• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 66
  • 39
  • Tagged with
  • 261
  • 222
  • 146
  • 113
  • 104
  • 104
  • 97
  • 95
  • 81
  • 75
  • 64
  • 57
  • 55
  • 52
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Réalisation d'un dispositif expérimental pour la détection d'atomes sur une puce opto-atomique et étude d'une micro-cavité optique.

El Amili, Abdelkrim 22 January 2010 (has links) (PDF)
Cette thèse présente la réalisation d'un dispositif expérimental pour la détection d'atomes, sur une puce atomique, avec une micro-cavité optique. La puce atomique est un substrat sur lequel des fils et la cavité optique sont fabriqué par des techniques de lithographie. La puce permet de piéger, de manipuler et de transporter des atomes grâce aux potentiels magnétiques générés par les courants électriques qui traversent ces fils. La puce permettra à terme de transporter les atomes vers la microcavité optique où ils peuvent être en interaction forte avec la lumière de la cavité. Le résonateur est construit à partir d'un guide d'onde sur lequel des miroirs sont déposés aux extrémités. Une tranchée est creusée dans le guide d'onde pour que les atomes puissent interagir avec le champ électromagnétique. Ce manuscrit présente la fabrication et la caractérisation d'une telle cavité. Une étude théorique du résonateur a permis d'estimer la finesse et la figure de mérite du système atome-cavité. Les calculs montrent que la microcavité peut permettre dans certains cas de détecter des atomes uniques.
32

Gaz de dysprosium ultrafroid dans des pièges dipolaires optiques : contrôle des interactions entre atomes fortement magnétiques / Ultracold dysprosium gas in optical dipole traps : control of interactions between highly magnetic atoms

Bouazza, Chayma 04 May 2018 (has links)
Dans le cadre de cette thèse, j’ai étudié le refroidissement et le piégeage d’un gaz d’atomes de dysprosium dans des potentiels lumineux. Cet atome lanthanide possède dans son état électronique fondamental un moment magnétique très élevé, permettant l’exploration du domaine des gaz dipolaires ultrafroids. Ce caractère dipolaire enrichit la gamme des phénomènes physiques réalisés expérimentalement, en tirant avantage de la nature anisotrope et à longue-portée de l’interaction entre dipôles magnétiques. De plus, grâce à sa structure électronique riche, le Dysprosium offre la possibilité de créer un fort couplage entre le spin atomique et des champs lumineux, tout en gardant un taux de chauffage faible par rapport au cas usuel des atomes alcalins. Ceci ouvre la voie vers l’implémentation de champs de jauge artificiels, qui suscitent un vif intérêt dans le domaine des atomes froids dans un contexte de simulation quantique. Ce travail de thèse consiste en l’étude des mécanismes d’interactions dans un gaz de Dysprosium ultrafroid, allant des collisions assistées par la lumière à la relaxation dipolaire en passant par le refroidissement par évaporation. J’expose également la réalisation expérimentale d’un champ magnétique effectif en utilisant un déplacement lumineux dépendant du spin, permettant de contrôler optiquement la force des interactions atomiques au moyen d’une résonance de Feshbach. / In this thesis, I present the study of the laser trapping and cooling of a Dysprosium atomic gas. This latter belong to the lanthanide family, it exhibits a large angular momentum in its electronic ground state, making it a suitable candidate for investigating dipolar quantum gases. These systems present a major interest as they can lead to the observation of novel quantum phenomena thanks to the anisotropic and long-range character of the interaction between magnetic dipoles. Moreover, Dysprosium has a rich electronic structure offering the possibility to implement strong light-spin coupling with a reduced heating with respect to alkali species, which paves the way toward the realization of synthetic gauge fields.In this work, I present the experimental investigation of different interaction mechanisms occurring in an ultracold gas of Dysprosium, ranging from light-assisted collisions to dipolar relaxation and evaporative cooling. I expose also the experimental realization of an effective magnetic field, using spin-dependent light-shift, allowing optical control over atomic interactions by means of Feshbach resonances.
33

Theoretical models for ultracold atom-ion collisions in confined geometries / Modèles théoriques pour collisions ultra froids entre atomes-ions dans les géométries confinées

Srinivasan, Srihari 30 March 2015 (has links)
Les systèmes composés d'atomes et d'ions ultrafroids ont étés un sujet d'intérêt pour les physiciens atomiques et, plus récemment, pour la communauté des ions froids (simulation et calcul quantique avec des ions piégés). Ils sont considéré la possibilité d'utiliser un gaz d'atomes ultrafroids pour refroidir sympathiquement les ions car la modulation intrinsèque du mouvement, le micromouvement, représente une source de décohérence dans les applications des ions froids. L'intérêt envers ce système mixte est aussi motivé par l'étude de la physique d'impuretés et par une meilleure compréhension des réactions entre espèces ioniques et neutre ayant pour but la création d'ions moléculaires. Cette thèse a pour objectif d'étudier les effets du micromouvement dans les collisions atome-ion. Nous traitons au préalable les collisions à 1D d'une particule dans un piège harmonique (un ion) et d'un particule libre (une atome) en utilisant différentes approches numériques. Ce système est intéressant en soi en raison de la dimensionnalité mixte 0D-1D. Le potentiel atome-ion est modélisé par une interaction à portée nulle tout au cours de ce travail. Par la suite, nous traitons un problème similaire mais dans le cas d'une particule dans un piège harmonique décrivant un piège de Paul. Enfin, nous généralisons l'étude du micromouvement à un système modèle 3D avec un ion dans un piège de Paul sphérique 3D et un atome lourd au centre du piège. Nous discutons de l'influence du micromouvement en vue d'applications potentielles de ce système telle que la porte logique de phase. / Ultracold atom-ion systems have been a topic of interest for atomic physicists studying chemical reactions and since recently, the cold ion community (ion trap quantum computation and simulation). They have been looking at the possibility of using an ultracold atom gas to sympathetically cool ions since intrinsic motional modulation i.e micromotion is an inherent cause of decoherence in coherent applications of cold ions. Interest is also piqued by the possibility of using this hybrid system for studying impurity physics and to better understand ion-neutral reactions aimed at creation of molecular ions. In this thesis, we aim to study the effect of ion micromotion in atom-ion collision. As a prelude, we treat the 1D collision of a particle in a harmonic trap (ion) and a free particle (atom) using different numerical schemes. This system is of interest in its own right due to the mixed 0D-1D dimensionality. Atom-ion potential is simplified to a zero range potential all through out the work. Next we deal with a similar problem but with the trapped particle in a time dependent harmonic trap identical to an ion Paul trap. Finally we extend the study of micromotion to a model system in 3D with an ion in a 3D spherical Paul trap and a heavy atom at the trap centre. We discuss the effect micromotion has on potential applications of such a system, like a quantum phase gate.
34

Mercury lattice clock : from the Lamb-Dicke spectroscopy to stable clock operation / Horloge réseau optique à mercure : de la spectroscopie Lamb-Dicke à une opération horloge stable

Tyumenev, Rinat 23 July 2015 (has links)
Les deux premiers chapitres de la thèse présentent le principe d’un étalon de fréquence optique et les applications qui en découlent. Les principaux avantages métrologiques de l’horloge à réseau optique de mercure sont mis en avant, et quelques rappels théoriques d’interraction matière-rayonnement appliquée à la métrologie des fréquences sont effectués. Le montage expérimental est décrit de manière générale dans le chapitre 3, en insistant particulièrement sur les différentes sources laser utilisées. Les améliorations apportées au montage durant la thèse, font l’objet du chapitre 4. La première amélioration concerne le laser de refroidissement à 254nm. Mes travaux nous ont permis d’augmenter le temps d’interrogation des atomes, étape nécessaire pour une nouvelle mesure de stabilité de l’horloge et la caractérisation des effets systématiques. Afin d’augmenter ultérieurement la stabilité, une refonte de la cavité optique qui piège les atomes dans le réseau s’est révèlée indispensable. La nouvelle cavité permet de capturer 10 fois plus d’atomes grâce à une profondeur de piégage acrue d’un facteur 3, influant directement sur le rapport signal sur bruit. Enfin, les résultats expérimentaux obtenus sont décrits dans le 5ème et dernier chapitre. La spectroscopie sur fond noir d’un échantillon de mercure polarisé en spin avec une largeur de raie record de 3.3Hz nous a permis de mesurer une stabilité de 1.2x10 -15 à une seconde, soit presque un facteur 5 mieux par rapport à notre précédente mesure. Une caractérisation de plusieurs effets systématiques sur la transitions d’horloge (shift colisionnel, effet zeeman ou encore effet de la lumière de piégage) a été menée au niveau de 10-16. / The first two chapters of thesis describe the basics of optical standards and its applications. Highlight advantages of mercury as a frequency reference in optical lattice clock and give theoretical background about atom-light interaction, origins of systematic shifts and their influence on stability of a clock. The third chapter describes the experimental setup. It includes the schemes and operation of the main laser systems and their characteristics, the vacuum chamber and magneto-optical trapping of atoms. The fourth chapter is about the setup improvements that I made during the thesis. It describes the new doubling stage at 254 nm for the cooling laser system that was designed and implemented during the thesis. The new doubling stage allowed us to perform spectroscopies with long integration times necessary for the measurement of stability of our clock and systematic shifts. The second major and important improvement was the change of the lattice trap cavity. The new lattice cavity allowed us to increase trap depth by a factor of 3, number of trapped atoms by 10, improved the signal to noise ratio and increased stability of the clock. The fifth chapter tells about the obtained results. Thanks to all the technical improvements spectroscopy of the clock transition with the record linewidth of 3.3 Hz was demonstrated. State selection and spectroscopy on dark background were implemented. Stability of the clock was improved by a factor of 5 and measured to be 1.2*10-15 at 1 s. No observable collision shift and second order Zeeman shift were measured at the uncertainty level of ~1*10-16. The shift of the clock frequency due to lattice light was measured to be below 6*10-17.
35

Développement d'un gradio-gravimètre à atomes froids et d'un système laser télécom doublé pour applications embarquées / Development of a cold atom gravity gradiometer and a telecom doubled laser device for onboard applications

Theron, Fabien 27 November 2015 (has links)
Ce mémoire présente le développement d'un dispositif expérimental permettant de mesurer deux composantes du gradient de pesanteur, Γzz et Γzx, ainsi que l'accélération de pesanteur. Ces grandeurs sont déterminées en mesurant l'accélération d'atomes froids de rubidium, en chute libre dans le vide, par interférométrie atomique. Pour la gradiométrie, la mesure différentielle est réalisée entre deux nuages atomiques spatialement distants. Pour la mesure de Γzz, l'utilisation de réseaux optiques mobiles permet d'obtenir deux nuages atomiques à partir d'une unique source atomique. Ce travail présente la mise en place du dispositif complet, avec notamment la réalisation de l'enceinte à vide, et des systèmes laser et micro-onde. Les lasers sont basés sur la technologie télécom doublée, permettant d'obtenir des modules compacts et robustes, afin d'envisager des applications embarquées. L'architecture laser originale permet de réaliser des expériences d'atomes froids combinant interférométrie atomique et réseaux optiques, en réduisant au minimum le nombre de composants. Le bruit du laser a été caractérisé, et il limite la sensibilité gravimétrique à 10-9 g en monocoup, la sensibilité différentielle à 10-10 g en monocoup, et la sensibilité gradiométrique à 38 E, en monocoup. / This thesis presents the development of the experimental setup allowing the measurement of two gravity gradient components, Γzz and Γzx, and the gravity acceleration. These quantities are resulted from the measuring of rubidium cold atoms acceleration, in free fall in vacuum, by atom interferometry. For gradiometry, the differential measurement is realized between two atomic clouds spatially separated. For the measurement of Γzz, the use of mobile optical lattices allows to get two atom clouds from a single atomic source. This work presents the setting up of the complete device, in particular with the built of the vaccum chamber, laser and micro-wave systems. Lasers are based on frequency-doubled telecom technology, which allows to obtain compact and robust systems, dedicated for onboard applications. The innovative laser architecture allows to combine atom interferometry and optical lattices, while minimizing the amount of components. The laser noise has been characterized, and limits the single shot gravimetric sensitivity to 10-9 g, the single shot differential sensitivity to 10-10 g, and the single shot gradiometric sensitivity to 38 E.
36

Interféromètre à atomes froids de 39K et 87Rb pour tester le principe d'équivalence en micropesanteur / Cold atom interferometer of 39K and 87Rb to test the equivalence principle in microgravity

Antoni-Micollier, Laura 12 October 2016 (has links)
Durant ces deux dernières décennies, de nouvelles techniques pour refroidir et manipuler les atomes ont permis le développement de capteurs inertiels basés sur l'interférométrie atomique. Dans ce contexte, le projet ICE est basé sur l'utilisation d'un interféromètre atomique double espèce compacte et transportable dans le but de tester le principe d'équivalence faible. Nous comparons ainsi l'accélération de deux espèces chimiques et nous vérifions leur égalité en mesurant le paramètre d'Eötvös à un niveau de 10-6. Cette expérience a été réalisée en laboratoire et en micropesanteur lors de vols paraboliques à bord de l'Airbus A310 ZERO-G de Novespace. L'interféromètre est composé de deux échantillons de 87Rb et 39K refroidis par laser, possédant des longueurs d'onde de transitions atomiques similaires (780 nm et 767 nm) qui sont générées par un doublage de fréquence laser Télécom. Récemment, nous avons réalisé le premier interféromètre double espèce en micropesanteur. Cette expérience a ainsi permis le premier test du principe d'équivalence faible dans cet environnement en utilisant des objets quantiques, ce qui représente une première étape majeure vers une future mission spatiale. Dans le cadre de ces travaux, nous avons installé une source laser à 770 nm, accordée sur la transition D1 du 39K, afin de réaliser un refroidissement par mélasse grise. Nous avons également mis en place une nouvelle séquence pour préparer les atomes dans l'état mF = 0 avec une efficacité de transfert supérieure à 90%. Ces techniques ont amélioré le contraste de notre interféromètre de 39K d'un facteur 4, ce qui a mené à l'obtention d'une sensibilité sur le paramètre d'Eötvös dans le laboratoire de 5 x 10-8 après 5000 s d'intégration. / During the last two decades, new techniques to cool and manipulate atoms have enabled the development of inertial sensors based on atom interferometry. In this context, the ICE project is based on a compact and transportable dual-species atom interferometer in order to verify the weak equivalence principle (WEP). Thus, we compare the acceleration of two chemical species and verify their equality by measuring the Eötvös parameter at the 10-6 level.This experiment was performed both in the laboratory and in the microgravity environment during parabolic flights onboard the Novespace ZERO-G aircraft. The interferometer is composed of laser-cooled samples of 87Rb and 39K, which exhibit similar transition wavelengths (780 nm and 767 nm) derived from frequency-doubled telecom lasers. Recently, we have performed the first dual species interferometer in microgravity. This enables the first test of the WEP in weightlessness using quantum objects, which represents a major first step toward future mission in space.As part of these experiments, we have implemented a 770 nm laser source, resonant with the D1 transition of 39K, in order to perform a gray molasses cooling. We have also devised a new sequence to prepare atoms in the mF = 0 state with a transfer efficiency above 90%. These techniques improved the contrast of our 39K interferometer by a factor 4, which led to the obtention of a sensitivity on the Eötvös parameter in the laboratory of 5 x 10-8 after 5000 s of integration.
37

Design of a magnetic guide for rotation sensing by on chip atom interferometry / Conception d’un guide magnétique pour des mesures de rotation avec une puce à atomes

Yan, Wenhua 01 December 2014 (has links)
Ce mémoire présente la conception et réalisation d'un montage expérimental pour le développement d'un interféromètre à atomes froids de 87Rb guidés sur un microcircuit à atomes, l'objectif final étant la réalisation d'un capteur inertiel de rotations. Nous avons ainsi étudié théoriquement le confinement magnétique des atomes dans un guide circulaire. Une telle étude nous a permis d'identifier les principales problématiques liées à la propagation sur une orbite stable d'un paquet d'onde atomique dans un guide magnétique, à savoir: la rugosité du potentiel de guidage, les défauts du potentiel associés au motif de micro fils employés pour créer ce potentiel, et les pertes par effet Majorana. Dans cette thèse nous proposons des solutions originales à ces problèmes basés sur des études précédentes et sur les résultats de nos calculs. Du point de vue expérimental, nous avons monté une nouvelle expérience d'atomes froids dont la principale caractéristique est d'être compacte et donc transportable pour des mesures locales de vitesses de rotations. Nous avons donc, au cours de ce travail, assemblé un système à ultra vide efficace, développé un banc optique très compacte comprenant des sources laser pour le refroidissement et piégeage des atomes, un laser de Bragg pour la réalisation de l'interféromètre atomique, ainsi que toute l'électronique de contrôle de cette expérience. / This manuscript present the design and realization of an experimental setup for the development of a cold atom interferometer using 87Rb atoms guided on an atom chip, the final goal being the realization of an inertial sensor for rotation measurements. We have therefore study theoretically the magnetic confinement of these atoms in a circular guide. Such a study allowed us to identify the main challenges linked to the atomic wave packet propagation along a stable circular orbit in a magnetic guide, namely: the roughness of the guiding potential, the magnetic potential defects associated to the pattern of the micro wires used to produce this potential, and the Majorana losses. In this thesis we propose original solutions to these questions based on preliminary studies and on the results of our calculations. From the experimental point of view, we have assembled a new cold atom experiment with the main feature of being compact and therefore transportable for in situ measurement of rotations. We have along this work put together an efficient ultra high vacuum system, developed a compact optical bench containing the laser sources for cooling and trapping, a Bragg laser for the atom interferometer, as well as all the needed electronics to control the experiment.
38

Capture de forces à atomes piégés dans un réseau optique : caractérisation des performances / Force sensor with atoms trapped in an optical lattice : characterisation of the performances

Hilico, Adèle 08 September 2014 (has links)
Ce mémoire présente la réalisation d'un dispositif expérimental de deuxième génération pour le projet FORCA-G (FORce de CAsimir et Gravitation à courte distance). L'objectif de ce projet est la mesure des interactions à faible distance entre un atome et une surface massive. La mesure de force est réalisée à l'aide d'interféromètres atomiques utilisant des atomes confinés dans un réseau optique 1D vertical basé sur le déplacement des atomes de puits en puits. La dégénérescence des niveaux d'énergies des atomes dans les puits du réseau est levée par la force que l'on cherche à mesurer. Des transitions Raman permettent de séparer les atomes dans des puits adjacents, puis de les recombiner, créant ainsi un interféromètre atomique qui permet de mesurer la différence d'énergie entre puits, liée à la fréquence de Bloch nu B du réseau. Ce travail présente la mise en place d'un dispositif proprement dédié au projet, qui permettra à terme de mesurer les forces à faible distance. Il rend compte des améliorations obtenues en configuration de gravimètre sur la sensibilité court terme de la mesure qui atteint 5. 10^-6 à 1 s. Il regroupe l'étude des limitations de la sensibilité, de l'exactitude et l'étude de la perte de contraste des interféromètres. Il présente aussi la mise en place d'une étape supplémentaire : l'implémentation d'un piège dipolaire visant obtenir un échantillon d'atomes plus dense et plus froid. / The thesis presents the set up of the second version of the experiment FORCA-G (CAsimir FORce and Gravitation at short range). The purpose of this experiment is the measurement of short-range interactions between an atom and a massive surface. The measurement is realised thanks to atom interferometers using atoms trapped in a 1D vertical optical lattice. The energy levels of atoms in such a trap are shifted from lattice site to another by the force we aim at measuring. We move the atoms from site to site using counter-propagating Raman transitions. The atoms are moved from Δm lattice sites only if the Raman frequency matches υHFS +∆m.υB where υHFS is the frequency of the hyperfine ground state transition and υB is the Bloch frequency and represents the difference of potential energy between two wells in the case where the atoms are far from the surface. This thesis presents the implementation of a setup properly dedicated to FORCA-G in which the measurement of short-range forces will be possible. It reaches an improved short-term relative sensitivity on the measurement of the Bloch frequency of at 3.9 10-6 at 1s. It contains the studies of the limits in the sensitivity, the accuracy and the contrast losses. It also presents the implementation of a dipolar trap to further cool the atoms and increase their density (crossed dipolar trap with a 1064 broadband laser).
39

Vers la manipulation optique d'atomes ultra-froids d'ytterbium excités dans des états de Rydberg / Towards optical manipulation of ultra-cold Ytterbium atoms excited into Rydberg states

Zuliani, Alexandre 25 November 2015 (has links)
Les propriétés exacerbées des atomes de Rydberg ont permis d'étendre les possibilités offertes par les atomes froids dans la création de gaz d'atomes en très forte interaction, avec des applications notamment en simulations quantiques, dans la physique à N corps ou dans la réalisation de portes quantiques grâce au phénomène de blocage dipolaire. L'utilisation des atomes de Rydberg froids est cependant actuellement limitée par le fait qu'il n'est pas possible de continuer d'appliquer les techniques expérimentales de manipulation optique avec les atomes à un électron actif. L’attention de la communauté des atomes de Rydberg froids s’est donc récemment portée sur les atomes à deux électrons actifs qui offrent la possibilités, une fois l’un des deux électrons excité vers un état de Rydberg, de disposer d’un second électron optiquement actif qu’il va être possible de manipuler par laser. L’objectif de cette thèse est d’étendre les techniques de manipulation optique aux atomes à deux électrons actifs excités dans des états de Rydberg, dans le cas de l’atome d’ytterbium. Elle présente d’une part la conception et l’assemblage du dispositif expérimental permettant l’obtention d’une source d’atomes de Rydberg froids d’ytterbium. A terme, ce montage permettra la manipulation optique de ces atomes de Rydberg. D’autre part, elle présente le développement d’un modèle numérique implémentant la théorie du défaut quantique à plusieurs voies pour permettre la détermination théorique du spectre énergétique de l’ytterbium ainsi que son comportement sous l’effet de perturbations extérieures. / The exacerbated properties of Rydberg atoms have extended the possibilities offered by cold atoms in creating atomic gases in very strong interaction with applications including quantum simulations in many-body physics or in achieving of quantum gates with the dipole blocking phenomenon. The use of cold Rydberg atoms is however currently limited by the fact that it is not possible to continue to apply the experimental techniques of optical manipulation with the atoms to an active electron. The attention of the Rydberg atoms cold community is recently focused on the two active electron atoms offering possibilities, once one of the two electrons excited to a Rydberg state, to provide a second optically active electron that it will be possible to manipulate with laser light.The objective of this thesis is to extend the optical manipulation techniques to atoms with two active electrons excited in Rydberg states, in the case of the ytterbium atom. It has on the one hand the design and assembly of the experimental apparatus for obtaining a source of cold Rydberg ytterbium atoms. Ultimately, this device will allow the optical manipulation of these Rydberg atoms. Furthermore, it presents the development of a numerical model that implements the multichannel quantum defect theory to the theoretical determination of the energy spectrum of ytterbium and its behavior under the influence of external perturbations.
40

Spectroscopie Rydberg et excitation du coeur isolé d'atomes d'ytterbium ultra-froids / Rydberg spectrocopy and isolated core excitation of ultra-cold ytterbium atoms

Lehec, Henri 18 December 2017 (has links)
Les atomes de Rydberg constituent des objets idéaux pour l’étude des systèmes physiques en interaction à longue portée. Transposer à ces atomes très excités les techniques habituelles d’imagerie et de piegeage des atomes froids offrirait de nouvelles opportunités pour le domaine de la simulation quantique. Notre approche consiste à utiliser un atome à deux électrons de valence optiquement actifs tel que l’ytterbium. En effet, les transitions optiques du coeur ionique de cet atome ouvrent la voie à de nombreuses perspectives pour la manipulation optique dans l'état de Rydberg. Lorsque l’atome est doublement excité, il peut néanmoins auto-ioniser puisque son énergie se situe au delà de la première limite d’ionisation. La possibilité de s’affranchir totalement de l’autoionisation est une question ouverte.Dans cette thèse, nous présentons en premier lieu les contributions apportées au montage de l’expérience,du refroidissement des atomes d’ytterbium sur la raie d’intercombinaison à l’excitation dans des états de Rydberg. A cause des interactions entre électrons de valence, la spectroscopie de ces états très excités est plus complexe dans l'ytterbium que dans les atomes alcalins. Une étude expérimentale couplée à une analyse par théorie du défaut quantique à plusieurs voies (MQDT) a été réalisée sur diverses séries Rydberg (s, p, d et f). Cette étude, prérequis essentiel, a permis d’améliorer la précision de plus de deux ordres de grandeur sur la spectroscopie des séries étudiées.L’excitation du coeur ionique a ensuite été mise en place sur la transition 6s1/2 → 6p1/2 . Nous avons alors étudié expérimentalement et théoriquement l’excitation du coeur isolé pour des états de Rydberg de grand moment orbital (l = 5 - 9). Cette étude a montré que l'auto-ionisation est dominée par le couplage au continuum de l'état de coeur 5d3/2. Par opposition a l'atome de baryum, pour lequel l'autoionisation chute rapidement avec le moment orbital de l'électron Rydberg, nous avons montré que cette tendance est moins marquée sur l'ytterbium. Grace à cette étude, nous pourrons déterminer les états pour lesquels la manipulation optique par laser est possible. / Rydberg atoms offer an ideal platform for the study of long-range interacting systems.However, usual techniques for imaging and trapping are unavailable in alkali Rydberg atoms. Our approach rely on the use of a two-optically-active-valence-electrons atom such as ytterbium. Ionic core transitions of this atom offer new perspecives for optical manipulation in the Rydberg state. However,questions remain open, especially on the possibilities of avoiding the autoionization, process which occurs when the atom is doubly excited.In this thesis, we report on the construction of the experiment, from the cooling and trapping of theatoms to the excitation in Rydberg states. Because of the interactions between valence electrons, the spectroscopy of these highly excited states is relatively complicated. An experimental study, coupled to a multi-channel quantum defect analysis (MQDT) has been done on the s,p,d and f Rydberg series. This study produced an improvement on the precision of the spectroscopy of this series by more than two orders of magnitude. We then studied the isolated core excitationon the 6s1/2 -> 6p1/2 transition for Rydberg states of large orbital quantum numbers (l=5-9). This study showed that auto-ionisation is mostly due to the coupling to the continuum of the 5d3/2 core state. In opposition to the barium atom, where auto-ionisation drops rapidly with the orbital quantum number, we have shown that ytterbium is less favourable to that extent. Thanks to this study we will be able to determine which states are good candidates for the optical manipulation.

Page generated in 0.2391 seconds