology Roadmap for Semicondutor de 2011, o valor do tempo de retenção para as memórias DRAM convencionais existentes no mercado de semicondutores é de aproximadamente 64. Com o intuito de aumentar o tempo de retenção das 1T-DRAMs a valores próximos à 64 recomenda-se então o uso da tecnologia não auto-alinhada e também a substituição do silício por materiais com maior banda proibida (band-gap), como exemplo o arseneto de gálio e o silício-carbono, dificultando assim o tunelamento dos elétrons e, consequentemente, diminuindo o GIDL. / The main topic of this work is the study of extensionless UTBOX SOI transistors, also called underlapped devices, applied as a single transistor floating body RAM (1T-FBRAM single transistor floating body access memory). The electrical characterization of the devices was performed through static and dynamic experimental data and two dimensional simulations were implemented to confirm the obtained results. In the literature, different methods to write and read the data 1 can be found but in order to improve the dynamic parameters of the memories, as retention time and sense margin and still allows the scaling of fully depleted devices, the BJT (Bipolar Junction Transistor) method is used in this work. One of the biggest issues to meet the specifications for future generations of 1T-DRAM cells is the retention time that scales together with the channel length. In order to overcome this issue or at least slow it down, in this work, we present for the first time, a study about the retention time and sense margin dependence of the channel length where it was possible to observe that these dynamic parameters can be optimized through the back gate bias and kept constant for channel lengths higher than 50 nm for extensionless devices and 80 nm for standard ones. However, it was also observed that there is a minimal channel length which depends of the source/drain junctions, i.e. 30 nm for extensionless and 50 nm for standard devices in the sense that for shorter channel lengths than these ones, there is no room for optimization degrading the performance of the memory cell. The mechanism behind the dynamic parameters degradation was identified and attributed to the GIDL current amplification by the lateral bipolar transistor with narrow base. Simulations confirmed this effect where higher generation rates near the junctions were presented only when the band-toband- tunneling adjustment was considered (bbt.kane model). Comparing the performance of standard and extensionless devices in both digital and analog electrical parameters and also in memory applications, it was found that extensionless devices present better performance since they reach faster switching which means lower subthreshold slope; less influence of the electrical field in the channel charges; less variation of the threshold voltage even increasing the temperature. Furthermore, it was seen that the gate length can be further scaled using underlap junctions since these devices are less susceptible to the GIDL current, presenting less electric field and generation rate near the source/drain junctions and reach a retention time of around 4 ms and sense margin of 71A/m. According to the International Technology Roadmap for Semiconductor of 2011, the retention time for the existing DRAM is around 64 ms. In order to increase the retention time of the 1T-DRAMs to values close to 64 ms it is recommended the use of extensionless devices and also the substitution of silicon by materials with higher band gap, i.e., gallium arsenide and siliconcarbon, which makes difficult the electron tunneling therefore, decreasing the GIDL.
17

Estudo de transistores UTBOX SOI não auto-alinhados como célula de memória. / Study of the extensionless UTBOX SOI transistors as memory cell.

Talitha Nicoletti 19 June 2013 (has links)
O objetivo principal deste trabalho é o estudo de transistores UTBOX SOI não auto-alinhados operando como célula de memória de apenas um transistor aproveitando-se do efeito de corpo flutuante (1T-FBRAM single Transistor Floating Body Random Access Memory). A caracterização elétrica dos dispositivos se deu a partir de medidas experimentais estáticas e dinâmicas e ainda, simulações numéricas bidimensionais foram implementadas para confirmar os resultados obtidos. Diferentes métodos de escrita e leitura do dado 1 que também são chamados de métodos de programação do dado 1 são encontrados na literatura, mas com intuito de se melhorar os parâmetros dinâmicos das memórias como o tempo de retenção e a margem de sensibilidade e ainda, permitir um maior escalamento dos dispositivos totalmente depletados, o método de programação utilizado neste trabalho será o BJT (Bipolar Junction Transistor). Uma das maiores preocupações para a aplicação de células 1T-DRAMs nas gerações tecnológicas futuras é o tempo de retenção que diminui juntamente com a redução do comprimento de canal do transistor. Com o intuito de solucionar este problema ou ao menos retardá-lo, é apresentando pela primeira vez um estudo sobre a dependência do tempo de retenção e da margem de sensibilidade em função do comprimento de canal, onde se observou que esses parâmetros dinâmicos podem ser otimizados através da polarização do substrato e mantidos constantes para comprimentos de canal maiores que 50 no caso dos dispositivos não auto-alinhados e 80 nos dispositivos de referência. Entretanto, observou-se também que existe um comprimento de canal mínimo que é dependente do tipo de junção (30 no caso dos dispositivos não auto-alinhados e 50 nos dispositivos de referência) de modo que para comprimentos de canal abaixo desses valores críticos não há mais espaço para otimização dos parâmetros, degradando assim o desempenho da célula de memória. O mecanismo de degradação dos parâmetros dinâmicos de memória foi identificado e atribuído à amplificação da corrente de GIDL (Gate Induced Drain Leakage) pelo transistor bipolar parasitário de base estreita durante a leitura e o tempo de repouso do dado 0. A presença desse efeito foi confirmada através de simulações numéricas bidimensionais dos transistores quando uma alta taxa de geração de portadores surgiu bem próxima das junções de fonte e dreno somente quando o modelo de tunelamento banda-a-banda (bbt.kane) foi considerado. Comparando o comportamento dos dispositivos não auto-alinhados com os dispositivos de referência tanto nos principais parâmetros elétricos (tensão de limiar, inclinação de sublimiar, ganho intrínseco de tensão) como em aplicações de memória (tempo de retenção, margem de sensibilidade, janela de leitura), constatou-se que a estrutura não auto-alinhada apresenta melhor desempenho, uma vez que alcança maior velocidade de chaveamento devido a menor inclinação de sublimiar; menor influência das linhas de campo elétrico nas cargas do canal, menor variação da tensão de limiar, até mesmo com a variação da temperatura. Além disso, constatou-se que os dispositivos não auto-alinhados são mais escaláveis do que os dispositivos de referência, pois são menos susceptíveis à corrente de GIDL, apresentando menor campo elétrico e taxa de geração próximos das junções de fonte e dreno que os dispositivos de referência, alcançando então um tempo de retenção de aproximadamente 6 e margem de sensibilidade de aproximadamente 71 A/m. Segundo as especificações da International Technology Roadmap for Semicondutor de 2011, o valor do tempo de retenção para as memórias DRAM convencionais existentes no mercado de semicondutores é de aproximadamente 64. Com o intuito de aumentar o tempo de retenção das 1T-DRAMs a valores próximos à 64 recomenda-se então o uso da tecnologia não auto-alinhada e também a substituição do silício por materiais com maior banda proibida (band-gap), como exemplo o arseneto de gálio e o silício-carbono, dificultando assim o tunelamento dos elétrons e, consequentemente, diminuindo o GIDL. / The main topic of this work is the study of extensionless UTBOX SOI transistors, also called underlapped devices, applied as a single transistor floating body RAM (1T-FBRAM single transistor floating body access memory). The electrical characterization of the devices was performed through static and dynamic experimental data and two dimensional simulations were implemented to confirm the obtained results. In the literature, different methods to write and read the data 1 can be found but in order to improve the dynamic parameters of the memories, as retention time and sense margin and still allows the scaling of fully depleted devices, the BJT (Bipolar Junction Transistor) method is used in this work. One of the biggest issues to meet the specifications for future generations of 1T-DRAM cells is the retention time that scales together with the channel length. In order to overcome this issue or at least slow it down, in this work, we present for the first time, a study about the retention time and sense margin dependence of the channel length where it was possible to observe that these dynamic parameters can be optimized through the back gate bias and kept constant for channel lengths higher than 50 nm for extensionless devices and 80 nm for standard ones. However, it was also observed that there is a minimal channel length which depends of the source/drain junctions, i.e. 30 nm for extensionless and 50 nm for standard devices in the sense that for shorter channel lengths than these ones, there is no room for optimization degrading the performance of the memory cell. The mechanism behind the dynamic parameters degradation was identified and attributed to the GIDL current amplification by the lateral bipolar transistor with narrow base. Simulations confirmed this effect where higher generation rates near the junctions were presented only when the band-toband- tunneling adjustment was considered (bbt.kane model). Comparing the performance of standard and extensionless devices in both digital and analog electrical parameters and also in memory applications, it was found that extensionless devices present better performance since they reach faster switching which means lower subthreshold slope; less influence of the electrical field in the channel charges; less variation of the threshold voltage even increasing the temperature. Furthermore, it was seen that the gate length can be further scaled using underlap junctions since these devices are less susceptible to the GIDL current, presenting less electric field and generation rate near the source/drain junctions and reach a retention time of around 4 ms and sense margin of 71A/m. According to the International Technology Roadmap for Semiconductor of 2011, the retention time for the existing DRAM is around 64 ms. In order to increase the retention time of the 1T-DRAMs to values close to 64 ms it is recommended the use of extensionless devices and also the substitution of silicon by materials with higher band gap, i.e., gallium arsenide and siliconcarbon, which makes difficult the electron tunneling therefore, decreasing the GIDL.
18

Multi-scale modeling of radiation effects for emerging space electronics : from transistors to chips in orbit / Modélisation multi-échelle des effets radiatifs pour l'électronique spatiale émergente : des transistors aux puces en orbite

Malherbe, Victor 17 December 2018 (has links)
En raison de leur impact sur la fiabilité des systèmes, les effets du rayonnement cosmique sur l’électronique ont été étudiés dès le début de l’exploration spatiale. Néanmoins, de récentes évolutions industrielles bouleversent les pratiques dans le domaine, les technologies standard devenant de plus en plus attrayantes pour réaliser des circuits durcis aux radiations. Du fait de leurs fréquences élevées, des nouvelles architectures de transistor et des temps de durcissement réduits, les puces fabriquées suivant les derniers procédés CMOS posent de nombreux défis. Ce travail s’attelle donc à la simulation des aléas logiques permanents (SEU) et transitoires (SET), en technologies FD-SOI et bulk Si avancées. La réponse radiative des transistors FD-SOI 28 nm est tout d’abord étudiée par le biais de simulations TCAD, amenant au développement de deux modèles innovants pour décrire les courants induits par particules ionisantes en FD-SOI. Le premier est principalement comportemental, tandis que le second capture des phénomènes complexes tels que l’amplification bipolaire parasite et la rétroaction du circuit, à partir des premiers principes de semi-conducteurs et en accord avec les simulations TCAD poussées.Ces modèles compacts sont alors couplés à une plateforme de simulation Monte Carlo du taux d’erreurs radiatives (SER) conduisant à une large validation sur des données expérimentales recueillies sous faisceau de particules. Enfin, des études par simulation prédictive sont présentées sur des cellules mémoire et portes logiques en FD-SOI 28 nm et bulk Si 65 nm, permettant d’approfondir la compréhension des mécanismes contribuant au SER en orbite des circuits intégrés modernes / The effects of cosmic radiation on electronics have been studied since the early days of space exploration, given the severe reliability constraints arising from harsh space environments. However, recent evolutions in the space industry landscape are changing radiation effects practices and methodologies, with mainstream technologies becoming increasingly attractive for radiation-hardened integrated circuits. Due to their high operating frequencies, new transistor architectures, and short rad-hard development times, chips manufactured in latest CMOS processes pose a variety of challenges, both from an experimental standpoint and for modeling perspectives. This work thus focuses on simulating single-event upsets and transients in advanced FD-SOI and bulk silicon processes.The soft-error response of 28 nm FD-SOI transistors is first investigated through TCAD simulations, allowing to develop two innovative models for radiation-induced currents in FD-SOI. One of them is mainly behavioral, while the other captures complex phenomena, such as parasitic bipolar amplification and circuit feedback effects, from first semiconductor principles and in agreement with detailed TCAD simulations.These compact models are then interfaced to a complete Monte Carlo Soft-Error Rate (SER) simulation platform, leading to extensive validation against experimental data collected on several test vehicles under accelerated particle beams. Finally, predictive simulation studies are presented on bit-cells, sequential and combinational logic gates in 28 nm FD-SOI and 65 nm bulk Si, providing insights into the mechanisms that contribute to the SER of modern integrated circuits in orbit

Page generated in 0.113 seconds