• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 139
  • 53
  • 35
  • 18
  • 14
  • 14
  • 9
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 521
  • 189
  • 133
  • 86
  • 86
  • 80
  • 73
  • 49
  • 48
  • 47
  • 46
  • 43
  • 39
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Obtenção de fios em ligas cobre-magnésio para utilização em linhas de transmissão de energia elétrica / Obtention of copper-magnesium alloys wires used in eletrical transmission lines

Fernandes, Marcos Gonzales 20 July 2010 (has links)
O objetivo desse trabalho foi o de obter-se fios de cobre em três composições químicas distintas da liga Cu-Mg a partir de cobre eletrolítico e de magnésio. Foram avaliadas as etapas envolvidas, começando com a fusão de botões em forno a arco na composição do eutético Cu-Mg, diluição destes botões em forno resistivo, vazamento em lingoteira de cobre, seguido de tratamento térmico de homogeneização em forno resistivo a 910 ºC por 2 h. Os tarugos foram posteriormente trabalhados mecanicamente por forjamento rotativo seguido de um passe final de acabamento por trefilação, para obtenção do fio. As análises químicas realizadas nos lingotes indicaram que a rota de preparação dos fios mostrou-se adequada aos estudos em escala de laboratório, suficiente para a confecção de fios com área de seção transversal de 4 mm2 por 10 m de comprimento, para cada composição de liga. Os fios foram caracterizados mecanicamente por ensaio de tração e de dureza após tratamento térmico de recristalização a 510 ºC por 1 h. Os fios também tiveram as condutividades elétricas medidas na condição recristalizada e os resultados foram comparados com dados experimentais da literatura. Os materiais obtidos mostraram-se adequados à utilização como fio condutor de energia elétrica. Os limites de escoamento e de resistência a tração tiveram seus valores melhorados com o aumento do teor de magnésio na liga, 11 % e 24 %, respectivamente, enquanto houve queda nos valores de condutividade elétrica para cerca de 60 % IACS (International Annealed Copper Standard). / The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 ºC for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions as cold worked and after a recovering heat treatment at 510 ºC for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard).
102

Obtenção de fios em ligas cobre-magnésio para utilização em linhas de transmissão de energia elétrica / Obtention of copper-magnesium alloys wires used in eletrical transmission lines

Marcos Gonzales Fernandes 20 July 2010 (has links)
O objetivo desse trabalho foi o de obter-se fios de cobre em três composições químicas distintas da liga Cu-Mg a partir de cobre eletrolítico e de magnésio. Foram avaliadas as etapas envolvidas, começando com a fusão de botões em forno a arco na composição do eutético Cu-Mg, diluição destes botões em forno resistivo, vazamento em lingoteira de cobre, seguido de tratamento térmico de homogeneização em forno resistivo a 910 ºC por 2 h. Os tarugos foram posteriormente trabalhados mecanicamente por forjamento rotativo seguido de um passe final de acabamento por trefilação, para obtenção do fio. As análises químicas realizadas nos lingotes indicaram que a rota de preparação dos fios mostrou-se adequada aos estudos em escala de laboratório, suficiente para a confecção de fios com área de seção transversal de 4 mm2 por 10 m de comprimento, para cada composição de liga. Os fios foram caracterizados mecanicamente por ensaio de tração e de dureza após tratamento térmico de recristalização a 510 ºC por 1 h. Os fios também tiveram as condutividades elétricas medidas na condição recristalizada e os resultados foram comparados com dados experimentais da literatura. Os materiais obtidos mostraram-se adequados à utilização como fio condutor de energia elétrica. Os limites de escoamento e de resistência a tração tiveram seus valores melhorados com o aumento do teor de magnésio na liga, 11 % e 24 %, respectivamente, enquanto houve queda nos valores de condutividade elétrica para cerca de 60 % IACS (International Annealed Copper Standard). / The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 ºC for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions as cold worked and after a recovering heat treatment at 510 ºC for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard).
103

A thermofluid network-based methodology for integrated simulation of heat transfer and combustion in a pulverized coal-fired furnace

van Der Meer, Willem Arie 02 March 2021 (has links)
Coal-fired power plant boilers consist of several complex subsystems that all need to work together to ensure plant availability, efficiency and safety, while limiting emissions. Analysing this multi-objective problem requires a thermofluid process model that can simulate the water/steam cycle and the coal/air/flue gas cycle for steady-state and dynamic operational scenarios, in an integrated manner. The furnace flue gas side can be modelled using a suitable zero-dimensional model in a quasi-steady manner, but this will only provide an overall heat transfer rate and a single gas temperature. When more detail is required, CFD is the tool of choice. However, the solution times can be prohibitive. A need therefore exists for a computationally efficient model that captures the three-dimensional radiation effects, flue gas exit temperature profile, carbon burnout and O2 and CO2 concentrations, while integrated with the steam side process model for dynamic simulations. A thermofluid network-based methodology is proposed that combines the zonal method to model the radiation heat transfer in three dimensions with a one-dimensional burnout model for the heat generation, together with characteristic flow maps for the mass transfer. Direct exchange areas are calculated using a discrete numerical integration approximation together with a suitable smoothing technique. Models of Leckner and Yin are applied to determine the gas and particle radiation properties, respectively. For the heat sources the burnout model developed by the British Coal Utilisation Research Association is employed and the advection terms of the mass flow are accounted for by superimposing a mass flow map that is generated via an isothermal CFD solution. The model was first validated by comparing it with empirical data and other numerical models applied to the IFRF single-burner furnace. The full scale furnace model was then calibrated and validated via detailed CFD results for a wall-fired furnace operating at full load. The model was shown to scale well to other load conditions and real plant measurements. Consistent results were obtained for sensitivity studies involving coal quality, particle size distribution, furnace fouling and burner operating modes. The ability to do co-simulation with a steam-side process model in Flownex® was successfully demonstrated for steady-state and dynamic simulations.
104

Dimensionering av matning för nyskänkugn hos SSAB i Oxelösund / Designing Power Supply for new Ladle Furnace at SSAB in Oxelösund

Eriksson, Daniel January 2020 (has links)
SSAB i Oxelösund ska bygga en ljusbågsugn för konvertering av verksamheten från huvudsakligen malmbaserad produktion till skrotbaserad produktion. I samband med byggandet av ljusbågsugnen kommer en ny 130 kV linje byggas och från denna linje kommer ett nytt 30 kV nät byggas för att mata ljusbågsugnen och två stycken skänkugnar. En av dessa skänkugnar är idag (2019) i drift med 10 kV men ska konverteras till 30 kV medan den andra är en ny elektriskt sett identisk ugn. Anslutningen av dessa tre ugnar till det avskilda 30 kV nätet är till för att begränsa spridning av övertoner och flimmer till övriga laster. Ugnarna ska sedan anslutas till ett gemensamt elektriskt filter, för 30 kV nätet. Ljusbågsugnen och skänkugnarna ska vara i drift första kvartalet 2024, på grund av att det är några år in i framtiden är kortslutningsimpedanser osäkra. För att uppfylla termisk- och korttidsströmsdimensionering för kabeln mellan huvudställverk (OT40) och skänkugnsställverk (SU2) fodras enledarkabel med 300 mm2 aluminiumledare och PEX-isolering. Denna dimensionering förutsätter att förläggning sker i triangelformation, temperaturen är högst 35 °C och kabeln förläggs på sådant sätt att den inte påverkas av andra kablar. Maximal kortslutningsström som kabeln klarar av under den maximala bortkopplingstiden är 32,5 kA. Kortslutnings- och spänningsfallsberäkningar är utförda iprogrammet GNU Octave. Högsta och lägsta kortslutningström i respektive ställverk är beräknad. Överströmsskydden ställs in så att selektiv bortkoppling erhålls, med maximal bortkopplingstid 0,9 sekunder. En blockeringslogik används för att försäkra anläggning enmot oselektiv utlösning. Logiken innebär, enligt SSAB:s praxis, att skyddet närmast felstället ska blockera överordnat skydds kortslutningsströmsteg (>> I). Jordfelsskydd dimensioneras efter en nollpunktsresistor om 10 A. Jordfelsskydden är riktade och friges av nollpunktsspänningsskydd för att säkerställa att okynnesutlösning av jordfelsskydden inte uppstår i samband med omkopplingar eller fel i nätet. Frigivningen fungerar upp till en maximal snedavstämning om cirka 21 A. / SSAB in Oxelösund will build an electric arc furnace to transform business from a mainly ore-based production, with blast furnaces, to a scrap based production. Together with the construction of the electric arc furnace, a new 130 kV overhead line and a 30 kV substation will be built. The 30 kV substation will feed one electric arc furnace and two ladle furnaces. One of these ladle furnaces is currently (2019) being fed with 10 kV, but is going to be converted to 30 kV, while the other one is a new electrically identical furnace. The connection of these three furnaces to the 30 kV grid is done in order to limit the distribution of harmonic distortions and flicker to the other loads. The furnaces on the 30 kV grid will be connected to a common electrical filter. The electric arc furnace and the ladle furnaces will be operational and produce steel in the first quarter of 2024. Since the installation will be performed some years ahead the short circuit impedance is not known. The cable between the main substation (OT40) and the ladle furnace substation (SU2) was being selected according to thermals and short time currents which determined the cable to consist of a single core cable with 300 mm2 aluminium conductor isolated by XLPE-isolation. This is provided that the cable is mountedin a triangle formation along a path with temperatures at maximum 35 C and is placed in such a way that the cable is not influenced thermally by other cables. Short circuit and voltage drop calculations are made in the program GNU Octave. The highest three phase and the lowest two phase short circuit current is calculated in every substation. The overcurrent protection is set to a maximum disconnection time of 0.9 seconds. A blocking logic is being used to further ensure a selectivity in the facility. The logic means, according to SSAB praxis, that the protection closest to the fault blocks the upstream short circuit protection ( I). The earth fault protection is designed around using a neutral grounding resistor of 10 A. The earth fault protection is directional and is being released by the neutral displacement protection to asure no unwanted tripping of the earth fault protection by change-over switching or faults in the grid. The release of the protection works with detuning up to about 21 A.
105

Développement d'une matrice à base d'aluminate de calcium pour la cimentation de boues issues de la décontamination d'effluents actifs / Developement of calcium aluminate based systems for sludge cementation from radwaste decontamination

Martin, Isabelle 24 June 2016 (has links)
L'industrie nucléaire est une industrie génératrice de déchets, dont certains sont radioactifs. Ces déchets radioactifs ont des formes et des origines diverses, allant de la paire de gant de manutention faiblement contaminés, à la suspension aqueuse de produits de fissions hautement radioactifs. Dans ce travail, un type de déchet bien particulier a été étudié ; des boues issues de la décontamination d'effluents liquides radioactifs, possédant entre autres les trois particularités suivantes ; * Etre moyennement radioactif, selon les critères de l'ANDRA. * Etre composé d'une forte teneur en eau de constitution (ne pouvant être retirée par simple évaporation) ; * Etre composé d'un sorbant (PPFeNi) dont la stabilité chimique n'est pas assurée pour un pH supérieur à 11. Ces particularités font qu'un enrobage dans une matrice minérale forte consommatrice d'eau, et bas-pH (pH < 11) est envisageable. Le choix c'est alors porté sur le développement d'une matrice ettringitique réalisée à partir d'un mélange de Ciment d'Aluminate de Calcium (CAC) et de sulfate de calcium. Dans un premier temps, la stabilité du sorbant du césium utilisé dans cette étude a été testée dans différents environnements de pH (2 à 14) et de température. Pour cela des analyses chimiques de solution ainsi que des caractérisations du composé par diffraction de rayons X, FTIR et microscopie électronique à balayage-EDS ont permis de fixer les bornes de stabilité que la formulation ettringitique doit avoir. Puis une étude microstructurale (nature et morphologie des produits) de mélanges ettringitiques binaires CAC/sulfate de calcium type hémihydrate et/ou anhydrite a été effectuée afin de caractériser la stabilité de l'ettringite, hydrate fort consommateur d'eau. Les propriétés bas-pH ont été vérifiées notamment par analyse chimique de solutions porales. Certaines limites de ces systèmes concernant le dégagement de chaleur et la possible formation de systèmes expansifs ont été mises en évidence. L'effet de l'augmentation du rapport eau/liant, responsable d'un effet de dilution et permettant de réduire les deux effets précédents, a été également regardé pour ces systèmes binaires. Afin de réduire la chaleur dégagée à court terme tout en permettant le développement de l'hydratation à long terme de systèmes ettringitiques, ces systèmes binaires ont été substitués par des additions minérales à hydraulicité latente type laitier de haut fourneau. Une étude microstructurale de la réactivité du laitier et de la modification de l'assemblage ettringitique a montré une réactivité modérée de ce dernier à jeune âge conformément aux attentes. Pour favoriser sa réactivité à long terme par activation alcaline/sulfatique différentes proportions de sulfate de calcium à dissolution plus lente ont été testés. Les caractéristiques microstructurales de ces systèmes ternaires en présence de différentes teneurs en eau intrinsèquement liée à la nature de type boue du déchet a été étudiée. Enfin, les différentes informations sur l'effet des paramètres de formulation obtenues ont débouché sur la mise en place de tests sur des formulations contenant un déchet simulé inerte et enrichi en chlorures. Des essais systématiques de fluidité, de résistances mécaniques et pour certains d'entre eux d'expansion et de dégagement de chaleur doivent permettre d'identifier une série de mélanges adaptés au test à l'échelle de prototype industriel pour la cimentation de boues. / Nuclear industry generated waste including radioactive wastes, which have different forms and origins. The wastes produced by reprocessing of nuclear fuel are characterized by important water content, by high pH and temperature sensitivity. The cementation in ettringite systems might be a promising solution to solidify radioactive wastes. Mixtures of Calcium Aluminate Cement (CAC) and calcium sulfate are planned to be used, instead of Ordinary Portland Cement (OPC), to form a significant amount of ettringite able to catch water molecules when forming. Moreover, due to the low pH of CAC-based matrices, the latter have a good compatibility with the compounds used to stabilize active elements. Initially, the stability of the sorbent of cesium used in this study was tested in different pH environments (2 to 14) and temperature. Chemical analysis and different microstructural characterizations like X-ray diffraction, FTIR and SEM-EDS have allowed to set stability limits of ettringite systems. Then microstructural study on binary systems composed by mixture of CAC/calcium sulfate (hemihydrate and/or anhydrite) was realized to characterize ettringite stability during the time of hydration. Low pH properties were checked by chemical pore solutions analysis. However, the heat generated by hydration and the possible formation of expansive systems require an increase of e/s ratio and additional components like Ground Granulated Furnace Slag (GGBS). These two parameters were studied subsequently. Microstructural study of GGBS reactivity and the modification of ettringite assemblage were showed that GGBS act as filler at early time of hydration. To promote the GGBS reactivity at long term of hydration by alkaline and sulfate activation, different nature of calcium sulfate was used. Then the microstructural characteristic of this ternary system in presence of different e/s ratio was studied. Finally, different information on the effect of formulation parameters obtained led to the development of tests on formulations containing an inert simulated waste and enriched in chlorides. Systematic tests of fluidity, mechanical strength and for some expansion and heat generation should identify a series of mixtures adapted to test prototype to industrial scale for cementing wastes.
106

Class-F Fly Ash and Ground Granulated Blast Furnace Slag (GGBS) Mixtures for Enhanced Geotechnical and Geoenvironmental Applications

Sharma, Anil Kumar January 2014 (has links) (PDF)
Fly ash and blast furnace slag are the two major industrial solid by-products generated in most countries including India. Although their utilization rate has increased in the recent years, still huge quantities of these material remain unused and are stored or disposed of consuming large land area involving huge costs apart from causing environmental problems. Environmentally safe disposal of Fly ash is much more troublesome because of its ever increasing quantity and its nature compared to blast furnace slag. Bulk utilization of these materials which is essentially possible in civil engineering in general and more particular in geotechnical engineering can provide a relief to environmental problems apart from having economic benefit. One of the important aspects of these waste materials is that they improve physical and mechanical properties with time and can be enhanced to a significant level by activating with chemical additives like lime and cement. Class-C Fly ashes which have sufficient lime are well utilized but class-F Fly ashes account for a considerable portion that is disposed of due to their low chemical reactivity. Blast furnace slag in granulated form is used as a replacement for sand to conserve the fast declining natural source. The granulated blast furnace slag (GBS) is further ground to enhance its pozzolanic nature. If GBS is activated by chemical means rather than grinding, it can provide a good economical option and enhance its utilization potential as well. GGBS is latent hydraulic cement and is mostly utilized in cement and concrete industries. Most uses of these materials are due to their pozzolanic reactivity. Though Fly ash and GGBS are pozzolanic materials, there is a considerable difference in their chemical composition. For optimal pozzolanic reactivity, sufficient lime and silica should be available in desired proportions. Generally, Fly ash has higher silica (SiO2) content whereas GGBS is rich in lime (CaO) content. Combining these two industrial wastes in the right proportion may be more beneficial compared to using them individually. The main objective of the thesis has been to evaluate the suitability of the class-F Fly ash/GGBS mixtures with as high Fly ash contents for Geotechnical and Geo-environmental applications. For this purpose, sufficient amount of class-F Fly ash and GGBS were collected and their mixtures were tested in the laboratory for analyzing their mechanical behavior. The experimental program included the evaluation of mechanical properties such as compaction, strength, compressibility of the Fly ash/GGBS mixtures at different proportions with GGBS content varying from 10 to 40 percent. An external agent such as chemical additives like lime or cement is required to accelerate the hydration and pozzolanic reactions in both these materials. Hence, addition of varying percentages of lime is also considered. However, these studies are not extended to chemically activate GBS and only GGBS is used in the present study. Unconfined compressive strength tests have been carried out on various Fly ash/ GGBS mixtures at different proportions at different curing periods. The test results demonstrated rise in strength with increase in GGBS content and with 30 and 40 percent of GGBS addition, the mixture showed higher strength than either of the components i.e. Fly ash or GGBS after sufficient curing periods. Addition of small amount of lime increased the strength tremendously which indicated the occurrence of stronger cementitious reactions in the Fly ash/GGBS mixtures than in samples containing only Fly ash. Improvement of the strength of the Fly ash/GGBS mixtures was explained through micro-structural and mineralogical studies. The microstructure and mineralogical studies of the original and the stabilized samples were investigated by scanning electron microscopy (SEM) and X-Ray diffraction techniques respectively. These studies together showed the formation of cementitious compounds such as C-S-H, responsible for imparting strength to the pozzolanic materials, is better in the mixture containing 30 and 40 percent of GGBS content than in individual components. Resilient and permanent deformation behavior on an optimized mix sample of Fly ash and GGBS cured for 7 day curing period has been studied. The Resilient Modulus (Mr) is a measure of subgrade material stiffness and is actually an estimate of its modulus of elasticity (E). The permanent deformation behavior is also important in predicting the performance of the pavements particularly in thin pavements encountered mainly in rural and low volume roads. The higher resilient modulus values indicated its suitability for use as subgrade or sub-base materials in pavement construction. Permanent axial strain was found to increase with the number of load cycles and accumulation of plastic strain in the sample reduced with the increase in confining pressure. Consolidation tests were carried on Fly ash/GGBS mixtures using conventional oedometer to assess their volume stability. However, such materials develop increased strength with time and conventional rate of 24 hour as duration of load increment which requires considerable time to complete the test is not suitable to assess their volume change behavior in initial stages. An attempt was thus made to reduce the duration of load increment so as to reflect the true compressibility characteristics of the material as close as possible. By comparing the compressibility behavior of Fly ash and GGBS between conventional 24 hour and 30 minutes duration of load increment, it was found that 30 minutes was sufficient to assess the compressibility characteristics due to the higher rate of consolidation. The results indicated the compressibility of the Fly ash/GGBS mixtures slightly decreases initially but increase with increase in GGBS content. Addition of lime did not have any significant effect on the compressibility characteristics since the pozzolanic reaction, which is a time dependent process and as such could not influence due to very low duration of loading. Results were also represented in terms of constrained modulus which is a most commonly used parameter for the determination of settlement under one dimensional compression tests. It was found that tangent constrained modulus showed higher values only at higher amounts of GGBS. It was also concluded that settlement analysis can also be done by taking into account the constrained modulus. The low values of compression and recompression indices suggested that settlements on the embankments and fills (and the structures built upon these) will be immediate and minimal when these mixtures are used. In addition to geotechnical applications of Fly ash/GGBS mixture, their use for the removal of heavy metals for contaminated soils was also explored. Batch equilibrium tests at different pH and time intervals were conducted with Fly ash and Fly ash/GGBS mixture at a proportion of 70:30 by weight as adsorbents to adsorb lead ions. It was found that though uptake of lead by Fly ash itself was high, it increased further in the presence of GGBS. Also, the removal of lead ions increased with increase in pH of the solution but decreases at very high pH. The retention of lead ions by sorbents at higher pH was due to its precipitation as hydroxide. Results of the adsorption kinetics showed that the reaction involving removal of lead by both the adsorbents follow second-order kinetics. One of the major problems which geotechnical engineers often face is construction of foundations on expansive soils. Though stabilization of expansive soils with lime or cement is well established, the use of by-product materials such as Fly ash and blast furnace slag to achieve economy and reduce the disposal problem needs to be explored. To stabilize the soil, binder comprising of Fly ash and GGBS in the ratio of 70:30 was used. Different percentages of binder with respect to the soil were incorporated to the expansive soil and changes in the physical and engineering properties of the soil were examined. Small addition of lime was also considered to enhance the pozzolanic reactions by increasing the pH. It was found that liquid limit, plasticity index, swell potential and swell pressure of the expansive soil decreased considerably while the strength increased with the addition of binder. The effect was more pronounced with the addition of lime. Swell potential and swell pressure reduced significantly in the presence of lime. Based on the results, it can be concluded that the expansive soils can be successfully stabilized with the Fly ash-GGBS based binder with small addition of lime. This is also more advantageous in terms of lime requirement which is typically high when Fly ash, class-F in particular, is used alone to stabilize expansive soils. Based on the studies carried out in the present work, it is established that combination of Fly ash and GGBS can be advantageous as compared to using them separately for various geotechnical applications such as for construction of embankments/fills, stabilization of expansive soils etc. with very small amount of lime. Further, these mixtures have better potential for geo-environmental applications such as decontamination of soil. However, it is still a challenge to activate GBS without grinding.
107

Energikartläggning av smältugnar i en aluminiumprocess : En analys av två oxyfuel-ugnars energiförbrukning, energiförluster och påverkande parametrar hos Gränges AB / Energy mapping of melting furnaces in a aluminium process : An analysis of energy consumption, energy losses and affecting parameters at two oxyfuel furnaces at Gränges AB

Johansson, Niclas, Edman, Philip January 2021 (has links)
I denna rapport har ett projekt utförts tillsammans med Gränges AB. Projektet behandlade en energianalys av deras två oxyfuel-smältugnar för smältning av aluminium. Aluminiumsmältan består till stor del av återvunnet skrot, denna metod kallas omsmältning. Ett omsmältverk kräver enorma mängder energi och därför är en minimering av ugnarnas energiförbrukning önskvärd. Smältugnarna har liknande uppbyggnad där den stora skillnaden är deras smältkapacitet, 25 ton respektive 45 ton. Trots sina likheter påvisas en skillnad i energiförbrukning mellan ugnarna vilket även skapar ett intresse för en jämförelse av ugnarna. Med en historisk datamängd som innehöll mätvärden på ett flertal parametrar togs energiförbrukningar för varje smältcykel fram. Vid jämförelser användes energiförbrukning i enheten kWh/ton. Smältcyklarnas energiförbrukning sattes in ett histogram för jämförelse mellan ugnarna. En energibalans för vardera ugn gjordes och gav förståelse var de stora förlusterna sker. Energibalansen gavs av brännarnas totalt förbrukade energi, avgasförluster, väggförluster, askaförluster, sumpförluster, nyttiga energin till aluminiet och övriga förluster. I övriga förluster inkluderades förluster vid dörröppning vilket också beräknades. Ytterligare undersöktes parametrarna dörröppningstid, sumpvikt, körningstid och vikt på tungt aluminium individuellt för att fastställa vad som påverkar energiförbrukningen mest. Detta genom att jämföra smältcyklar där endast en parameter varierar. Parametern dörröppningstid undersöktes på en djupare nivå då denna parameter kan minimeras. Resultaten påvisade att ena ugnen hade mer oregelbunden energiförbrukning än den andra vilket berodde på att den tillverkar en större variation av aluminiumlegeringar och har tillgång till en förvärmningsugn. De största förlusterna var avgasförlusterna, sumpförlusterna och övriga förluster. En stor del av övriga förluster var förluster vid dörröppning. Väggförlusterna var märkbara och askaförlusterna var minimala. Undersökning av dörröppningstid visade att dörröppningstiden påverkade energiförbrukningen markant. / A project has been carried out together with Gränges AB which treated an energy analysis of their two oxyfuel furnaces for aluminium melting. The aluminium melt largely consists of recycled scrap and this method is called secondary melting. These secondary melting plants consumes a huge amount of energy and that is why a minimization of the furnace’s energy consumption is needed. The two furnaces have similar construction, and the main difference is their melting capacity, 25 and 45 tonnes respectively. Despite their similarities a difference in energy consumption is shown which creates an interest for a comparison of the furnaces. With a collection of earlier measurement data of several parameters the energy consumption of every melting cycle could be calculated. For comparisons of energy consumptions, the unit kWh/tonne was used. The energy consumption of every melting cycle was placed in a histogram for simple comparison. An energy balance of each furnace was done which gave understanding of their major losses. The energy balance consisted of the total used energy from the burners, the flue gas losses, the wall losses, the dross losses, the slag losses, the useful energy output for aluminium and the miscellaneous heat losses. One part of the miscellaneous heat losses is the losses from door opening which also was accounted to. Furthermore, the parameters door opening duration, slag weight, the melting cycle duration and heavy aluminium weight was examined individually to understand its impact on the furnace energy consumption. This was done by comparing the melting cycles consumed energy when only one of the parameters varied. The parameter door opening duration was examined more profound because it is a parameter that can be minimized. The results showed that one of the furnaces had more irregular energy consumption. This was due to this furnace producing a higher variety of aluminium alloys and utilizing a preheating furnace. The major energy losses were flue gas losses, the slag losses, and the miscellaneous losses. The door opening duration was a major part of the miscellaneous losses. The wall losses were noticeable, and the dross losses were minimal. The examination of the parameter door opening duration showed that this parameter largely affected the furnace consumed energy.
108

Avaliação da gestão e tecnologia Ambiental Aplicada ao pó de aciaria elétrica

Acosta, Clóvis Dutra January 2013 (has links)
Esta tese apresenta os métodos de gerenciamento associados ao Pó de Aciaria Elétrica (PAE) gerado no forno elétrico a arco (FEA) e no forno-panela (FP), envolvendo dois grandes tópicos: sistema de gestão ambiental e fatores relacionados à tecnologia. O processo do PAE percorre as seguintes etapas: entrada e beneficiamento da matériaprima, preparação, carregamento e fusão de carga no FEA, formação e retirada de escória, vazamento do aço para a panela, refino no forno-panela, assim como o sistema de captação das emissões atmosféricas e destinação do PAE captado no FEA e FP. Os métodos de gerenciamento foram estruturados em cima do aprendizado técnico, qualitativo e quantitativo adquirido no desenvolvimento das atividades profissionais, dos levantamentos sobre as tecnologias disponíveis para destinação e reciclagem do PAE, dos mapeamentos das características das instalações de captação do PAE de empresas siderúrgicas, bem como das bibliografias e visitas técnicas realizadas. As informações reunidas foram empregadas para desenvolver duas matrizes de avaliação, consolidando assim, um critério para verificar as práticas de gestão ambiental e de tecnologias que estão associadas ao PAE. O principal resultado das matrizes foi a identificação e priorização das necessidades de melhorias, tanto do sistema de gestão ambiental como da área de tecnologia. A avaliação das empresas siderúrgicas, segundo estas matrizes, mostrou quais práticas possuem menores valores e que, por conseqüência, devem requerer maior esforço para melhorar seus desempenhos, bem como aquelas de maior valor que requerem uma consolidação da sua rotina para manterem o elevado nível de desempenho atingido. Como conclusão, foi obtida uma ferramenta robusta que respondeu de forma consistente a avaliação do processo do PAE e a pergunta sobre “O que se encontra mais desenvolvido, os processos de gestão ou os de tecnologia?”. As matrizes de avaliação foram preenchidas por especialistas ambientais de três Empresas siderúrgicas. O resultado obtido com essa ferramenta mostrou que os desempenhos sobre as práticas de gestão são superiores aos desempenhos das práticas de tecnologia e que esta metodologia de avaliação está apta para ser aplicada em qualquer outro processo ou empresa. Ficou evidenciado que o conhecimento e a inteligência ambiental são requisitos para assegurar que as estratégias de médio e longo prazo estejam corretamente alinhadas às boas práticas de gestão e melhores tecnologias disponíveis. / The thesis presents the methods associated with the management of the electric arc furnace (EAF) baghouse dust and ladle furnace (LF) dust. The management methods cover two broad topics: environmental management system practices and technology related factors. The EAF baghouse dust and ladle furnace (LF) dust process has the following steps: input and processing raw materials, EAF charging and melting, slag generation and removal, furnace tapping of the steel to the LF, refining in the LF, as well as the EAF dedusting system, dust recycling and final destination. The management methods were determined based on professional experience of the author, assessment of typical installations of steel plant dedusting system, bibliographies review, available technologies to EAF/LF dust destination and recycling and subject technical literature, as well technical visits undertaken. Collectively the information was used to develop two standard evaluation standard matrices which provide criteria to assess environmental management system practices and technology associated with EAF dust management. The primary goal of the assessments was to identify and prioritize areas for potential improvement - either in environmental management systems area or the technology area. The assessment results showed that steel plants which have practices with lower values, according to these matrices, should require greater effort to improve their performance, while those with good score, will require a consolidation of their routine to maintain the high level of performance already achieved. The matrices were filled by environmental experts from three steelmaking companies. Finally, as a result of this project a rigorous and reliable assessment tool was designed to evaluate the meltshop dust generation and management process and provide a quantitative answer to the following question: `Which area has achieved a higher level of development as it relates to meltshop dust management: environmental management system practices or control technology?’ The results from using this tool have shown that the performance of management practices is superior to the control technology. Furthermore, experiences captured during the assessment indicate this evaluation methodology is fully adaptable and can be applied to other processes and/or other businesses. It was clearly highlighted how knowledge and environmental intelligence are requirements to assure that the medium and long term strategies are properly aligned with the available best practices to environmental management system and control technology.
109

Computational Modelling Of Heat Transfer In Reheat Furnaces

Harish, J 12 1900 (has links)
Furnaces that heat metal parts (blooms) prior to hot-working processes such as rolling or forging are called pre-forming reheat furnaces. In these furnaces, the fundamental idea is to heat the blooms to a prescribed temperature without very large temperature gradients in them. This is to ensure correct performance of the metal parts subsequent to reheating. Due to the elevated temperature in the furnace chamber, radiation is the dominant mode of heat transfer from the furnace to the bloom. In addition, there is convection heat transfer from the hot gases to the bloom. The heat transfer within the bloom is by conduction. In order to design a new furnace or to improve the performance of existing ones, the heat transfer analysis has to be done accurately. Given the complex geometry and large number of parameters encountered in the furnace, an analytical solution is difficult, and hence numerical modeling has to be resorted to. In the present work, a numerical technique for modelling the steady-state and transient heat transfer in a reheat furnace is developed. The work mainly involves the development of a radiation heat transfer analysis code for a reheat furnace, since a major part of the heat transfer in the furnace chamber is due to radiation from the roof and combustion gases. The code is modified from an existing finite volume method (FVM) based radiation heat transfer solver, The existing solver is a general purpose radiation heat transfer solver for enclosures and incorporates the following features: surface-to-surface radiation, gray absorbing-emitting medium in the enclosure, multiple reflections off the bounding walls, shadowing effects due to obstructions in the enclosure, diffuse reflection and enclosures with irregular geometry. As a part of the present work, it has now been extended to include the following features that characterise radiation heat transfer in the furnace chamber · Combination of specular and diffuse reflection as is the case with most real surfaces · Participating non-gray media, as the combustion gases in the furnace chamber exhibit highly spectral radiative characteristics Transient 2D conduction heat transfer within the metal part is then modelled using a FVM-based code. Radiation heat flux from the radiation model and convection heat flux calculated using existing correlations act as boundary conditions for the conduction model. A global iteration involving the radiation model and the conduction model is carried out for the overall solution. For the study, two types of reheat furnaces were chosen; the pusher-type furnace and the walking beam furnace. The difference in the heating process of the two furnaces implies that they have to be modelled differently. In the pusher-type furnace, the heating of the blooms is only from the hot roof and the gas. In the walking beam furnace, the heating is also from the hearth and the blooms adjacent to any given bloom. The model can predict the bloom residence time for any particular combination of furnace conditions and load dimensions. The effects of variations of emissivities of the load, thickness of the load and the residence time of billet in the furnaces were studied.
110

Multi-objective optimisation using the cross-entropy method in CO gas management at a South African ilmenite smelter

Stadler, Johan George 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: In a minerals processing environment, stable production processes, cost minimisation and energy efficiency are key to operational excellence, safety and profitability. At an ilmenite smelter, typically found in the heavy minerals industry, it is no different. Management of an ilmenite smelting process is a complex, multi-variable challenge with high costs and safety risks at stake. A by-product of ilmenite smelting is superheated carbon monoxide (CO) gas, or furnace off-gas. This gas is inflammable and extremely poisonous to humans. At the same time the gas is a potential energy source for various on-site heating applications. Re-using furnace off-gas can increase the energy efficiency of the energy intensive smelting process and can save on the cost of procuring other gas for heating purposes. In this research project, the management of CO gas from the Tronox KZN Sands ilmenite smelter in South Africa was studied with the aim of optimising the current utilisation of the gas. In the absence of any buffer capacity in the form of a pressure vessel, the stability of the available CO gas is directly dependent on the stability of the furnaces. The CO gas has been identified as a partial replacement for methane gas which is currently purchased for drying and heating of feed material and pre-heating of certain smelter equipment. With no buffer capacity between the furnaces and the gas consuming plants, a dynamic prioritisation approach had to be found if the CO was to replace the methane. The dynamics of this supply-demand problem, which has been termed the “CO gas problem”, needed to be studied. A discrete-event simulation model was developed to match the variable supply of CO gas to the variable demand for gas over time – the demand being a function of the availability of the plants requesting the gas, and the feed rates and types of feed material processed at those plants. The problem was formulated as a multi-objective optimisation problem with the two main, conflicting objectives, identified as: 1) the average production time lost per plant per day due to CO-methane switchovers; and 2) the average monthly saving on methane gas costs due to lower consumption thereof. A metaheuristic, namely multi-objective optimisation using the cross-entropy method, or MOO CEM, was applied as optimisation algorithm to solve the CO gas problem. The performance of the MOO CEM algorithm was compared with that of a recognised benchmark algorithm for multi-objective optimisation, the NSGA II, when both were applied to the CO gas problem. The background of multi-objective optimisation, metaheuristics and the usage of furnace off-gas, particularly CO gas, were investigated in the literature review. The simulation model was then developed and the optimisation algorithm applied. The research aimed to comment on the merit of the MOO CEM algorithm for solving the dynamic, stochastic CO gas problem and on the algorithm’s performance compared to the benchmark algorithm. The results served as a basis for recommendations to Tronox KZN Sands in order to implement a project to optimise usage and management of the CO gas. / AFRIKAANSE OPSOMMING: In mineraalprosessering is stabiele produksieprosesse, kostebeperking en energie-effektiwiteit sleuteldrywers tot bedryfsprestasie, veiligheid en wins. ‘n Ilmenietsmelter, tipies aangetref in swaarmineraleprosessering, is geen uitsondering nie. Die bestuur van ‘n ilmenietsmelter is ‘n komplekse, multi-doelwit uitdaging waar hoë kostes en veiligheidsrisiko’s ter sprake is. ‘n Neweproduk van die ilmenietsmeltproses is superverhitte koolstofmonoksiedgas (CO gas). Hierdie gas is ontvlambaar en uiters giftig vir die mens. Terselfdertyd kan hierdie gas benut word as energiebron vir allerlei verhittingstoepassings. Die herbenutting van CO gas vanaf die smelter kan die energie-effektiwiteit van die energie-intensiewe smeltproses verhoog en kan verder kostes bespaar op die aankoop van ‘n ander gas vir verhittingsdoeleindes. In hierdie navorsingsprojek is die bestuur van die CO gasstroom wat deur die ilmenietsmelter van Tronox KZN Sands in Suid-Afrika geproduseer word, ondersoek met die doel om die huidige benuttingsvlak daarvan te verbeter. Weens die afwesigheid van enige bufferkapasiteit in die vorm van ‘n drukbestande tenk, is die stabiliteit van CO gas beskikbaar vir hergebruik direk afhanklik van die stabiliteit van die twee hoogoonde wat die gas produseer. Die CO gas kan gedeeltelik metaangas, wat tans aangekoop word vir die droog en verhitting van voermateriaal en vir die voorverhitting van sekere smeltertoerusting, vervang. Met geen bufferkapasiteit tussen die hoogoonde en die aanlegte waar die gas verbruik word nie, was die ondersoek van ‘n dinamiese prioritiseringsbenadering nodig om te kon vasstel of die CO die metaangas kon vervang. Die dinamika van hierdie vraag-aanbod probleem, getiteld die “CO gasprobleem”, moes bestudeer word. ‘n Diskrete-element simulasiemodel is ontwikkel as probleemoplossingshulpmiddel om die vraag-aanbodproses te modelleer en die prioritiseringsbenadering te ondersoek. Die doel van die model was om oor tyd die veranderlike hoeveelhede van geproduseerde CO teenoor die veranderlike gasaanvraag te vergelyk. Die vlak van gasaanvraag is afhanklik van die beskikbaarheidsvlak van die aanlegte waar die gas verbruik word, sowel as die voertempo’s en tipes voermateriaal in laasgenoemde aanlegte. Die probleem is geformuleer as ‘n multi-doelwit optimeringsprobleem met twee hoof, teenstrydige doelwitte: 1) die gemiddelde verlies aan produksietyd per aanleg per dag weens oorgeskakelings tussen CO en metaangas; 2) die gemiddelde maandelikse besparing op metaangaskoste weens laer verbruik van dié gas. ‘n Metaheuristiek, genaamd MOO CEM (multi-objective optimisation using the cross-entropy method), is ingespan as optimeringsalgoritme om die CO gasprobleem op te los. Die prestasie van die MOO CEM algoritme is vergelyk met dié van ‘n algemeen aanvaarde riglynalgoritme, die NSGA II, met beide toepas op die CO gasprobleem. The agtergrond van multi-doelwit optimering, metaheuristieke en die benutting van hoogoond af-gas, spesifiek CO gas, is ondersoek in die literatuurstudie. Die simulasiemodel is daarna ontwikkel en die optimeringsalgoritme is toegepas.

Page generated in 0.0469 seconds