• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 12
  • Tagged with
  • 153
  • 147
  • 127
  • 127
  • 127
  • 127
  • 123
  • 24
  • 23
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Slow and stopped light by light-matter coherence control

Tidström, Jonas January 2009 (has links)
In this thesis we study light-matter coherence phenomena related to the interaction of a coherent laser field and the so-called Λ-system, a three-level quantum system (e.g., an atom). We observe electromagnetically induced transparency (EIT), slow and stored light in hot rubidium vapor. For example, a 6 μs Gaussian pulse propagate at a velocity of ~1 km/s (to be compared with the normal velocity of 300 000 km/s). Dynamic changes of the control parameter allows us to slow down a pulse to a complete stop, store it for ~100 μs, and then release it. During the storage time, and also during the release process, some properties of the light pulse can be changed, e.g., frequency chirping of the pulse is obtained by means of Zeeman shifting the energy levels of the Λ-system. If, bichromatic continuous light fields are applied we observe overtone generation in the beating signal, and a narrow `dip' in overtone generation efficiency on two-photon resonance, narrower than the `coherent population trapping' transparency. The observed light-matter coherence phenomena are explained theoretically from first principles, using the Lindblad master equation, in conjunction with the Maxwell's equations. Furthermore, we analyze an optical delay-line based on EIT and show that there is in principle (besides decoherence) no fundamental limitation, but the usefulness today is scant. The combination of EIT and a photonic crystal cavity is inquired into, and we show that the quality value of a small resonator (area of 2.5λ×2.5λ with a missing central rod) can be enhanced by a factor of 500 due to the increased modal density close to two-photon resonance. Open system effects (decoherence effects) are thoroughly investigated using a coherence vector formalism, furthermore, a vector form of the Lindblad equation is derived. Specifically we find an open system channel that lead to slow light and gain. / QC 20100812
102

Development of materials, surfaces and manufacturing methods for microfluidic applications

Carlborg, Carl Fredrik January 2011 (has links)
This thesis presents technological advancements in microfluidics. The overall goals of the work are to develop new miniaturized tests for point-of-care diagnostics and robust super-lubricating surfaces for friction reduction. To achieve these goals, novel materials, surfaces and manufacturing methods in microfluidics have been developed. Point-of-care diagnostic tests are portable miniaturized instruments that downscale and automate medical tests previously performed in the central laboratories of hospitals. The instruments are used in the doctor’s office, in the emergency room or at home as self-tests. By bringing the analysis closer to the patient, the likelihood of an accurate diagnosis, or a quick therapy adjustment is increased. Already today, there are point-of-care tests available on the market, for example blood glucose tests, rapid streptococcus tests and pregnancy tests. However, for more advanced diagnostic tests, such as DNA-tests or antibody analysis, integration of microfluidic functions for mass transport and sample preparation is required. The problem is that the polymer materials used in academic development are not always suited for prototyping microfluidic components for sensitive biosensors. Despite the enormous work that has gone into the field, very few technical solutions have been implemented commercially. The first part of the work deals with the development of prototype point of-care tests. The research has focused on two major areas: developing new manufacturing methods to leverage the performance of existing materials and developing a novel polymer material platform, adapted for the extreme demands on surfaces and materials in miniaturized laboratories. The novel manufacturing methods allow complex 3D channel networks and the integration of materials with different surface properties. The novel material platform is based on a novel off-stoichiometry formulation of thiol-enes (OSTE) and has very attractive material and manufacturing properties from a lab-on-chip perspective, such as, chemically stable surfaces, low absorption of small molecules, facile and inexpensive manufacturing process and a biocompatible bonding method. As the OSTE-platform can mirror many of the properties of commercially used polymers, while at the same time having an inexpensive and facile manufacturing method, it has potential to bridge the gap between research and commercial production. Friction in liquid flows is a critical limiting factor in microfluidics, where friction is the dominant force, but also in marine applications where frictional losses are responsible for a large part of the total energy consumption of sea vessels. Microstructured surfaces can drastically reduce the frictional losses by trapping a layer of air bubbles on the surface that can act as an air bearing for the liquid flow. The problem is that these trapped air bubbles collapse at the liquid pressures encountered in practical applications. The last part of the thesis is devoted to the development of novel low fluidfriction surfaces with increased robustness but also with active control of the surface friction. The results show that the novel surfaces can resist up to three times higher liquid pressure than previous designs, while keeping the same friction reducing capacity. The novel designs represent the first step towards practical implementation of micro-structured surfaces for friction reduction. / <p>QC 20110907</p>
103

ORMOCER Materials Characterization, LAP- &amp; Micro-Processing : Applied to Optical Interconnects and High-Frequency Packaging

Uhlig, Steffen January 2006 (has links)
ORMOCERR®s are organic-inorganic hybrid polymers. Since their material properties can be tailored precisely during synthesis, they are suitable for a wide range of applications in dielectric and optical microelectronics. This thesis reports on process development of ORMOCERR®s for Sequentially Build-Up (SBU) test vehicles, suitable for both electrical and optical interconnect. Furthermore, this work includes materials characterization, such as refractive index studies (system B59:V32), optical loss measurements (systems B59:V32 and B59:B66), and surface characterization through contact angle measurement and surface energy estimation (systems B59:V32 and B59:B66). Process development for a high-frequency test vehicle was performed applying a newly developed dielectric material of the ORMOCER® class. Dielectric layers in a total thickness of 80 μm were build-up on a common FR4 substrate, applying photolithographic processes and moderate process temperatures of below 433 K. The loss tangent and the permittivity of the material were measured to be 0.024 (loss tangent) and 3.05 (permittivity) over the entire frequency range 10 GHz to 40 GHz. The compatibility of the material to standard processes of the PCB industry was proven. Furthermore, a possibility for cost reduction in high-frequency MCM applications was shown, through the possibility of using low-cost substrates. The concept of a “flexible manufacture approach” for large-area panel optical backplane interconnects was introduced. Here, a 101.6 mm x 101.6 mm photolithographic mask is to be stepped-out over a large-area panel substrate (up to 609.6 mm x 609.6 mm). The goal is to be able to create a large amount of continuous and unique waveguide patterns over the whole area with a small portfolio of masks, thus being able to minimize excess costs. In practice continuous waveguide patterns were created over an area of 204.8 mm x 204.8 mm on a large-are panel (609.6 mm x 609.6 mm), using a large-are mask aligner and a 101.6 mm x 101.6 mm waveguide mask. The optical loss of the waveguides was measured to be 0.6 dB/cm (B59:V32 material system, λ =850 nm). In connection to the large-area panel project a re-evaluation on the optical power budget needed for high bit rate optical interconnects was performed. This work was mainly based on literature surveys of optical waveguide materials, planar optical amplifiers, light coupling structures, and planar light-routing structures. It was shown that optical amplification is necessary at certain places on realistically routed optical backplanes to boost the optical signal. Therefore, the concept of a flip-chip mountable optical amplifier (FOWA) device, based on planar optical waveguide amplifiers and Semiconductor Optical Amplifiers, was developed. The device’s design allows an independent manufacturing to the rest of the board and a mounting at key-positions using standard pick and place technology. Additionally, it was observed that most of the amplifier research is focused on the wavelength of 1310 nm and 1550 nm, whereas optical backplane applications are targeting the 830 nm range. During SBU processing of waveguide structures was discovered a de-wetting phenomenon of B59 resin on a cured B59:B66 and B59:V32 surface, respectively. Good wetting behavior could be achieved by adding small amounts of B66 or V32, respectively, to the B59. Surface tension estimations on various compositions of the systems B59:B66 and B59:V32 could not directly be correlated to the de-wetting phenomenon. Furthermore, the optical loss properties of B59 were only affected to a minor degree by adding B66 or V32. The process route proposed is an efficient alternative to processes including surface activations steps, thus opening possibilities for large-area processing in PCB industry, where surface activation steps, such as plasma activation or silanization, are not available. The process development, materials characterization, and reviews presented provide a basis for further research on processes for high-performance electro/optical backplane interconnects with focus on Large-Area Panel processing.
104

Integrated Optical Slot-Waveguide Ring Resonator Sensor Arrays for Lab-on-Chip Applications

Gylfason, Kristinn Björgvin January 2010 (has links)
This thesis treats the development of an integrated optical sensor array. The sensors are slot-waveguide ring resonators, integrated with on-chip surface grating couplers and light splitters, for alignment tolerant, real-time, refractive index sensing, and label-free biosensing. The work includes: the design of components and system layouts, the development of fabrication methods, the fabrication of sensor chips, the characterization of the chips, and the development of physical system models for accurate extraction of resonance wavelengths in measured spectra. The main scientific achievements include: The evaluation of a novel type of nano-structured optical waveguide for biochemical sensing. The realization of an array of such slot-waveguide sensors, integrated with microfluidic sample handling, for multiplex assays. The first study of the thermal behavior of slot-waveguide sensors and the discovery of unique temperature compensation capabilities. From an application perspective, the use of alignment tolerant surface gratings to couple light into the optical chip enables quick replacement of cartridges in the read-out instrument. Furthermore, the fabrication sequence avoids polishing of individual chips, and thus ensures that the cost benefits of silicon batch micro-fabrication can be leveraged in mass production. The high sensitivity of the slot waveguide resonators, combined with on-chip referencing and physical modeling, yields low limits of detection. The obtained volume refractive index detection limit of 5 × 10−6 refractive index units (RIU), and the surface mass density detection limit of 0.9 pg/mm2, shows that performance comparable to that of commercial non-integrated surface plasmon resonance sensors, made from bulk optical components, canbe achieved in a compact cartridge. / Qc20100715 / SABIO
105

Surface-normal multiple quantum well electroabsorption modulators : for optical signal processing and asymmetric free-space communication

Junique, Stéphane January 2007 (has links)
Electroabsorption is the physical phenomenon by which the absorption of light in a medium can be controlled by applying an electric field. The Quantum–Confined Stark Effect, which makes the absorption band–edge in quantum wells very field–dependent, together with the strong absorption peak provided by excitons, are the physical foundations for the success of electroabsorption modulators based on quantum well structures in telecommunication networks. This thesis describes the design and fabrication of surface–normal electroabsorption modulation devices. The techniques needed to understand the design and fabrication of surface–normal multiple quantum well optical modulators are introduced, as are the various characterisation techniques used during and after the fabrication. Devices for several types of applications have been designed, fabricated, characterised and in some cases integrated into optical systems: – Two–dimensional arrays of 128´128 pixel amplitude modulators grown on GaAs substrates have been fabricated and characterised. Speeds of up to 11700 frames per second were demonstrated, limited by the output electronics of the computer interface. – Large–area modulators grown on GaAs substrates for free–space optical communication were developed, with an active area of 2cm2 and a modulation speed of several megahertz. Contrast ratios up to 5:1 on full modulator areas were measured. Problems limiting the yield and modulation speed of such devices have been studied, and solutions to overcome them have been demonstrated. – Large–area devices grown on InP substrates for free–space optical communication have been developed. Contrast ratios of up to 2:1 for transmissive types have been demonstrated. – Devices consisting of two rows of pixels, grown on GaAs substrates, with an active area of 22mm´5mm, divided into 64 or 128 pixels per row have been developed. These amplitude modulation devices were designed for optical signal processing applications. – One variant of these optical signal processing devices was also characterised as a ternary, binary amplitude and binary phase modulator array. – The use of GaAs multiple quantum well optical modulators in a free–space optical retro–communication system has been studied. An opto–mechanical design for a modulating retro–reflector is described, allowing a large field of view in one direction using reflecting, resonant–cavity modulators for high contrast ratios. / QC 20100802
106

Electromagnetic simulation and design of etched diffraction grating demultiplexers

Song, Jun January 2008 (has links)
Among various planar lightwave circuits for multiplexing/demultiplexing in an optical communication system, etched diffraction gratings (EDGs) have shown great potential due to their compactness and high spectral finesse. Conventional numerical methods for grating simulation cannot be used to simulate an EDG demultiplexer of large size (in terms of the wavelength). In the present thesis, the polarization-dependent characteristics of an EDG demultiplexer are analyzed with a boundary element method (BEM) for both an echelle grating coated with a metal and a dielectric grating with total internal reflection (TIR) facets. For EDGs with metal-coated facets, we use a more effective method, namely, method of moments (MoM). Futhermore, a fast simulation method for EDGs with TIR facets is presented based on the Kirchhoff–Huygens principle and the Goos-Hänchen shift. This simple method has a good agreement with a BEM over a wide range of practical parameters of the device. Several novel designs are presented in order to improve the performances of EDGs. (1) By making some appropriate roughness on the surface of the shaded facets, the PDL of the demultiplexer can be effectively reduced over a large bandwith. (2) For EDGs based on Si nanowire structures, we compensate the polarization-dependent wavelength dispersion (PDλ) in the whole operational spectrum by introducing a polarization compensation area in its free propagation region. (3) An EDG demultiplexer with suppressed sidelobe is designed. The designed EDG demultiplexer can give a crosstalk as small as 50 dB in theory. (4) By chirping the diffraction order for each facet, we minimize the envelope intensity for the other adjacent diffraction orders to achieve a negligible return loss in a large spectral width. (5) A design for EDG demultiplexers is presented to obtain both large grating facets and a larger free spectral range (FSR) using the optimal chirped diffraction orders for different facets. The influences of the fabrication errors (e.g., rounded effect, surface roughness and point defect in the waveguide) on the performance (such as the insertion loss, the polarization dependent loss and the chromatic dispersion) of an EDG demultiplexer are also analyzed in detail. Silicon nanowire waveguides and related EDGs are studied. An EDG demultiplexer with 10 nm spacing is finally fabricated and characterized. / QC 20100910
107

Fibre Bragg Grating Components for Filtering, Switching and Lasing

Yu, Zhangwei January 2008 (has links)
Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode theory for describing fundamental characteristics of FBGs and the Transfer Matrix method for the numerical simulations of complex-structured FBGs. An advanced FBG fabrication system based on the technique of multiple printing in fibre (with a continuous-wave source) has been used to write complex FBGs incorporating phase shifts, apodization and chirp.      A single double-peaked superimposed grating working in reflection can be employed as a direct optical filter for millimetre-wave signals. Bit error rate measurements confirmed that the filter exhibited nearly on-off behaviour in the passband with a 3-dB bandwidth of 2 GHz for a central frequency of 20 GHz, as expected from the optical spectrum reflection. The presented technique can be used in radio-over-fibre systems or simultaneous up-conversion of ultra-wide band signals and filtering. This thesis focused mostly on the research of two 4-cm long Hamming-apodized gratings written in side-hole fibres with internal electrodes. The temperature dependence measurements showed that the birefringence of the component increased with the temperature. Dynamic measurement has shown nanosecond full off-on and on-off switching. During the electrical pulse action, the grating wavelength was blue-shifted for the x-polarization and red-shifted for the y-polarization due to the mechanical stress. Both peaks subsequently experienced a red-shift due to the relaxation of mechanical stress and the increasing core temperature transferred from the metal in many microseconds. All the wavelength shifts of the two polarizations depend quadratically on the electrical pulse voltage and linearly on the pulse duration. Numerical simulations gave accurate description of the experimental results and were useful to understand the physics behind the birefringence switching. Finally, two switchable dual-wavelength erbium-doped fibre lasers based on FBG feedback were proposed. In one method, an overlapping cavity for the two lasing wavelengths and hybrid gain medium in the fibre laser were introduced. Dual-wavelength switching was achieved by controlling the Raman pump power. The other method employed an injection technique and the dual-wavelength switching was controlled by the power of the injection laser. The switching time was measured to be ~50 ms. Detailed characteristics of the dual-wavelength switching in the two fibre lasers were experimentally studied and corresponding principles were physically explained. / QC 20100922
108

Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.

Azurdia Meza, Cesar Augusto, Jon Mohamadi, Yaqub January 2009 (has links)
On this thesis project, the LMS algorithm has been applied for speech noise filteringand different behaviors were tested under different circumstances by using Matlabsimulations and the LPC2378 ARM Processor, which does the task of filtering in realtime. The thesis project is divided into two parts: the theoretical and practical part. In the theoretical part there is a brief description of the different aspects of signalprocessing systems, filter theory, and a general description of the Least-Mean-SquareAdaptive Filter Algorithm. In the practical part of the report a general description of the procedure will besummarized, the results of the tests that were conducted will be analyzed, a generaldiscussion of the problems that were encounter during the simulations will be mention,and suggestion for the problems will be given.
109

Ångström Small Radio Telescope

Lindén, Henrik January 2011 (has links)
For the Swedish Institute of Space Physics and Uppsala University, we have developed a working radio astronomy telescope capable of receiving the 21cm hydrogen line; the Ångström Small Radio Telescope. The work have resulted in a functional system for positioning the dish, with built in tracking of deep space objects and scanning functions, and signal reception with filtering, mixing and digital sampling. The system is controlled via a computer through an Internet connection.
110

Understanding Sub-threshold source coupled logic for ultra-low power application

Roy, Sajib, Nipun, Md. Murad Kabir January 2011 (has links)
This thesis work primarily focuses on the applicability of sub-threshold source coupled logic (STSCL) for building digital circuits and systems that run at very low voltage and promise to provide desirable performance with excellent energy savings. Sectors like bio-engineering and smart sensors require the energy consumption to be effectively very low for long battery life. Alongside meeting the ultra-low power specification, the system must also be reliable, robust, and perform well under harsh conditions. In this thesis work, logic gates are designed and analyzed, using STSCL. These gates are further used for implementation of digital subsystems in small-sized smart dust sensors which would operate at very low supply voltages and consume extremely low power. For understanding the performance of STSCL with respect to ultra-low power and energy; a seven-stage ring oscillator, a 4-by-4 array multiplier, a fifth-order FIR filter and finally a fifty-fifth-order FIR filter were designed. The subcircuits and systems have been simulated for different supply voltages, scaling down to 0.2 V, at different temperature values (-20oC and 70oC) in both 45 nm and 65 nm process technologies. The chosen architectures for the FIR filters and array multiplier were conventional and essentially taken from traditional CMOS-based designs. The simulated results are studied, analyzed and compared with same CMOS-based digital circuits. The results show on the advantage of STSCL-based digital systems over CMOS. Simulation results provide an energy consumption of 1.1388 nJ for a fifty-fifth-order FIR filter, at low temperatures (-20oC), using STSCL logic, which is comparatively less than for the corresponding CMOS logic implementation.

Page generated in 0.0351 seconds