• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 19
  • 18
  • 16
  • 14
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 46
  • 26
  • 25
  • 24
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Effects of Layer Thickness on Electroluminescence of Fully Conjugated Rigid-rod Polymer Light Emitting Diodes

Tseng, Hua-wei 12 July 2008 (has links)
A heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) was applied as the opto-electronic layer¡Fand a conducting material of poly(3,4-ethylenedioxythio-phene):poly(4-styrenesulfonic acid) (PEDOT: PSS) was used as the hole transport layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode¡Arespectively, fabricated into a bi-layer structure of ITO/PEDOT:PSS/PBO/Al for electrical and luminescence responses. This research demonstrated an increase of current density and a decrease of threshold voltage with a decrease of PBO layer thickness from 90 nm to 27 nm to facilitate electron tunneling and electron-hole recombination. With a lower spin coating speed, polymer chain would aggregate and inter-penetrate resulted in red-shift of electroluminescence (EL) emission spectrum. Furthermore, micro-cavity effect might influence EL spectrum by varying layer thickness. Modulation of PBO layer thickness led to tunable EL emission color. It was also demonstrated that an increase of current density and a slightly decrease of threshold voltage with a PEDOT:PSS film thickness changing from 96 nm to 17 nm at a constant PBO layer thickness of 90 nm. Micro-cavity effect thus influenced EL emission for a tunable emission color. Photolithography was applied to obtain ITO substrate of grating depth of periodic variation and then coated with a PEDOT:PSS leading to a grated PEDOT:PSS layer of periodic thickness. This led to ITO/PEDOT:PSS/PBO/Al device showing broadened EL emission spectra.
62

Study on the Floating Platform for Cage Aquaculture

Tang, Hung-jie 23 December 2008 (has links)
This paper is to investigate the wave-induced dynamic properties of the floating platform for cage aquaculture. Considering the calculation efficiency and its applicability, this problem is simplified by: (1) assuming the flow field is inviscid, incompressible and irrotational; (2) the form drag and inertia drag on the fish net is calculated by the modified Morison equation (or Morison type equation of relative motion), including the material and geometric properties; (3) the moorings is treated as a symmetric linear spring system and the influence of hydrodynamic forces on the mooring lines is neglected; and (4) the net-volume is assumed as un-deformable to avoid the inversely prolonging computing time because the mass of fish net with is too light comparing with the mass of floating platform and cause the marching time step tremendously small to reach the steady-state condition which may lead to larger numerical errors (e.g. truncation errors) in computation. The BIEM with linear element scheme is applied to establish a 2D fully nonlinear numerical wave tank (NWT). The nonlinear free surface condition is treated by combining the Mixed Eulerian and Lagrangian method (MEL), the fourth-order Runge-Kutta method (RK4) and the cubic spline scheme. The second-order Stokes wave theory is adopted to give the velocity on the input boundary. Numerical damping zones are deployed at both ends of the NWT to dissipate or absorb the transmitted and reflected wave energy. The velocity and acceleration fields should be solved simultaneously in order to obtain the wave-induced dynamic property of the floating platform. Thus, both the acceleration potential method and modal decomposition method are adopted to solve the wave forces on the floating body, while the wave forces on the fish net are calculated by the modified Morison equation. According to Newton¡¦s second law, the total forces on the gravity center of the floating platform form the equation of motion. Finally, the RK4 is applied to predict the displacement and velocity of the platform. Firstly, the NWT is validated by comparing the wave elevation, internal velocity and acceleration with those from the second-order Stokes wave theory. Moreover, the numerical damping zone is suitable for long time simulation with a wide range of wave depth. The simulated results on wave-body interactions of fixed or freely floating body also indicate good agreement with those of other published results. Secondly, in the case of the interaction of waves and the floating platform, the simulated results show well agreement with experimental data, except at the vicinity of resonant frequency of roll and heave motions. This discrepancy is due to the fluid viscous effect. To overcome this problem and maintain the calculation efficiency, an uncoupled damping coefficient obtained by a damping ratio (£i=0.1 ) is incorporated into the vibration system. Results reveal that responses of body motion near the resonant frequencies of each mode have significant reduction and close to the experimental data. Moreover, the results are also consistent well with experiments in different wave height, mooring angle, water depth either with or without fish net. Therefore, the suitable value of the damping ratio for the floating platform is £i=0.1. Finally, the present model is applied to investigate the dynamic properties of the floating platform under different draft, width, spacing, spring constant, mooring angle and depth of fish net. Results reveal that the resonant frequency and response of body motion, mooring force, reflection and transmission coefficients and wave energy will be changed. According to the resonant response, the platform with shallower draft, larger width, longer spacing between two pontoons, smaller spring constants, or deeper depth of fish net has more stable body motions and smaller mooring forces. Irregular wave cases are presented to illustrate the relationship with the regular wave cases. Results indicate that the dynamic responses of body motion and the reflection coefficient in irregular waves have similar trend with regular waves. However, in the irregular wave cases, the resonant frequency is moved to the higher frequency. Similarly, resonant response function is smaller but wider, which is due to the energy distribution in the wave spectrum.
63

Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

Sotoudeh, Zahra 05 July 2011 (has links)
Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.
64

Regularity of a segregation problem with an optimal control operator

Soares Quitalo, Veronica Rita Antunes de 16 September 2013 (has links)
It is the main goal of this thesis to study the regularity of solutions for a nonlinear elliptic system coming from population segregation, and the free boundary problem that is obtained in the limit as the competition parameter goes to infinity [mathematical symbol]. The main results are existence and Hölder regularity of solutions of the elliptic system, characterization of the limit as a free boundary problem, and Lipschitz regularity at the boundary for the limiting problem. / text
65

Analysis of mass transfer by jet impingement and study of heat transfer in a trapezoidal microchannel

Ojada, Ejiro Stephen 01 June 2009 (has links)
This thesis numerically studied mass transfer during fully confined liquid jet impingement on a rotating target disk of finite thickness and radius. The study involved laminar flow with jet Reynolds numbers from 650 to 1500. The nozzle to plate distance ratio was in the range of 0.5 to 2.0, the Schmidt number ranged from 1720 to 2513, and rotational speed was up to 325 rpm. In addition, the jet impingement to a stationary disk was also simulated for the purpose of comparison. The electrochemical fluid used was an electrolyte containing 0.005moles per liter potassium ferricyanide (K3(Fe(CN6)), 0.02moles per liter ferrocyanide (FeCN6?4), and 0.5moles per liter potassium carbonate (K2CO3). The rate of mass transfer of this electrolyte was compared to Sodium Hydroxide (NaOH) and Hydrochloric acid (HCl) electrochemical solutions. The material of the rotating disk was made of 99.98% nickel and 0.02% of chromium, cobalt and aluminum. The rate of mass transfer was also examined for different geometrical shapes of conical, convex, and concave confinement plates over a spinning disk. The results obtained are found to be in agreement with previous experimental and numerical studies. The study of heat transfer involved a microchannel for a composite channel of trapezoidal cross-section fabricated by etching a silicon wafer and bonding it with a slab of gadolinium. Gadolinium is a magnetic material that exhibits high temperature rise during adiabatic magnetization around its transition temperature of 295K. Heat was generated in the substrate by the application of magnetic field. Water, ammonia, and FC-77 were studied as the possible working fluids. Thorough investigation for velocity and temperature distribution was performed by varying channel aspect ratio, Reynolds number, and the magnetic field. The thickness of gadolinium slab, spacing between channels in the heat exchanger, and fluid flow rate were varied. To check the validity of simulation, the results were compared with existing results for single material channels. Results showed that Nusselt number is larger near the inlet and decreases downstream. Also, an increase in Reynolds number increases the total Nusselt number of the system.
66

Quantum groundstates of the spin-1/2 XXZ model on a fully-frustrated honeycomb lattice

Inglis, Stephen January 2010 (has links)
In this thesis we present results from quantum Monte Carlo for the fully-frustrated honeycomb lattice. The XXZ model is of interest in the classical limit, as there is a mapping between the classical fully-frustrated honeycomb Ising model groundstates and the classical hard-core dimer model groundstate. The aim of this work is to explore the effect of quantum fluctuations on the fully-frustrated honeycomb model to see what sort of interesting physics arises. One might expect unusual physics due to the quantum hard-core dimer model, where interesting physics are known to exist. This is because there is a duality mapping between the classical dimer model and the classical fully-frustrated honeycomb Ising model. Indeed, by studying the fully-frustrated honeycomb XXZ model we find that in some cases the system orders into crystal-like structures, a case of order-by-disorder. The most interesting case, when the frustrating bonds are chosen randomly, reveals to us a novel state without any discernible order while at the same time avoiding the freezing one would expect of a glass. This state is a featureless system lacking low temperature magnetic susceptibility---a candidate ``quantum spin liquid''. Future work that might more easily measure quantum spin liquid criteria is suggested.
67

Hedging the Return on Equity and Firm Profit: Evidence from Canadian Oil and Gas Companies

Zhu, Jiachi 22 August 2012 (has links)
In this thesis, we analyse the relationship between the hedging activities and return on equity, and the relationship between profit on hedging and other factors. Fully conditional specification is used to impute the missing values. Instrumental variable estimation and finite mixture of regression models are then used to predict the return on equity and hedging gain. We find the instrumental variable estimation is better than the OLS estimation to deal with the hedging data since it eliminates the endogeneity. By finite mixture of regression models, we show that different firms have different hedging strategies, which cause different profits in hedging. We also find the companies with large total assets prefer to hedge.
68

Three Essays on Time Series Quantile Regression

Wang, Yini 01 August 2012 (has links)
This dissertation considers quantile regression models with nonstationary or nearly nonstationary time series. The first chapter outlines the thesis and discusses its theoretical and empirical contributions. The second chapter studies inference in quantile regressions with cointegrated variables allowing for multiple structural changes. The unknown break dates and regression coefficients are estimated jointly and consistently. The conditional quantile estimator has a nonstandard limit distribution. A fully modified estimator is proposed to remove the second-order bias and nuisance parameters and the resulting limit distribution is mixed normal. A simulation study shows that the fully modified quantile estimator has good finite sample properties. The model is applied to stock index data from the emerging markets of China and several mature markets. Financial market integration is found in some quantiles of the Chinese stock indices. The third chapter considers predictive quantile regression with a nearly integrated regressor. We derive nonstandard distributions for the quantile regression estimator and t-statistic in terms of functionals of diffusion processes. The critical values are found to depend on both the quantile of interest and the local-to-unity parameter, which is not consistently estimable. Based on these critical values, we propose a valid Bonferroni bounds test for quantile predictability with persistent regressors. We employ this new methodology to test the ability of many commonly employed and highly persistent regressors, such as the dividend yield, earnings price ratio, and T-bill rate, to predict the median, shoulders, and tails of the stock return distribution. Chapter Four proposes a cumulated sum (CUSUM) test for the null hypothesis of quantile cointegration. A fully modified quantile estimator is adopted for serial correlation and endogeneity corrections. The CUSUM statistic is composed of the partial sums of the residuals from the fully modified quantile regression. Under the null, the test statistic converges to a functional of Brownian motions. In the application to U.S. interest rates of different maturities, evidence in favor of the expectations hypothesis for the term structure is found in the central part of the distributions of the Treasury bill rate and financial commercial paper rate, but in the tails of the constant maturity rate distribution. / Thesis (Ph.D, Economics) -- Queen's University, 2012-07-30 15:20:38.253
69

Lipase-catalyzed interesterification between canola oil and fully-hydrogenated canola oil in contact with supercritical carbon dioxide

Jenab, Ehsan Unknown Date
No description available.
70

Textural features for bladder cancer definition on CT images

Liao, Hanqing January 2013 (has links)
Genitourinary cancer refers to the presence of tumours in the genital or urinary organs such as bladder, kidney and prostate. In 2008 the worldwide incidence of bladder cancer was 382,600 with a mortality of 150,282. Radiotherapy is one of the main treatment choices for genitourinary cancer where accurate delineation of the gross tumour volume (GTV) on computed tomography (CT) images is crucial for the success of this treatment. Limited CT resolution and contrast in soft tissue organs make this difficult and has led to significant inter- and intra- clinical variability in defining the extent of the GTV, especially at the junctions of different organs. In addition the introduction of new imaging techniques and modalities has significantly increased the number of the medical images that require contouring. More advanced image processing is required to help reduce contouring variability and assist in handling the increased volume of data. In this thesis image analysis methodologies were used to extract low-level features such as entropy, moment and correlation from radiotherapy planning CT images. These distinctive features were identified and used for defining the GTV and to implement a fully-automatic contouring system. The first key contribution is to demonstrate that second-order statistics from co-occurrence matrices (GTSDM) give higher accuracy in classifying soft tissue regions of interest (ROIs) into GTV and non-GTV. Loadings of the principal components (PCs) of the GTSDM features were found to be consistent over different patients. Exhaustive feature selection suggested that entropies and correlations produced consistently larger areas under receiver operating characteristic (AUROC) curves than first-order features. The second significant contribution is to demonstrate that in the bladder-prostate junction, where the largest inter-clinical variability is observed, the second-order principal entropy from stationery wavelet denoised CT images (DPE) increased the saliency of the bladder prostate junction. As a result thresholding of the DPE produced good agreement between gold standard clinical contours and those produced by this approach with Dice coefficients. The third contribution is to implement a fully automatic and reproducible system for bladder cancer GTV auto-contouring based on classifying second-order statistics. The Dice similarity coefficients (DSCs) were employed to evaluate the automatic contours. It was found that in the mid-range of the bladder the automatic contours are accurate, but in the inferior and superior ends of bladder automatic contours were more likely to have small DSCs with clinical contours, which reconcile with the fact of clinical variability in defining GTVs. A novel male bladder probability atlas was constructed based on the clinical contours and volume estimation from the classification results. Registration of the classification results with this probabilistic atlas consistently increases the DSCs of the inferior slices.

Page generated in 0.0393 seconds