Spelling suggestions: "subject:"glucosidic"" "subject:"glycosidic""
11 |
Life will find a way : Structural and evolutionary insights into FusB and HisAGuo, Xiaohu January 2015 (has links)
How do microbes adapt to challenges from the environment? In this thesis, two distinct cases were examined through structural and biochemical methods. In the first, we followed a real-time protein evolution of HisA to a novel function. The second case was fusidic acid (FA) resistance mediated by the protein FusB in Staphylococcus aureus. In the first study, the aim was to understand how mutants of HisA from the histidine biosynthetic pathway could evolve a novel TrpF activity and further evolve to generalist or specialist enzymes. We solved the crystal structure of wild type Salmonella enterica HisA in its apo-state and the structures of the mutants D7N and D7N/D176A in complex with the substrate ProFAR. These two distinct complex structures showed us the coupled conformational changes of HisA and ProFAR before catalysis. We also solved crystal structures of ten mutants, some in complex with substrate or product. The structures indicate that bi-functional mutants adopt distinct loop conformations linked to the two functions and that mutations in specialist enzymes favor one of the conformations. We also observed biphasic relationships in which small changes in the activities of low-performance enzymes had large effects on fitness, until a threshold, above which large changes in enzyme performance had little effect on fitness. Fusidic acid blocks protein translation by locking elongation factor G (EF-G) to the ribosome after GTP hydrolysis in elongation and recycling of bacterial protein synthesis. To understand the rescue mechanism, we solved the crystal structure of FusB at 1.6Å resolution. The structure showed that FusB is a two-domain protein and C-terminal domain contains a treble clef zinc finger. Using hybrid constructs between S. aureus EF-G that binds to FusB, and E. coli EF-G that does not, the binding determinants were located to domain IV of EF-G. This was further supported by small-angle X-ray scattering studies of the FusB·EF-G complex. Using single-molecule methods, we observed FusB frequently binding to the ribosome and rescue of FA-inhibited elongation by effects on the non-rotated state ribosome. Ribosome binding of FusB was confirmed by isothermal titration calorimetry.
|
12 |
Biotransformation of fusidic acid and its related derivatives by Streptomyces lividansBiukovic, Goran 30 March 2005 (has links)
As shown in previous studies Streptomyces lividans enzymatically inactivates fusidic acid by specific esterase FusH giving rise to the 16ß-OH derivative, which sponaneously converts to the lactone.in this work it was shown that S. lividans further modifies fusidic acid and both derivatives, which resulted in several new related substances. The two intermediates (La, Lb) were isolated from the culture filtrate of S. lividans, which was grown in the presence of fusidic acid. The differences in their chemical structures indicate the involvement of multiple enzyme reactions related to hydroxylation, hydration, dehydrogenation and isomerization. Several enzymes were identified and two of them (FusG, FusB) were partially characterized. According to their characteristics and the structures of isolated intermediates, the identified enzymes which are involved in biotranformation are conceivably related to the ones implicated in ß oxidation. The biotransformation of fusidic acid and its derivatives by S. lividans is so far unique, since characterized substances La and Lb have not been found in either fusidic acid-producing or fusidic acid-resistant microorganisms.
|
13 |
The Physiological Cost of Antibiotic ResistanceMacvanin, Mirjana January 2003 (has links)
<p>Becoming antibiotic resistant is often associated with fitness costs for the resistant bacteria. This is seen as a loss of competitiveness against the antibiotic-sensitive wild-type in an antibiotic-free environment. In this study, the physiological alterations associated with fitness cost of antibiotic resistance <i>in vitro</i> (in the laboratory medium), and <i>in vivo</i> (in a mouse infection model), are identified in the model system of fusidic acid resistant (Fus<sup>R</sup>) <i>Salmonella</i> <i>enterica</i> serovar Typhimurium.</p><p>Fus<sup>R</sup> mutants have mutations in <i>fusA</i>, the gene that encodes translation elongation factor G (EF-G). Fus<sup>R</sup> EF-G has a slow rate of regeneration of active EF-G·GTP off the ribosome, resulting in a slow rate of protein synthesis. The low fitness of Fus<sup>R</sup> mutants <i>in vitro</i>, and <i>in vivo</i>, can be explained in part by a slow rate of protein synthesis and resulting slow growth. However, some Fus<sup>R</sup> mutants with normal rates of protein synthesis still suffer from reduced fitness <i>in vivo</i>. We observed that Fus<sup>R</sup> mutants have perturbed levels of the global regulatory molecule ppGpp. One consequence of this is an inefficient induction of RpoS, a regulator of general stress reponse and an important virulence factor for <i>Salmonella</i>. In addition, we found that Fus<sup>R</sup> mutants have reduced amounts of heme, a co-factor of catalases and cytochromes. As a consequence of the heme defect, Fus<sup>R</sup> mutants have a reduced ability to withstand oxidative stress and a low rate of aerobic respiration.</p><p>The pleiotropic phenotypes of Fus<sup>R</sup> mutants suggest that antibiotic resistance can be associated with broad changes in bacterial physiology. Knowledge of physiological alterations that reduce the fitness of antibiotic-resistant mutants can be useful in identifying novel targets for antimicrobial agents. Drugs that alter the levels of global transcriptional regulators such as ppGpp or RpoS deserve attention as potential antimicrobial agents. Finally, the observation that Fus<sup>R</sup> mutants have increased sensitivity to several unrelated classes of antibiotics suggests that the identification of physiological cost of resistance can help in optimizing treatment of resistant bacterial populations.</p>
|
14 |
The Physiological Cost of Antibiotic ResistanceMacvanin, Mirjana January 2003 (has links)
Becoming antibiotic resistant is often associated with fitness costs for the resistant bacteria. This is seen as a loss of competitiveness against the antibiotic-sensitive wild-type in an antibiotic-free environment. In this study, the physiological alterations associated with fitness cost of antibiotic resistance in vitro (in the laboratory medium), and in vivo (in a mouse infection model), are identified in the model system of fusidic acid resistant (FusR) Salmonella enterica serovar Typhimurium. FusR mutants have mutations in fusA, the gene that encodes translation elongation factor G (EF-G). FusR EF-G has a slow rate of regeneration of active EF-G·GTP off the ribosome, resulting in a slow rate of protein synthesis. The low fitness of FusR mutants in vitro, and in vivo, can be explained in part by a slow rate of protein synthesis and resulting slow growth. However, some FusR mutants with normal rates of protein synthesis still suffer from reduced fitness in vivo. We observed that FusR mutants have perturbed levels of the global regulatory molecule ppGpp. One consequence of this is an inefficient induction of RpoS, a regulator of general stress reponse and an important virulence factor for Salmonella. In addition, we found that FusR mutants have reduced amounts of heme, a co-factor of catalases and cytochromes. As a consequence of the heme defect, FusR mutants have a reduced ability to withstand oxidative stress and a low rate of aerobic respiration. The pleiotropic phenotypes of FusR mutants suggest that antibiotic resistance can be associated with broad changes in bacterial physiology. Knowledge of physiological alterations that reduce the fitness of antibiotic-resistant mutants can be useful in identifying novel targets for antimicrobial agents. Drugs that alter the levels of global transcriptional regulators such as ppGpp or RpoS deserve attention as potential antimicrobial agents. Finally, the observation that FusR mutants have increased sensitivity to several unrelated classes of antibiotics suggests that the identification of physiological cost of resistance can help in optimizing treatment of resistant bacterial populations.
|
15 |
Le contrôle qualité de la synthèse protéique comme cible pour le développement de nouveaux antibiotiques / Quality control of protein synthesis as a target for developing new antibioticsMacé, Kévin 24 November 2016 (has links)
Le travail retranscrit dans cette thèse regroupe l'étude de différents processus biologiques impliqués dans la synthèse protéique bactérienne. Dans un premier chapitre, les origines de la synthèse protéique au temps du monde ARN sont traitées en guise d'introduction. Ce travail théorique se poursuit par la présentation d'une structure à haute résolution du facteur d'élongation G (EF-G) en complexe avec le ribosome par cryo-microscopie électronique à transmission (cryo-MET). Grâce aux avancées techniques de la cryo-MET, nous avons observé pour la première fois EF-G lié au ribosome en l'absence de tout inhibiteur. Cet état particulièr d'EF-G permet de visualiser une flexibilité de son doamine III. Cette étude permet aussi de rationaliser le fonctionnement de l'antibiotique acide fusidique. Nous nous sommes ensuite intéressés aux voies de sauvetage de la synthèse protéique et plus particulièrement de la trans-traduction. Ce mécanisme fascinant permet le recyclage des ribosomes bloqués sur un ARN messager défectueux. Cette voie de sauvetage est généralement vitale ou alors indispensable pour la virulence bactérienne. Nous avons réalisé une étude structurale préliminaire de la dégradation de l'ARNm défectueux durant ce processus. Après une revue traitant du sujet, nous présentons une étude de la trans-traduction comme cible pour le développement de nouveaux antibiotiques. Pour cela, nous avons mis au point un système rapporteur avec contrôle interne de l'activité trans-traductionnelle bactérienne. Après avoir mis au point ce système et validé son utilisation, nous l'avons exploité en testant des molécules ciblant la trans-traduction. / The current PhD work brings together various studies linked to bacterial protein synthesis. The first chapter is about the origins of protein synthesis at the time of the RNA world. This theoretical work continues with the presentation of a high-resolution structure of the elongation factor G (EF-G) in complex with the ribosome by cryo-electron transmission microscopy (cryo-TEM). We describe for the first time EF-G bound to the ribosome in the absence of any inhibitor. This particular structure of EF-G displays a yet unseen positioning of its third domain, which becomes very flexible. This study helps to understand the way the antibiotic fusidic acid blocks translation. The work then switches to a study of trans-translation, the main rescuing system of stalled ribosomes in bacteria. Trans-translation is generally vital or at least necessary for bacterial virulence. We conducted a preliminary structural study on the way faulty mRNAs are degraded during this process. This is why we present a study of trans-translation as a target for the development of new antibiotics. For this we developed and validated a reporter system for trans-translation, which is used to screen molecules targeting trans-translation.
|
Page generated in 0.0575 seconds