Spelling suggestions: "subject:"géométrie dde l'information"" "subject:"géométrie dee l'information""
1 |
Approche bayésienne en séparation de sources. Applications en imagerieSnoussi, Hichem 29 September 2003 (has links) (PDF)
Ce travail de thèse consiste à développer l'approche bayésienne en séparation de sources. Mes contributions sont à la fois méthodologiques et algorithmiques illustrées par des applications en imagerie satellitaire et en cosmologie observationnelle. - Au niveau méthodologique: 1. nous avons proposé une modélisation pertinente des sources. L'aspect hiérarchique de ce modèle est bien adapté à la structure cachée naturelle du problème de séparation de sources. 2. Nous avons étudié le problème de dégénérescence du maximum de vraisemblance dans le cas vectoriel et dans le contexte de séparation de sources. 3. Nous avons proposé une approche originale pour la sélection d'a priori avec les outils de la géométrie différentielle. - Au niveau Algorithmique: 1. Nous avons proposé des algorithmes de séparation et de ségmentation dont le principe est l'exploitation de la non stationnarité dans le domaine temporel, spatial, spectral, temps-fréquence... 2. Nous avons mis en oeuvre la solution bayésienne avec une impémentation parallèle de l'échantillonneur de Gibbs ainsi que d'autres approximations stochastiques de l'EM. 3. Ces algorithmes sont illustrés par une application en imagerie satellitaire et une application en cosmologie observationnelle. Enfin, j'ouvre des perspectives théoriques sur la dualité de l'approche bayésienne et de l'approche informationnelle dans le cadre de la séparation et de la ségmentation conjointes des sources.
|
2 |
Interprétation et amélioration d'une procédure de démodulation itérativeNaja, Ziad 01 April 2011 (has links) (PDF)
La géométrie de l'information est la théorie mathématique qui applique les méthodes de la géométrie différentielle dans le domaine des statistiques et de la théorie de l'information. C'est une technique très prometteuse pour l'analyse et l'illustration des algorithmes itératifs utilisés en communications numériques. Cette thèse porte sur l'application de cette technique ainsi que d'autre technique d'optimisation bien connue, l'algorithme itératif du point proximal, sur les algorithmes itératifs en général. Nous avons ainsi trouvé des interprétations géométriques (basée sur la géométrie de l'information) et proximales (basée sur l'algorithme du point proximal)intéressantes dans le cas d'un algorithme itératif de calcul de la capacité des canaux discrets sans mémoire, l'algorithme de Blahut-Arimoto. L'idée étant d'étendre cette application sur une classe d'algorithmes itératifs plus complexes. Nous avons ainsi choisi d'analyser l'algorithme de décodage itératif des modulations codées à bits entrelacés afin de trouver quelques interprétations et essayer de proposer des liens existant avec le critère optimal de maximum de vraisemblance et d'autres algorithmes bien connus dans le but d'apporter certaines améliorations par rapport au cas classique de cet algorithme, en particulier l'étude de la convergence.Mots-clefs : Géométrie de l'information, algorithme du point proximal, algorithme de Blahut-Arimoto, décodage itératif, Modulations codées à bits entrelacés, maximum de vraisemblance.
|
3 |
Méthodes de géométrie de l'information pour les modèles de mélangeSchwander, Olivier 15 October 2013 (has links) (PDF)
Cette thèse présente de nouvelles méthodes pour l'apprentissage de modèles de mélanges basées sur la géométrie de l'information. Les modèles de mélanges considérés ici sont des mélanges de familles exponentielles, permettant ainsi d'englober une large part des modèles de mélanges utilisés en pratique. Grâce à la géométrie de l'information, les problèmes statistiques peuvent être traités avec des outils géométriques. Ce cadre offre de nouvelles perspectives permettant de mettre au point des algorithmes à la fois rapides et génériques. Deux contributions principales sont proposées ici. La première est une méthode de simplification d'estimateurs par noyaux. Cette simplification est effectuée à l'aide un algorithme de partitionnement, d'abord avec la divergence de Bregman puis, pour des raisons de rapidité, avec la distance de Fisher-Rao et des barycentres modèles. La seconde contribution est une généralisation de l'algorithme k-MLE permettant de traiter des mélanges où toutes les composantes ne font pas partie de la même famille: cette méthode est appliquée au cas des mélanges de Gaussiennes généralisées et des mélanges de lois Gamma et est plus rapide que les méthodes existantes. La description de ces deux méthodes est accompagnée d'une implémentation logicielle complète et leur efficacité est évaluée grâce à des applications en bio-informatique et en classification de textures.
|
4 |
Interprétation et amélioration d'une procédure de démodulation itérativeNaja, Ziad 01 April 2010 (has links) (PDF)
La géométrie de l'information est la théorie mathématique qui applique les méthodes de la géométrie différentielle dans le domaine des statistiques et de la théorie de l'information. C'est une technique très prometteuse pour l'analyse et l'illustration des algorithmes itératifs utilisés en communications numériques. Cette thèse porte sur l'application de cette technique ainsi que d'autre technique d'optimisation bien connue, l'algorithme itératif du point proximal, sur les algorithmes itératifs en général. Nous avons ainsi trouvé des interprétations géométriques (basée sur la géométrie de l'information) et proximales (basée sur l'algorithme du point proximal) intéressantes dans le cas d'un algorithme itératif de calcul de la capacité des canaux discrets sans mémoire, l'algorithme de Blahut-Arimoto. L'idée étant d'étendre cette application sur une classe d'algorithmes itératifs plus complexes. Nous avons ainsi choisi d'analyser l'algorithme de décodage itératif des modulations codées à bits entrelacés afin de trouver quelques interprétations et essayer de proposer des liens existant avec le critère optimal de maximum de vraisemblance et d'autres algorithmes bien connus dans le but d'apporter certaines améliorations par rapport au cas classique de cet algorithme, en particulier l'étude de la convergence.
|
5 |
Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approachVilloutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
|
6 |
Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approachVilloutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
|
7 |
Méthodes Computationnelles en Géométrie de l'Information et Applications Temps Réel au Traitement du Signal AudioDessein, Arnaud 13 December 2012 (has links) (PDF)
Cette thèse propose des méthodes computationnelles nouvelles en géométrie de l'information, avec des applications temps réel au traitement du signal audio. Dans ce contexte, nous traitons en parallèle les problèmes applicatifs de la segmentation audio en temps réel, et de la transcription de musique polyphonique en temps réel. Nous abordons ces applications par le développement respectif de cadres théoriques pour la détection séquentielle de ruptures dans les familles exponentielles, et pour la factorisation en matrices non négatives avec des divergences convexes-concaves. D'une part, la détection séquentielle de ruptures est étudiée par l'intermédiaire de la géométrie de l'information dualement plate liée aux familles exponentielles. Nous développons notamment un cadre statistique générique et unificateur, reposant sur des tests d'hypothèses multiples à l'aide de rapports de vraisemblance généralisés exacts. Nous appliquons ce cadre à la conception d'un système modulaire pour la segmentation audio temps réel avec des types de signaux et de critères d'homogénéité arbitraires. Le système proposé contrôle le flux d'information audio au fur et à mesure qu'il se déroule dans le temps pour détecter des changements. D'autre part, nous étudions la factorisation en matrices non négatives avec des divergences convexes-concaves sur l'espace des mesures discrètes positives. En particulier, nous formulons un cadre d'optimisation générique et unificateur pour la factorisation en matrices non négatives, utilisant des bornes variationnelles par le biais de fonctions auxiliaires. Nous mettons ce cadre à profit en concevant un système temps réel de transcription de musique polyphonique avec un contrôle explicite du compromis fréquentiel pendant l'analyse. Le système développé décompose le signal musical arrivant au cours du temps sur un dictionnaire de modèles spectraux de notes. Ces contributions apportent des pistes de réflexion et des perspectives de recherche intéressantes dans le domaine du traitement du signal audio, et plus généralement de l'apprentissage automatique et du traitement du signal, dans le champ relativement jeune mais néanmoins fécond de la géométrie de l'information computationnelle.
|
8 |
Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approachVilloutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
|
9 |
Transport optimal de mesures positives : modèles, méthodes numériques, applications / Unbalanced Optimal Transport : Models, Numerical Methods, ApplicationsChizat, Lénaïc 10 November 2017 (has links)
L'objet de cette thèse est d'étendre le cadre théorique et les méthodes numériques du transport optimal à des objets plus généraux que des mesures de probabilité. En premier lieu, nous définissons des modèles de transport optimal entre mesures positives suivant deux approches, interpolation et couplage de mesures, dont nous montrons l'équivalence. De ces modèles découle une généralisation des métriques de Wasserstein. Dans une seconde partie, nous développons des méthodes numériques pour résoudre les deux formulations et étudions en particulier une nouvelle famille d'algorithmes de "scaling", s'appliquant à une grande variété de problèmes. La troisième partie contient des illustrations ainsi que l'étude théorique et numérique, d'un flot de gradient de type Hele-Shaw dans l'espace des mesures. Pour les mesures à valeurs matricielles, nous proposons aussi un modèle de transport optimal qui permet un bon arbitrage entre fidélité géométrique et efficacité algorithmique. / This thesis generalizes optimal transport beyond the classical "balanced" setting of probability distributions. We define unbalanced optimal transport models between nonnegative measures, based either on the notion of interpolation or the notion of coupling of measures. We show relationships between these approaches. One of the outcomes of this framework is a generalization of the p-Wasserstein metrics. Secondly, we build numerical methods to solve interpolation and coupling-based models. We study, in particular, a new family of scaling algorithms that generalize Sinkhorn's algorithm. The third part deals with applications. It contains a theoretical and numerical study of a Hele-Shaw type gradient flow in the space of nonnegative measures. It also adresses the case of measures taking values in the cone of positive semi-definite matrices, for which we introduce a model that achieves a balance between geometrical accuracy and algorithmic efficiency.
|
Page generated in 0.15 seconds