• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 2
  • Tagged with
  • 20
  • 17
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molekular- und zellbiologische Untersuchung zur Rolle des kanonischen Wnt-Signalwegs bei der Entwicklung von \(Echinococcus\) \(multilocularis\) / Molecular and cell biological investigations on the role of canonical Wnt signaling in \(E.\) \(multilocularis\) development

Herrmann, Ruth Magdalena January 2023 (has links) (PDF)
Die alveoläre Echinokokkose (AE) ist eine lebensbedrohliche Erkrankung des Menschen, welche durch das infiltrative Wachstum des Metazestoden-Larvenstadiums des Fuchsbandwurms (Echinococcus multilocularis) in der Leber verursacht wird. Das tumorartige Wachstum des Metazestoden beruht auf einer Echinococcus-spezifischen Modifikation der anterior-posterioren-Körperachse (AP Achse). Es wird vermutet, dass dabei der anteriore Pol der invadierenden Oncospären-Larve zunächst abgeschaltet wird und sich der Metazestode anschließend asexuell als vesikuläres, posteriorisiertes Gewebes im Wirt vermehrt. Nach massiver Proliferation wird der anteriore Pol reetabliert und führt zur Bildung zahlreicher Bandwurm-Kopfanlagen (Protoskolizes). Da die Ausbildung der AP Körperachse evolutionsgeschichtlich konserviert über den wingless-related (Wnt)-Signalweg gesteuert wird, wurde in dieser Arbeit die Rolle von Wnt-Signaling bei der Musterbildung von E. multilocularis über molekular- und zellbiologische Studien näher beleuchtet. Zentraler methodischer Ansatz der vorliegenden Arbeit war ein E. multilocularis Stammzell-Kultursystem, das Primärzellsystem, welches die in vitro-Generierung von Metazestoden-Vesikeln durch Proliferation und Differenzierung von germinativen Zellen (Stammzellen) erlaubt. Über RNA-Sequenzierung wurde zunächst gezeigt, dass in Primärzellkulturen sowohl Markergene für posteriore Entwicklung in Richtung Metazestode wie auch für Anterior-und Protoskolexmarker exprimiert werden. Unter Verwendung von RNA-Interferenz (RNAi) wurde anschließend ein erfolgreicher Knockdown des vermuteten Hauptregulators des kanonischen Wnt-Signalwegs, β Catenin (em-bcat1), erreicht und führte zu einem charakteristischen, sogenannten ‚red dot‘ Phänotyp, dem ersten jemals beschriebenen RNAi Phänotyp für E. multilocularis-Primärzellen. Primärzellkulturen nach em-bcat1 RNAi zeigten eine stark verminderte Fähigkeit, Metazestoden-Vesikel zu bilden sowie eine Überproliferation von germinativen Zellen. Zusätzliche RNA-Seq-Analysen des Transkriptoms von RNAi(em-bcat1)-Kulturen zeigten eine signifikant verringerte Expression von Posterior- und Metazestodenmarkern, während Anterior- und Protoskolexmarker deutlich überexprimiert wurden. Durch umfangreiche Whole-mount-in-situ-Hybridisierung (WMISH)-Experimente wurden diese Daten für eine Reihe ausgewählter Markergene für posteriore (Metazestode; em-wnt1, em-wnt11b, em-muc1) und für anteriore Entwicklung (Protoskolex; em sfrp, em-nou-darake, em npp36, em-frizzled10) verifiziert. In allen genannten Fällen zeigte sich durch Änderung der Polarität eine verminderte Genexpression von Posteriormarkern, während Anteriormarker deutlich erhöht exprimiert wurden. Ähnlich wie bei den verwandten, freilebenden Planarien, führt demnach ein Knockdown des zentralen Wnt-Regulators β-Catenin bei E. multilocularis zu einer anteriorisierten, Anterior- und Protoskolexmarker dominierte Genexpression, welche der posteriorisierten Entwicklung zum Metazestoden entgegenwirkt. Neben Markergenen für die Ausbildung der AP-Achse wurden in dieser Arbeit auch solche für die medio-laterale (ML)-Körperachse bei Zestoden erstmals beschrieben. So zeigte sich, dass ein Slit-Ortholog (em slit) im E. multilocularis Protoskolex im Bereich der Körper-Mittellinie exprimiert wird und lieferte Hinweise darauf, dass, ähnlich zur Situation bei Planarien, die ML Achse von E. multilocularis durch Morphogengradienten aus slit (Mittellinie) und wnt5 (lateral) definiert wird. Im Metazestoden wird hingegen nur em-slit exprimiert. Der Metazestode besitzt damit als posterior-medianisiertes Gewebe Anlagen zur Polarität zur AP- und ML-Achse, welche erst mit Bildung von Protoskolizes vollständig etabliert werden. Schließlich deuten die Ergebnisse dieser Arbeit darauf hin, dass bei der Wiederherstellung der Körperachsen während der Entwicklung von Protoskolizes Hedgehog (Hh)-Signale entscheidend mitwirken. Zusammenfassend wurde in dieser Arbeit der zentrale Faktor des kanonischen Wnt Signalwegs, β-Catenin, als Hauptregulator der Entwicklung des tumorartig wachsenden E. multilocularis-Metazestoden identifiziert. Zudem wurde gezeigt, dass zur Metazestodenbildung neben einer Echinococcus-spezifischen Modifikation der AP Körperachse auch eine solche der ML Achse beiträgt. In humanen malignen Tumoren sind der Wnt-, Slit-Robo- und Hh-Signalweg gut erforschte Wirkstofftargets und könnten in Zukunft in ähnlicher Weise für eine zielgerichtete Therapie von AE dienen. / Alveolar echinococcosis (AE) is a life-threatening human disease caused by the infiltrative growth of the metacestode larval stage of the fox tapeworm (Echinococcus multilocularis) within the host liver. According to previous research, the tumor-like growth of the metacestode is due to an Echinococcus-specific modification of the anterior-posterior (AP)-body axis formation. It is thus assumed that the invading oncosphere larva transiently represses the anterior pole, giving rise to metacestode vesicles which proliferate within the host as posteriorized tissue. Upon massive proliferation, the anterior pole is re-established at numerous sites within the metacestode tissue, yielding large numbers of tapeworm heads (protoscoleces). Since the formation of the AP-body axis is evolutionarily conserved and regulated by canonical wingless-related (Wnt) signaling, the present work investigated in detail the role of the Wnt-pathway in Echinococcus metacestode formation via molecular and cell biological studies. Methodologically, this work focussed on an Echinococcus stem cell cultivation system, called the primary cell system, which allows the in-vitro generation of mature metacestode vesicles through proliferation and differentiation of germinative cells (stem cells). By genome-wide RNA-Seq transcriptomics it is shown that primary cell cultures express marker genes for both posterior development towards the metacestode as well as anterior development of head organizers. By RNA interference (RNAi), successful knockdown of the presumed central regulator of canonical Wnt-signaling, β-catenin (em-bcat1), was achieved, yielding a striking phenotype ('red dot'), the first RNAi phenotype described for E. multilocularis primary cells. Primary cell cultures after em-bcat1 RNAi showed a greatly reduced ability to form metacestode vesicles as well as an overproliferation of germinative cells. Additional RNA-Seq analysis of the transcriptome of RNAi(em-bcat1) cultures indicated significantly decreased expression of posterior and metacestode markers whereas anterior and protoscolex markers were markedly overexpressed. These data were verified using whole-mount-in-situ-hybridization (WMISH) for several selected marker genes for posterior (metazestode; em-wnt1, em-wnt11b, em-muc1) and for anterior development (protoscolex; em-sfrp, em-nou-darake, em npp36, em frizzled10). In all cases, a change in polarity showed decreased gene expression of posterior markers whereas anterior markers were significantly increased in expression. Similar to the situation in related planarians, knockdown of β Catenin in E. multilocularis lead in anteriorized, anterior- and protoscolex marker-dominated gene expression and antagonized the formation of the posteriorized metacestode. In addition to marker genes for AP-axis formation, this work also established marker genes for the medio-lateral (ML)-body axis in cestodes for the first time. In particular, a slit orthologue (em slit) was shown to be expressed in the E. multilocularis protoscolex at the body midline and provided evidence that, similar to the situation in planarians, the ML-axis of E. multilocularis is defined by morphogen gradients consisting of slit (midline) and wnt5 (lateral). In contrast, only em-slit is expressed in the metacestode. Thus, the metacestode tissue is indeed posterior-medianized and the AP- and ML-axes are established only with formation of protoscoleces. Finally, the results of this work suggest that Hedgehog (Hh) signaling plays a critical role in the reestablishment of body axes during protoscoleces development. In conclusion, this work identified the central regulator of the canonical Wnt-signaling pathway, β-catenin, as a master regulator of E. multilocularis metacestode development. Furthermore, it is herein established that metacestode formation not only involves Echinococcus-specific modification of the AP-axis but also of the ML-axis. In human malignant tumors, the Wnt, Slit-Robo, and Hh-pathway are well-studied drug targets and may similarly serve for AE targeted therapy in the future.
12

Untersuchungen zum Vorkommen der Zoonoseerreger Echinococcus multilocularis und Trichinella spp. beim Schwarzwild (Sus scrofa scrofa) im Wartburgkreis

Remde, Immo January 2008 (has links)
Zugl.: Berlin, Freie Univ., Diss., 2008
13

Charakterisierung und Funktionsanalyse von EmRSK4, einem TGF-beta Typ II-Rezeptor aus Echinococcus multilocularis

Bernthaler, Peter January 2009 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in engl. Sprache.
14

Genome wide expression profiling of Echinococcus multilocularis / Genomweite Expressionsanalysen von Echinococcus multilocularis

Herz, Michaela January 2021 (has links) (PDF)
Alveolar echinococcosis, which is caused by the metacestode stage of the small fox tapeworm Echinococcus multilocularis, is a severe zoonotic disease with limited treatment options. For a better understanding of cestode biology the genome of E. multilocularis, together with other cestode genomes, was sequenced previously. While a few studies were undertaken to explore the E. multilocularis transcriptome, a comprehensive exploration of global transcription profiles throughout life cycle stages is lacking. This work represents the so far most comprehensive analysis of the E. multilocularis transcriptome. Using RNA-Seq information from different life cycle stages and experimental conditions in three biological replicates, transcriptional differences were qualitatively and quantitatively explored. The analyzed datasets are based on samples of metacestodes cultivated under aerobic and anaerobic conditions as well as metacestodes obtained directly from infected jirds. Other samples are stem cell cultures at three different time points of development as well as non-activated and activated protoscoleces, the larval stage that can develop into adult worms. In addition, two datasets of metacestodes under experimental conditions suitable for the detection of genes that are expressed in stem cells, the so-called germinative cells, and one dataset from a siRNA experiment were analyzed. Analysis of these datasets led to expression profiles for all annotated genes, including genes that are expressed in the tegument of metacestodes and play a role in host-parasite interactions and modulation of the host's immune response. Gene expression profiles provide also further information about genes that might be responsible for the infiltrative growth of the parasite in the liver. Furthermore, germinative cell-specific genes were identified. Germinative cells are the only proliferating cells in E. multilocularis and therefore of utmost importance for the development and growth of the parasite. Using a combination of germinative cell depletion and enrichment methods, genes with specific expression in germinative cells were identified. As expected, many of these genes are involved in translation, cell cycle regulation or DNA replication and repair. Also identified were transcription factors, many of which are involved in cell fate commitment. As an example, the gene encoding the telomerase reverse transcriptase (TERT) was studied further. Expression of E. multilocularis tert in germinative cells was confirmed experimentally. Cell culture experiments indicate that TERT is required for proliferation and development of the parasite, which makes TERT a potentially interesting drug target for chemotherapy of alveolar echinococcosis. Germinative cell specific genes in E. multilocularis also include genes of densoviral origin. More than 20 individual densovirus loci with information for non-structural and structural densovirus proteins were identified in the E. multilocularis genome. Densoviral elements were also detected in many other cestode genomes. Genomic integration of these elements suggests that densovirus-based vectors might be suitable tools for genetic manipulation of tapeworms. Interestingly, only three of more than 20 densovirus loci in the E. multilocularis genome are expressed. Since the canonical piRNA pathway is lacking in cestodes, this raises the question about potential silencing mechanisms. Exploration of RNA-Seq information indicated natural antisense transcripts as a potential gene regulation mechanism in E. multilocularis. Preliminary experiments further suggest DNA-methylation, which was previously shown to occur in platyhelminthes, as an interesting avenue to explore in future. The transcriptome datasets also contain information about genes that are expressed in differentiated cells, for example the serotonin transporter gene that is expressed in nerve cells. Cell culture experiments indicate that serotonin and serotonin transport play an important role in E. multilocularis proliferation, development and survival. Overall, this work provides a comprehensive transcription data atlas throughout the E. multilocularis life cycle. Identification of germinative cell-specific genes and genes important for host-parasite interactions will greatly facilitate future research. A global overview of gene expression profiles will also aide in the detection of suitable drug targets and the development of new chemotherapeutics against alveolar echinococcosis. / Alveoläre Echinokokkose wird durch das Metazestodenstadium des kleinen Fuchsbandwurms Echinococcus multilocularis verursacht und medizinisch als eine schwere Zoonose mit begrenzten Behandlungsmöglichkeiten betrachtet. Um ein besseres Verständnis für die Biologie der Zestoden zu erlangen, wurde das Genom von E. multilocularis, zusammen mit denen anderer Zestoden, bereits sequenziert. Bisher wurden nur wenige Studien zum Transkriptom von E. multilocularis durchgeführt und eine umfassende Analyse der Transkriptionsprofile über verschiedene Stadien des Lebenszyklus hinweg fehlt bislang. Diese Arbeit stellt die bisher umfassendste Untersuchung des Transkriptoms von E. multilocularis dar. Unterschiede in der Genexpression in verschiedenen Stadien des Lebenszyklus und unter experimentellen Bedingungen wurden qualitativ und quantitativ untersucht. Dazu wurden Daten aus RNA-Sequenzierungen in drei biologischen Replikaten verwendet. Die untersuchten Datensätze beruhen auf Proben von Metazestoden, die unter aeroben und anaeroben Bedingungen kultiviert, sowie von Metazestoden, die direkt aus Gerbilen isoliert wurden. Weitere Proben umfassen Stammzellkulturen zu drei verschiedenen Entwicklungszeitpunkten sowie nicht-aktivierte und aktivierte Protoskolizes, das Larvenstadium das sich zu Adulten entwickeln kann. Zusätzlich wurden zwei Datensätze von Metazestoden unter experimentellen Bedingungen, die zur Identifizierung stammzellspezifischer (keimzellspezifischer) Gene geeignet sind, sowie ein Datensatz von einem siRNA-Experiment untersucht. Die Analyse dieser Datensätze führte zu Genexpressionsprofilen für alle annotierten Gene, unter anderem für Gene, die im Tegument des Metazestoden exprimiert werden und eine Rolle spielen bei Wirt-Parasit-Interaktionen und der Modulierung der Immunantwort des Wirts. Genexpressionsprofile liefern zudem Informationen über Gene, die für das infiltrative Wachstum des Parasiten in der Leber verantwortlich sein könnten. Des Weiteren wurden keimzellspezifische Gene identifiziert. Keimzellen sind die einzigen proliferierenden Zellen in E. multilocularis und daher von essentieller Bedeutung für die Entwicklung und das Wachstum des Parasiten. Durch eine Kombination von Keimzelldepletierungs- und Keimzellanreicherungsverfahren wurden Gene mit keimzellspezifischer Expression identifiziert. Wie erwartet, sind viele dieser Gene in der Translation, der Zellzyklusregulation oder DNA-Replikation und –Reparatur involviert. Darüber hinaus wurden keimzellspezifisch exprimierte Transkriptionsfaktoren detektiert, von denen viele in der Festlegung des Zellschicksals eine Rolle spielen. Als Beispiel eines keimzellspezifischen Genes wurde das Gen, das für die reverse Transkriptase (TERT) kodiert, genauer untersucht. Die Expression von E. multilocularis tert in Keimzellen wurde experimentell bestätigt. Zellkulturexperimente weisen darauf hin, dass TERT für die Proliferation und die Entwicklung essentiell ist. TERT ist daher ein potentiell interessantes Wirkstofftarget für die chemotherapeutische Behandlung der alveolären Echinokokkose. Zu den keimzellspezifischen Genen in E. multilocularis gehören auch Gene densoviralen Ursprungs. Es wurden mehr als 20 Densovirusloci mit Informationen für nicht-strukturelle und strukturelle Densovirusproteine im E. multilocularis-Genom identifiziert. Densovirale Elemente wurden auch in vielen anderen Zestodengenomen detektiert. Die genomische Integration dieser Elemente deutet darauf hin, dass densovirus-basierte Vektoren zur genetischen Manipulation von Zestoden geeignet sein könnten. Interessanterweise sind nur drei von mehr als 20 Densovirusloci im E. multilocularis-Genom exprimiert. Da es in Zestoden keinen kanonischen piRNA-Signalweg gibt, stellt sich die Frage nach möglichen Genabschaltungsmechanismen. Die Analyse der RNA-Sequenzierdaten ergab Hinweise auf natürliche Antisense-Transkripte als einen möglichen Genregulationsmechanismus in E. multilocularis. Vorläufige Experimente und bisherige Studien deuten weiterhin darauf hin, dass DNA-Methylierung ein Mechanismus der Genregulation und -abschaltung in Zestoden sein könnte. Die Transkriptionsdaten enthalten auch Informationen zu Genen, die in differenzierten Zellen exprimiert werden, wie zum Beispiel das Serotonintransportergen, das in Nervenzellen exprimiert wird. Zellkulturversuche weisen darauf hin, dass Serotonin und Serotonintransport eine wichtige Rolle bei der Proliferation, der Entwicklung und dem überleben von E. multilocularis spielen. Insgesamt bietet diese Arbeit einen umfassenden Transkriptionsdatenatlas über die Stadien des Lebenszyklus von E. multilocularis. Die Identifizierung von keimzellspezifischen Genen und Genen, die für die Interaktion zwischen Wirt und Parasit wichtig sind, wird die zukünftige Forschung erheblich erleichtern. Ein globaler Überblick über die Genexpressionsprofile wird zudem hilfreich sein bei der Entdeckung geeigneter Wirkstofftargets und bei der Entwicklung neuer Chemotherapeutika gegen die alveoläre Echinokokkose.
15

Immunomodulation through Excretory/Secretory Products of the parasitic Helminth Echinococcus multilocularis / Immunmodulation durch Exkretorisch/Sekretorischen Produkten der parasitären Helminthen Echinococcus multilocularis

Nono, Justin January 2012 (has links) (PDF)
Die Alveoläre Echinokokkose (AE) ist eine lebensbedrohliche Zoonose, die durch das Metazestoden-Larvenstadium des Fuchsbandwurms Echinococcus multilocularis ausgelöst wird. Nach Eintritt des Parasiten in den Zwischenwirt wird zunächst eine potentiell anti-parasitische, Th1-dominierte Immunantwort ausgelöst, welche anschließend in der chronischen Phase graduell durch eine permissive, Th2-dominierte Antwort ersetzt wird. Als Ergebnis einer zugrunde liegenden Immunmodulation durch den Parasiten können Echinococcus-Larven für Jahre bis Jahrzehnte im Wirt persistieren und verhalten sich ähnlich einem perfekt transplantierten Organ. Über die molekulare Basis der Immunmodulation durch den Parasiten ist derzeit wenig bekannt. In dieser Arbeit wurden geeignete Kultursysteme für verschiedene E. multilocularis Larvenstadien verwendet, um den Einfluss exkretorisch/sekretorischer Metaboliten (E/S-Produkte) auf Wirts-Immuneffektor-Zellen zu studieren. E/S-Produkte kultivierter Larven, die die frühe (Primärzellen) und chronische (Metazestode) Phase der Infektion repräsentieren induzierten Apoptose und tolerogene Eigenschaften in Dendritischen Zellen (DC) des Wirts, während solche von Kontroll-Larven (Protoskolizes) keine derartigen Effekte zeigten. Dies zeigt, dass die frühen infektiösen Stadien von E. multilocularis in DC ein tolerierendes Milieu erzeugen, welches sehr wahrscheinlich die initiale Etablierung des Parasiten in einer Phase begünstigt, in der er höchst sensitiv gegenüber Wirtsangriffen ist. Interessanterweise förderten E/S-Produkte des Metazestoden in vitro die Konversion von CD4+ T-Zellen in Foxp3+, regulatorische T-Zellen (Treg) während E/S-Produkte von Primärzellen oder Protoskolizes dies nicht vermochten. Da Foxp3+ Tregs generell als immunosuppressorisch bekannt sind, deuten diese Daten an, dass der Metazestode aktiv eine Induktion von Tregs herbeiführt, um eine permissive Immunsuppression während einer Infektion zu erreichen. Eine substantielle Zunahme von Anzahl und Frequenz Foxp3+ Tregs konnte zudem in Peritoneal-Exsudaten von Mäuuen nach intraperitonealer Injektion von Parasitengewebe gemessen werden, was anzeigt, dass eine Expansion von Foxp3+ Tregs auch während der in vivo Infektion von Bedeutung ist. Interessanterweise konnte in dieser Arbeit ein Activin-Orthologes des Parasiten, EmACT, identifiziert werden, weleches vom Metazestoden sekretiert wird und ähnlich wie humanes Activin in der Lage ist, eine TGF-β-abhängige Expansion von Tregs in vitro zu induzieren. Dies zeigt an, dass E. multilocularis evolutionsgeschichtlich konservierte Zytokine nutzt, um aktiv die Wirts-Immunantwort zu beeinflussen. Zusammenfassend deuten die gewonnenen Daten auf eine wichtige Rolle Foxp3+ Tregs, welche u.a. durch EmACT induziert werden, im immunologischen geschehen der AE hin. Ein weiterer Parasiten-Faktor, EmTIP, mit signifikanten Homologien zum T-cell Immunomodulatory Protein (TIP) des Menschen wurde in dieser Arbeit näher charakterisiert. EmTIP konnte in der E/S-Fraktion von Primärzellen nachgewiesen werden und induzierte die Freisetzung von IFN-γ in CD4+ T-Helferzellen. Durch Zugabe von anti-EmTIP-Antikörpern konnte zudem die Entwicklung des Parasiten zum Metazestoden in vitro gehemmt werden. EmTIP dürfte daher einerseits bei der frühen Parasiten-Entwicklung im Zwischenwirt eine Rolle spielen und könnte im Zuge dessen auch die Ausprägung der frühen, Th-1-dominierten Immunantwort während der AE begünstigen. Zusammenfassend wurden in dieser Arbeit zwei E. multilocularis E/S-Faktoren identifiziert, EmACT und EmTIP, die ein hohes immunmodulatorisches Potential besitzen. Die hier vorgestellten Daten liefern neue, fundamentale Einsichten in die molekularen Mechanismen der Parasiten-induzierten Immunmodulation bei der AE und sind hoch relevant für die Entwicklung anti-parasitischer Immuntherapien. / Alveolar echinococcosis (AE) is a severe and life-threatening disease caused by the metacestode larva of the fox-tapeworm Echinococcus multilocularis. Parasite entry into the host evokes an early and potentially parasiticidal Th1 immune response that is gradually replaced by a permissive Th2 response. An immunoregulatory environment has also been reported in the host as the disease progresses. As a result of immunomodulation, E. multilocularis larvae persist in the host for decades without being expelled, and thus almost act like a perfect transplant. Very little is currently known on the molecular basis of the host immunomodulation by E. multilocularis. In this work, in vitro cultivation systems were used to assess the influence of metabolites released by the parasite larvae (E/S products) on host immune effector cells. E/S products of cultivated larvae that respresent the early (primary cells) and chronic (metacestode vesicles) phase of AE induced apoptosis and tolerogenic properties (poor responsiveness to LPS stimulation) in host dendritic cells (DC) whereas those of control larvae (protoscoleces) failed to do so. These findings show that the early infective stage of E. multilocularis induces tolerogenicity in host DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. Interestingly, metacestode E/S products promoted the conversion of naïve CD4+ T-cells into Foxp3+ regulatory T-cells in vitro, whereas primary cell and protoscolex E/S products failed to do it. Since Foxp3+ regulatory T-cells are generally known to mediate immunosuppression, the present finding indicates that Foxp3+ regulatory T-cells, expanded by E/S products of the metacestode larva, could play a role in the parasite-driven immunomodulation of the host observed during AE. Furthermore, a substantial increase in number and frequency of suppressive Foxp3+ regulatory T-cells could be observed within peritoneal exudates of mice following intraperitoneal injection of E. multilocularis metacestodes, indicating that Foxp3+ regulatory T-cells could also play an important role in E. multilocularis-driven immunomodulation in vivo. Interestingly, a parasite activin ortholog, EmACT, secreted by metacestodes, was shown to expand host regulatory T-cells in a TGF-β-dependent manner, similarly to mammalian activin A. This observation indicated that E. multilocularis utilizes evolutionarily conserved TGF-β superfamily ligands, like EmACT, to expand host regulatory T-cells. Taken together, the present findings suggest EmACT, a parasite activin secreted by the metacestode and capable of expanding host regulatory T-cells, as an important player in the host immunomodulation by E. multilocularis larvae. Another parasite factor EmTIP, homologous to mammalian T-cell immunomodulatory protein (TIP) was characterized in this work. EmTIP could be detected in the secretions of the parasite primary cells and localized to the intercellular space within the parasite larvae. EmTIP blockade inhibited the proliferation of E. multilocularis primary cells and the formation of metacestode vesicles indicating a major role for parasite development. Furthermore, EmTIP evoked a strong release of IFN-γ by CD4+ T-cells hence suggesting that the secretion of this factor as a result of its role in parasite development could “secondarily” induce a potentially protective Th1 response. In conclusion, this work identified two molecules, EmACT and EmTIP, with high immunomodulatory potential that are released by E. multilocularis larvae. The data presented do provide insights into the mechanisms of parasite-driven host immunomodulation during AE that are highly relevant for the development of anti-parasitic immune therapies.
16

Molecular characterization of the serotonin and cAMP-signalling pathways in Echinococcus / Molekulare Charakterisierung der Serotonin- und cAMP-Signalwege in Echinococcus

Herz, Michaela January 2015 (has links) (PDF)
Alveolar and cystic echinococcosis, caused by Echinococcus multilocularis and Echinococcus granulosus respectively, are severe zoonotic diseases with limited treatment options. The sole curative treatment is the surgical removal of the complete parasite material. Due to late diagnosis, chemotherapeutic treatment often is the only treatment option. Treatment is based on benzimidazoles, which merely act parasitostatic and often display strong side effects. Therefore, new therapeutic drugs are urgently needed. Evolutionarily conserved signalling pathways are known to be involved in hostparasite cross-communication, parasite development and survival. Moreover, they represent potential targets for chemotherapeutic drugs. In this context the roles of the serotonin- and cAMP-signalling pathways in Echinococcus were studied. Genes encoding serotonin receptors, a serotonin transporter and enzymes involved in serotonin biosynthesis could be identified in the E. multilocularis and E. granulosus genomes indicating that these parasites are capable of synthesizing and perceiving serotonin signals. Also the influence of exogenous serotonin on parasite development was studied. Serotonin significantly increased metacestode vesicle formation from primary cells and re-differentiation of protoscoleces. Inhibition of serotonin transport with citalopram significantly reduced metacestode vesicle formation from primary cells and caused death of protoscoleces and metacestodes. Furthermore, it could be shown that serotonin increased phosphorylation of protein kinase A substrates. Taken together, these results show that serotonin and serotonin transport are essential for Echinococcus development and survival. Consequently, components of the serotonin pathway represent potential drug targets. In this work the cAMP-signalling pathway was researched with focus on G-protein coupled receptors and adenylate cyclases. 76 G-protein coupled receptors, including members of all major families were identified in the E. multilocularis genome. Four genes homologous to adenylate cyclase IX were identified in the E. multilocularis genome and three in the E. granulosus genome. While glucagon caused no significant effects, the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor 2’, 5’ didesoxyadenosine influenced metacestode vesicle formation from primary cells, re-differentiation of protoscoleces and survival of metacestodes. It was further shown that forskolin increases phosphorylation of protein kinase A substrates, indicating that forskolin activates the cAMP-pathway also in cestodes. These results indicate that the cAMP signalling pathway plays an important role in Echinococcus development and survival. To complement this work, the influence of different media and additives on E. granulosus protoscoleces was investigated. Anaerobic conditions and the presence of FBS prolonged protoscolex survival while different media influenced protoscolex activation and development. Taken together, this work provided important insights into developmental processes in Echinococcus and potential drug targets for echinococcosis chemotherapy. / Alveoläre und zystische Echinokokkose, hervorgerufen durch Echinococcus multilocularis und Echinococcus granulosus, sind schwere zoonotische Erkrankungen mit eingeschränkten Behandlungsmöglichkeiten. Die einzig kurative Therapie besteht in der chirurgischen Entfernung des gesammten Parasitenmaterials. Aufgrund später Diagnosestellung stellt Chemotherapie oft die einzige Behandlungsmöglichkeit dar. Die derzeitige Therapie basiert auf Benzimidazolen, welche nur parasitostatisch wirken und oft schwere Nebenwirkungen hervorrufen. Neue Medikamente werden daher dringend benötigt. Evolutionär konservierte Signalwege sind bekanntermaßen an Wirt-Parasit Kreuzkommunikation, Parasitenentwicklung und deren Überleben beteiligt. Darüber hinaus stellen sie auch mögliche Angriffspunkte für Chemotherapeutika dar. In diesem Zusammenhang wurden die Rollen des Serotonin- und des cAMP-Signalwegs in Echinococcus untersucht. Gene für Serotoninrezeptoren, einen Serotonintransporter und für Enzyme, die in der Serotoninsynthese involviert sind, konnten in den E. multilocularis und E. granulosus Genomen identifiziert werden, was darauf schließen lässt, dass diese Parasiten in der Lage sind, Serotonin selbst herzustellen und zu sensieren. Des Weiteren wurde der Einfluss von exogenem Serotonin auf die Parasitenentwicklung untersucht. Serotonin förderte die Bildung von Metazestodenvesikeln aus Primärzellen und die Rückdifferenzierung von Protoskolizes signifikant. Die Hemmung des Serotonintransports mit Citalopram reduzierte die Bildung von Metazestodenvesikeln aus Primärzellen signifikant und führte zum Absterben von Protoskolizes undMetazestoden. Des Weiteren konnte gezeigt werden, dass Serotonin die Posphorylierung von Proteinkinase A Substraten erhöht. Zusammengefasst zeigen diese Ergebnisse, dass Serotonin und Serotonintransport essentiell f¨ur die Entwicklung und das Überleben von Echinococcus sind. Folglich stellen Komponenten des Serotoninsignalwegs potentielle Angriffspunkte für Medikamente dar. In dieser Arbeit wurde der cAMP-Signalweg mit Schwerpunkt auf G-Protein gekoppelte Rezeptoren und Adenylatzyklasen untersucht. 76 G-Protein gekoppelte Rezeptoren, inclusive Mitglieder aller Hauptfamilien, wurden im E. multilocularis-Genom identifiziert. Vier Homologe zur Adenylatzyklase IX wurden im E. multilocularis- Genom und drei im E. granulosus-Genom identifiziert. Während Glukagon keine signifikanten Effekte hervorrief, beeinflussten der Adenylatzyklase-Aktivator Forskolin und der Adenylatzyklase-Inhibitor 2’, 5’-Didesoxyadenosin die Bildung von Metazestodenvesikeln aus Primärzellen, die Rückdifferenzierung von Protoskolizes und das Überleben vonMetazestoden. Zudem wurde gezeigt, dass Forskolin die Phosphorylierung von Proteinkinase A-Substraten erhöht. Dies bestätigt, dass Forskolin den cAMP-Signalweg aktiviert. Diese Ergebnisse legen nahe, dass der cAMP-Signalweg eine wichtige Rolle in der Entwicklung und dem Überleben von Echinococcus spielt. Um diese Arbeit zu vervollständigen, wurde der Einfluss von verschiedenen Medien und Zusätzen auf E. granulosus Protoskolizes untersucht. Anaerobe Bedingungen und die Anwesenheit von FBS verlängerten das Überleben von Protoskolizes, während verschiedene Medien die Aktivierung und die Entwicklung von Protoskolizes beeinflussten. Insgesamt gibt diese Arbeit wichtige Einblicke in Entwicklungsprozesse von Echinococcus und zeigt potentielle Angriffspunkte für Medikamente auf.
17

Targeting flatworm signaling cascades for the development of novel anthelminthic drugs / Signalkaskaden von Plattwürmern als Angriffspunkte zur Entwicklung neuer Antihelminthika

Gelmedin, Verena Magdalena January 2008 (has links) (PDF)
Echinococcus multilocularis verursacht die Alveoläre Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen Möglichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In Fällen operabler Läsionen erfordert die Resektion des Parasitengewebes über einen längeren Zeitraum eine chemotherapeutische Unterstützung. Damit sind die jetzigen Behandlungsmöglichkeiten inadäquat und benötigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von Plattwürmern analysiert, um potentielle Targets für neue therapeutische Ansätze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-ähnliches MAPK Modul bildet. Ich konnte zudem verschiedene Einflüsse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin ähnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivität der Echinokokkenzellen. Zusätzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivität von Rezeptor-Tyrosin-Kinasen gerichtete Präparate, (3.) ursprünglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden Gründen als vielversprechendes Target erwiesen. Aminosäuresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivität des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivität humaner p38 MAPK-α. Zusätzlich suggerieren die prominente Autophosphorylierungsaktivität von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivität von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abhängiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte Säugerzellen nicht beeinträchtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln während der Kultivierung von Echinococcus Primärzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-ähnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrität der Metazestodenvesikeln während der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. Ähnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgeführten Inhibitoren. Zusammenfassend lässt sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten führten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein Überlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden könnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken. / Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), a life-threatening disease with limited options of chemotherapeutic treatment. Anti-AE chemotherapy is currently based on a single class of drugs, the benzimidazoles. Although acting parasitocidic in vitro, benzimidazoles are merely parasitostatic during in vivo treatment of AE and cause severe site effects. In the case of operable lesions, the resection of parasite tissue needs to be supported by a prolonged chemotherapy. Thus, the current treatment options for AE are inadequate and require alternatives. In the present work, the flatworm signaling pathways were analyzed to establish potential targets for novel therapeutic approaches. I focused on factors that are involved in development and proliferation of E. multilocularis using molecular, biochemical and cell biological methods. Among the analysed factors were three MAP kinases of the parasite, EmMPK1, an Erk-1/2 orthologue, EmMPK2, a p38 orthologue and EmMPK3, an Erk7/8 orthologue. Further, I identified and characterized EmMKK2, a MEK1/2 orthologue of the parasite, which, together with the known kinases EmRaf and EmMPK1, forms an Erk1/2-like MAPK module. Moreover, I was able to demonstrate several influences of host growth factors such as EGF (epidermal growth factor) and insulin on worm signaling mechanisms and larval growth, including the phosphorylation of Elp, an ezrin-radixin-moesin like protein, EmMPK1, EmMPK3 and increased mitotic activity of Echinococcus cells. In addition, several substances were examined for their efficacy against the parasite including (i) general tyrosine kinase inhibitors (PP2, leflunamide), (ii) compounds designed to inhibit the activity of receptor tyrosine kinases, (iii) anti-neoplastic agents (miltefosine, perifosine), (iv) serine/threonine kinase inhibitors that have been designed to block the Erk1/2 MAPK cascade and (v) inhibitors of p38 MAPKs. In these studies, EmMPK2 proved to be a promising drug target for the following reasons. Amino acid sequence analysis disclosed several differences to human p38 MAPKs, which is likely to be the reason for the observed enhanced basal activity of recombinant EmMPK2 towards myelin basic protein in comparison to human recombinant p38 MAPK-α. In addition, the prominent auto-phosphorylation activity of the recombinant EmMPK2 protein together with the absence of an interaction with the Echinococcus MKKs suggest a different mechanism of regulation compared to the human enzyme. EmMPK2 activity could be effectively inhibited in vitro and in cultivated metacestode vesicles by treatment with SB202190 and ML3403, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. Moreover, both compounds, in particular ML3403, caused parasite vesicle inactivation at concentrations which did not affect cultured mammalian cells. Likewise, during the cultivation of Echinococcus primary cells, the presence of ML3403 prevented the generation of new vesicles. Targeting members of the EGF signaling pathway, particulary of the Erk1/2-like MAPK cascade, with Raf and MEK inhibitors prevented the phosphorylation of EmMPK1 in metacestodes cultivated in vitro. However, although parasite growth was prevented under these conditions, the structural integrity of the metacestode vesicles maintained during long-term cultivation in the presence of the MAPK cascade inhibitors. Similar results were obtained when studying the effects of other drugs mentioned above. Taken together, several targets could be identified that reacted with high sensitivity to the presence of inhibitory substances, but did not cause the parasite’s death with one exception, the pyridinyl imidazoles. Based on the presented data, I suggest pyridinyl imidazoles as a novel class of anti-Echinococcus drugs and imply EmMPK2 as survival signal mediating factor, the inhibition of which could be used for the treatment of AE.
18

Molekulare Untersuchungen zur Rolle von Homeobox-Genen bei der Entwicklung von Echinococcus multilocularis / Molecular analysis of the impact of homeoboxgenes in the development of Echinococcus multilocularis

Müller, Sophia January 2009 (has links) (PDF)
Die alveoläre Echinokokkose ist eine, vorrangig in der nördlichen Hemisphäre verbreitete, parasitäre Erkrankung. Verursacht wird sie beim Menschen durch das Larvenstadium des Fuchsbandwurms. Homeoboxgene sind hochkonservierte Gene, die die Morphogenese von Lebewesen steuern. Die Anzahl und die Bedeutung von Homeoboxgenen in der Entwicklung von E.multilocularis waren bislang unbekannt. Im Rahmen dieser Arbeit konnten mit Hilfe von Sequenzanalysen im Genom des Fuchsbandwurms erstmals Homeoboxgene identifiziert und deren Expressionsmuster mittels PCR in verschiedenen Larvenstadien charakterisiert werden. Von insgesamt 23 gefundenen Homeoboxgenen wurden 15 Gene auf ihre larvenstadienspezifische Expression untersucht. Neun der untersuchten Gene zeigten in dem gewählten Versuchsaufbau eine Expression in den untersuchten Larvenstadien, fünf davon zeigten eine verstärkte Expression in den späten Larvenstadien. Für acht dieser neun Gene ließen sich darüber hinaus Hinweise auf eine Prozessierung ihrer mRNA über den Mechanismus des Trans-Spleißens finden. Vorangehende Versuche der Arbeitsgruppe von Prof. Brehm hatten einen Zusammenhang zwischen einer Stimulation früher Entwicklungsstadien der Parasitenlarven mit dem Zytokin BMP-2 und dessen rascherer Entwicklung in spätere Entwicklungsstadien nahegelegt. Die Auswirkung einer Behandlung früher Entwicklungsstadien mit dem Zytokin BMP-2 auf die jeweilige Genexpression wurde daher für die ausgewählten 15 Gene überprüft. Fünf Gene zeigten unter dessen Einfluss eine verstärkte Expression. Zwei darunter waren solche, die eine stärkere Expression in späten Larvenstadien aufwiesen. Diese zwei Gene stellen nun Kandidaten dar, die an der Entwicklung von E.multilocularis maßgeblich beteiligt sein könnten. Durch die Untersuchungen dieser Arbeit ergaben sich wichtige Hinweise auf die Entwicklung und die Regulationsmechanismen der Genexpression von E. multilocularis. Sie bilden eine Grundlage, die Rolle der Homeoboxgene für den Fuchsbandwurm näher zu beschreiben und die hormonelle Kreuzregulation zwischen Parasit und Wirt weiter zu studieren. / Alveolar Echinococcosis is a rather rare parasitic disease, mainly occuring in the northern hemisphere. It is caused by the larval stage of the flatworm Echinococcus multilocularis. Homeoboxgenes are highly conserved genes, that play a crucial role in the development of organism. Until now neither the number in nor the importance of these genes for E.multilocularis was known. Within this study we could identify the homeoboxgenes in the genome of E.multilocularis and analyse the expression pattern in different larval stages. All together we found a number of 23 homeoboxgenes, the expression pattern in different larval stages was analysed for 15 genes. Within the chosen experimental setup nine of the genes were expressed, five showed higher expression in later larval stages. Furthermore there was a strong hint for the processing of mRNA through trans-splicing for eight genes. Previous experiments of the working group Brehm had shown a relation between a stimulation of young metacestodes with the cytokine BMP-2 and a faster development towards later larval stages. Therefore we anaylsed the effect of the cytokine BMP-2 on the geneexpression pattern of fifteen genes. Under its influence five genes showed higher expression rates. Two belonged to the group of genes that had shown higher expression in later larval stages. These two genes could potentially be candidates with a high significance in the development of E.multilocularis. Due to this work we could elucidate important hints for the development of E.multilocularis and the regulation of its gene expression. Based on these findings it will be possible to study the role of homeoboxgenes and the host-parasite cross-regulation in E.multilocularis in more detail.
19

Molekulare Charaktierisierung einer DyP-Typ Peroxidase des Humanparasiten \(Echinococcus\) \(multilocularis\) / Molecular characterisation of a DyP-type peroxidase of the human parasite \(Echinococcus\) \(multilocularis\)

Ulrich, Johannes January 2024 (has links) (PDF)
Die Alveoläre Echinokokkose (AE) ist eine tödliche Infektionserkrankung, die durch den parasitären Plattwurm Echinococcus multilocularis verursacht wird. Genomanalysen von E. multilocularis ergaben ein Gen, das laut Vorhersage für eine DyP-Typ Peroxidase codiere. Ziel dieser Arbeit ist die biologische Funktion des codierten Enzyms besser zu verstehen und Hinweise auf eine mögliche Rolle in der Abwehr von Reaktiven Sauerstoffspezies (ROS) zu erlangen. Das Gen wurde heterolog in E. Coli exprimiert und molekulare Charakteristika des Gens mit bioinformatischen und molekularbiologischen Methoden untersucht. Quantitative RT-PCR Untersuchungen gaben Aufschluss über das Transkriptprofil von emipox in unterschiedlichen Entwicklungsstadien von E. mulitlocularis. Mittels Whole-Mount In Situ-Hybridisierung (WMISH) wurden die Transkripte zudem lokalisiert und ihre Beziehung zum Stammzellsystem von E. multilocularis näher untersucht. Die Zugehörigkeit von EmIPOX zur Gruppe der DyP-Typ Peroxidasen wurde bestätigt. Homologe beim Menschen kommen nicht vor. Es konnte nachgewiesen werden, dass Transkripte von emipox auch, aber keinesfalls ausschließlich, in Stammzellen vorliegen. Überdurchschnittlich viele Transkripte liegen im aktivierten Protoscolex und im Metacestoden ex vivo aus einer infizierten Wirtsleber vor. Untersuchungen zur Enzymaktivität von EmIPOX zeigten neben einer Peroxidase- auch eine Katalaseaktivität. Die vorliegende Arbeit ist die erste Charakterisierung einer DyP-Typ Peroxidase bei Tieren. Sie legt nahe, dass EmIPOX eine Rolle in der Entgiftung von ROS in E. multilocularis spielt und stellt den Charakter von EmIPOX als potenzieller pharmakologischer Zielstruktur heraus. / Alveolar echinococcosis (AE) is a fatal infectious disease caused by the parasitic flatworm Echinococcus multilocularis. Genome analyses of E. multilocularis revealed a gene predicted to encode a DyP-type peroxidase. The aim of this work is to better understand the biological function of the encoded enzyme and to obtain information on a possible role in the defence against reactive oxygen species (ROS). The gene was heterologously expressed in E. Coli and molecular characteristics of the gene were investigated using bioinformatic and molecular biological methods. Quantitative RT-PCR analyses provided information on the transcript profile of emipox in different developmental stages of E. mulitlocularis. Whole-mount in situ hybridisation (WMISH) was also used to localise the transcripts and investigate their relationship to the stem cell system of E. multilocularis. The affiliation of EmIPOX to the group of DyP-type peroxidases was confirmed. There are no homologues in humans. It has been shown that transcripts of emipox are also, but by no means exclusively, present in stem cells. An above-average number of transcripts are present in the activated protoscolex and in the metacestode ex vivo from an infected host liver. Investigations into the enzyme activity of EmIPOX revealed both peroxidase and catalase activity. The present work is the first characterisation of a DyP-type peroxidase in animals. It suggests that EmIPOX plays a role in the detoxification of ROS in E. multilocularis and highlights the character of EmIPOX as a potential pharmacological target.
20

Molekulare Charakterisierung eines Mitgliedes der TNF-Rezeptor-Superfamilie des Fuchsbandwurmes \(Echinococcus\) \(multilocularis\) / Molecular characterization of a TNF-receptor-superfamily member of \(Echinococcus\) \(multilocularis\)

Pätzel [geb. Ditter], Katharina Sabine January 2024 (has links) (PDF)
Die alveoläre Echinokokkose (AE), die durch den Fuchsbandwurm Echinococcus multilocularis verursacht wird, ist eine seltene jedoch schwere und oft tödlich verlaufende Erkrankung. Aufgrund der späten Diagnosestellung sind kurative Behandlungsmethoden häufig nicht durchführbar und als einzige Behandlungsmöglichkeit bleibt eine lebenslange und nebenwirkungsreiche Therapie mit Benzimidazolen. Verbesserte Therapieoptionen durch die Entwicklung neuer Medikamente sind dringend notwendig. Hierfür kann es hilfreich sein die Biologie des Fuchsbandwurmes und die Kommunikationswege zwischen Parasit und Wirt zu verstehen. Bereits in vorherigen Arbeiten als auch in dieser Arbeit erwiesen sich evolutionsgeschichtlich konservierte Signalwege als Kommunikationsweg zwischen dem Fuchsbandwurm und seinem Wirt von zentraler Rolle. Die Entschlüsselung des Echinococcus-Genoms gab Hinweise darauf, dass ein Mitglied der Tumornekrosefaktor-Rezeptor-Superfamilie, jedoch kein endogener TNF α ähnlicher Ligand im Genom kodiert wird. Ein Mitglied der TNFR-Superfamilie des Fuchsbandwurmes (EmTNFR) wurde in dieser Arbeit als membranständiger Rezeptor mit einer intrazellulären Todesdomäne (DD) und hoher Ähnlichkeit zum humanen Typ 16 der TNF-Rezeptor-Superfamilie, auch 〖p75〗^NTR genannt, charakterisiert. Sowohl in bioinformatischen als auch in Sequenzanalysen wurden drei alternative Splicing-Formen von emtnfr (emtnfr, emtnfr-v2 und emtnfr-v3) nachgewiesen. emtnfr-v2 entsteht durch Alternatives Splicing und kodiert ein Protein, das keine intrazelluläre Todesdomäne besitzt. emtnfr-v3 verwendet einen alternativen Transkriptionstart und wird von den letzten 3 Exons von emtnfr kodiert. emtnfr-v3, kodiert ein Protein ohne extrazelluläre Region, aber mit intrazellulärer Todesdomäne. Ein löslicher TNF-Rezeptor konnte auf Proteinebene nicht nachgewiesen werden. Aufgrund von phylogenetischen Analysen und der Rezeptor-Struktur ist zu vermuten, dass EmTNFR ein p75NTR Homolog ist und damit der ursprünglichen Form der TNF-Rezeptoren entspricht. Mitglieder eines intrazellulären TNF-Signalweges wurden in bioinformatischen Analysen beim Fuchsbandwurm E. multilocularis identifiziert. Expressionsuntersuchungen zeigten sowohl in Trankriptomdaten als auch auf Proteinebene eine starke Expression von EmTNFR in Primärzellen und im Metazestoden (MZ), dem pathogenen Stadium für den Zwischenwirt. Echinococcus-Stammzellkulturen zeigten nach RNA-Interferenz-basiertem Knockdown des EmTNFR-kodierenden Gens deutliche Entwicklungsdefekte. Des Weiteren zeigten Echinococcus-Stammzellkulturen nach einer Behandlung mit TNF-α, einem potentiellen Liganden des TNF-Rezeptors und einem zentralen Zytokin in der Immunabwehr des Zwischenwirtes, Entwicklungsfortschritte, wie eine verbesserte Bildung von MZ aus Stammzellen. Zusätzlich wurde in whole-mount in situ Hybridisierungs-Versuchen eine ubiquitäre Expression von emtnfr in der Germinalschicht des MZ sowie eine Spezifität von emtnfr für den MZ, welcher ursächlich für die AE ist, nachgewiesen. Somit scheinen sowohl EmTNFR als auch TNF-α eine wichtige Funktion bei der Entwicklung und Etablierung des Fuchsbandwurmes während der frühen Phase der Infektion des Zwischenwirtes zu haben. TNF-α könnte ein weiterer Faktor für den ausgeprägten Organtropismus des Parasiten zur Leber sein, denn dort bestehen durch Kupfferzellen produzierte hohe lokale Konzentration von TNF-α. Zusammenfassend deuten die hier erarbeiteten Daten darauf hin, dass EmTNFR über die Bindung von Wirts-TNF-α bei der frühen Entwicklung des Echincoccus-Metazestoden eine Rolle spielt. / Alveolar echinococcosis (AE), which is caused by the metacestode larval stage of the fox tapeworm Echinococcus multilocularis, is a rare but severe, often fatal disease. Due to late diagnosis and advanced spread of the infection curative therapy is often not possible and the only treatment option is benzimidazole chemotherapy, which often must be taken lifelong and has adverse side effects. Improvement of therapeutic options is thus urgently needed. To this end, a closer understanding of parasite biology and communication mechanisms between parasite and host are helpful. In this work, focus was laid on the possibility of host-parasite cross-communication involving an evolutionarily conserved signalling pathway. By mining the Echinococcus genome sequence, a gene encoding a member of the tumor necrosis-factor-receptor family (TNF-R), was identified. In this work, EmTNFR, a member of the TNF-R superfamily, of the fox tapeworm was identified as a membrane bound receptor with intracellular death domain and highest similarity to human TNFRSF 16, also called p75NTR. In in silico analysis and cDNA sequencing, 3 alternative splice forms of emtnfr (emtnfr-v1, -v2 and -v3) were found. emtnfr-v2 is the result of alternative splicing and encodes a protein lacking the intracellular death domain. emtnfr-v3 employs an alternative transcription start and is encoded by the last 3 exons of emtnfr. emtnfr-v3 encodes a protein without extracellular domain, but containing an intracellular death domain. A soluble TNF-receptor could not be found in proteomic analysis. Based on phylogenetic analysis and receptor structure, EmTNFR is thought to be a homolog of p75NTR, corresponding to the ancient form of TNF receptors. Members of an intracellular TNF signaling pathway were identified in bioinformatic analyses in the fox tapeworm E. multilocularis, indicating the presence of a full TNFR signalling pathway. Expression studies showed in transcriptome data and at protein level a strong expression of EmTNFR in primary cells and in the metacestode (MZ), the pathogenic stage for the intermediate host. Echinococcus stem cell cultures showed marked developmental defects after RNAi based knockdown of the EmTNFR-encoding gene. Furthermore, Echinococcus stem cell culture displayed accelerated developmental progress such as enhanced formation of MZ from stem cells after treatment with TNF-α, a potential ligand of the TNF receptor, and a central cytokine in the immune defense of the intermediate host. In addition, whole-mount in situ hybridization experiments demonstrated ubiquitous expression of emtnfr in the germinal layer of MZ and specificity of emtnfr for MZ, the causative agent of AE. Thus, both EmTNFR and TNF-α appear to have an important function in development and establishment of the fox tapeworm during the early phase of infection of the intermediate host. TNF-α could be an additional factor for the pronounced organ tropism of the parasite to the liver, caused by a high local concentration of TNF-α produced by Kupffer cells. In summary, the data generated in this work suggest that EmTNFR plays a role in the early development of Echinococcus metacestode via binding of host TNF-α.

Page generated in 0.0492 seconds