• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 18
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 53
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Otimização do flavonoide tilirosídeo como inibidor da enzima gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi / Optimization of flavonoid tiliroside as inhibitor of glyceraldehyde-3-phosphate dehydrogenase of Trypanosoma cruzi

Ricardo Rodrigues Goulart 10 July 2012 (has links)
A doença de Chagas afeta milhões de pessoas e os fármacos existentes não são seguros e apresentam eficácia limitada. Muitos produtos naturais mostraram efeitos inibitórios contra uma enzima importante para a sobrevivência do Trypanosoma cruzi, a gliceraldeído-3-fosfato desidrogenase (GAPDH). Dentre esses produtos naturais destacam-se aqueles da classe dos flavonoides, sendo que um deles, o tilirosídeo, mostrou-se interessante por inibir a enzima com valores de IC50 e Ki iguais a 46 e 25 µM, respectivamente, além de ter sido eficaz contra a cepa do T. cruzi resistente a fármacos (cepa Y) mostrando um valor de IC50 igual a 770 µM. Com objetivo de identificar novos potenciais inibidores da TcGAPDH baseados no tilirosídeo foram empregados métodos computacionais nos quais combinaram-se duas diferentes estratégias: os ensaios virtuais baseados na estrutura do ligante (LBVS) e os ensaios virtuais baseados na estrutura do receptor (SBVS). Os compostos que se ajustaram ao sítio catalítico da enzima e preditos para interagir de forma efetiva com o alvo foram adquiridos e testados contra a TcGAPDH. Os estudos de inibição enzimática foram realizados utilizando as técnicas de calorimetria de titulação isotérmica e espectroscopia de fluorescência obtendo como resultados as constantes de inibição dos compostos selecionados e seus modos de inibição. Dois flavonoides, o Nequimed 214 e o Nequimed 215 inibiram a TcGAPDH na mesma grandeza que o composto de partida, o tilirosídeo, mas como possuem cerca da metade da massa molecular, houve grande aumento da eficiência do ligante. A partir dessa informação, foram selecionados uma segunda geração de compostos preditos a interagir com a TcGAPDH. Deste modo, foram adquiridos bioisósteros de flavonoides que foram testados contra essa enzima, sendo que dois dos mesmos mostraram-se ativos e com alta eficiência do ligante. Foram adquiridos também compostos pertencentes à classe das hidantoínas, rodaninas, tio-hidantoínas e pirrolidina-2,4-dionas sendo que muitos dos mesmos foram ativos e mostraram os maiores valores de eficiência do ligante já relatados para a TcGAPDH, tornando-os excelentes candidatos para otimização molecular. Os resultados obtidos sugerem que vários inibidores possuem inibição não competitiva com relação ao substrato G3P. Os inibidores mais potentes foram testados contra a GAPDH de humanos e não foi verificada seletividade relevante. / Chagas disease affects millions of people worldwide. The available drugs are not safe and show limited efficacy. Many natural products inhibit the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important Trypanosoma cruzi enzyme. Among them, flavonoids have stood out and one of them, the tiliroside, inhibited the enzyme with IC50 and Ki values of 46 and 25 µM, respectively. Furthermore, unpublished results showed that this compound was effective against the drug-resistant strain of T. cruzi (Y strain) with IC50 value of 770 µM. In order to select potential inhibitors of TcGAPDH based on the tiliroside structure, computational methods were used combining two different strategies, the ligand-based virtual screening (LBVS) and the structure-based virtual screening (SBVS). The compounds predicted to interact effectively with the target and fit into the active site of the enzyme were purchased and tested. Enzyme inhibition studies were performed using isothermal titration calorimetry and fluorescence spectroscopy from which the constants and mode of inhibition of the compounds were determined. Two of the tested flavonoids, Nequimed 214 and Nequimed 215, showed inhibition activity against TcGAPDH in the same magnitude values as the starting compound, the tiliroside, in spite of their lower molecular weight, thus greatly enhancing the ligand efficiency (LE). These data prompted us to search for some flavonoid bioisosters that were obtained and tested against this enzyme, and two of them proved to be active with high ligand efficiencies. We also purchased compounds belonging to the class of hydantoins, pyrrolidine-2,4-dione, thio-hydantoin and rhodanine. Many of them were active at low micromolar concentration range and exhibited the highest ligand efficiencies ever reported for this enzyme, therefore becoming excellent candidates for molecular optimization. The obtained results suggest that most of inhibitors tested behave as non-competitive inhibitors with respect to the G3P substrate. The most potent inhibitors were tested against human GAPDH and relevant selectivity was not observed.
12

Estudos estruturais e cinéticos da enzima gliceraldeido-3-fosfato desidrogenase de trypanosoma cruzi e mutantes D21OL,D21OL-G213D / Structure and kinetics of the enzyme glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi and mutants D210L, D2101-G213D

Beatriz Gomes Guimarães 11 September 1998 (has links)
A enzima glicossomal gliceraldeído-3-fosfato desidrogenase (GAPDH) de Tripanosoma cruzi e os mutantes D210L e D210L-G213D foram expressos em E. coli, purificados e submetidos a ensaios de cinética enzimática e de cristalização. A enzima GAPDH tipo selvagem e o mutante D210L-G213D cristalizaram-se no grupo espacial P21 e os cristais apresentaram padrões de difração de raios-X de boa qualidade. A estrutura cristalográfica da enzima tipo selvagem foi determinada a 2.5 e 2.15 A de resolução, a partir de coletas de dados realizadas a 277 e 100 K respectivamente. Os fatores R cristalográficos finais dos refinamentos foram de 16.0% para a estrutura a 277 K e 18.8% para a estrutura a 100 K. A estrutura do mutante GAPDH D210L-G213D foi determinada a 2.15 A de resolução e refinada até um fator R cristalográfico de 18.9%. A comparação entre as estruturas da enzima tipo selvagem determinadas nas duas temperaturas levou a resultados interessantes no que diz respeito ao empacotamento cristalino. O resfriamento dos cristais provocou uma redução no volume da cela unitária de 10.5%, tendo a maior variação ocorrido no parâmetro de rede a (14.5%). A sobreposição das celas unitárias mostrou uma rotação do conteúdo da unidade assimétrica de cerca de 5 graus em torno de um eixo aproximadamente paralelo a b. Por outro lado, a análise das estruturas da enzima tipo selvagem e mutante, juntamente com os parâmetros cinéticos, permitiram a discussão a respeito de alguns detalhes do mecanismo catalítico da enzima, principalmente no que se refere ao papel do resíduo Arg249. Tal resíduo, que apresenta grande mobilidade conformacional de sua cadeia lateral, parece estar envolvido na etapa de reorientação de um dos intermediários durante o processo catalítico. / The glycosomal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Typanosoma cruzi and its mutants D210L and D210L-G213D were expressed in E. coli and purified, followed by kinetic and crystallization assays. Both wild type enzyme and D210L-G213D mutant were crystallized in P21 space group and the crystals presented good X-ray diffraction patterns. The three-dimensional structure of the wild type enzyme was determined at 2.5 and 2.15 A resolution from data collected at 277 and 100 K respectively. The structures were refined to a crystallographic R-factor of 16.0% for data collected at 277 K and 18.8% for those collected at 100 K. Also, the structure of the D210L-G213D mutant was solved at 2.15 A resolution and refined to a crystallographic R-factor of 18.9% with good geometry indicators. Comparison between the wild type enzyme structures solved at both temperatures led to interesting results concerning the crystal packing. Flash-cooled crystals presented a 10.5% shrink in the unit cell volume being the major reduction observed in the parameter a (14.5%). Superposition of the unit cells showed a global rotation of the asyrnmetric unit content of about 5 degrees around an axis approximately parallel to b. On the other hand, the analysis of the wild type and mutant enzyme structures, together with the kinetic parameters, allowed a discussion about some catalytic mecanism details, mainly the role of the Arg249 residue. The results showed that this residue might be involved in the reorientation of one of the intermediates during the catalytic process.
13

Planejamento de inibidores da enzima gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi e avaliação bioquímica por calorimetria de titulação isotérmica / Application of cheminformatics tools for inhibitors design of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi and biochemical evaluation by isothermal titration calorimetry

Igor Muccilo Prokopczyk 16 March 2012 (has links)
A doença de Chagas representa um grave problema de saúde em regiões endêmicas que vão desde o sul dos Estados Unidos até a Argentina. O protozoário tripanossomatídeo Trypanosoma cruzi é o agente causador dessa devastadora doença, que afeta milhões de pessoas. Existem em torno de 10 milhões de indivíduos contaminados e pelo menos 25 milhões de pessoas vivem em locais riscos de infecção. Os dois medicamentos, o nifurtimox e o benzonidazol, apresentam sérios efeitos colaterais além de se mostrarem ineficazes na fase crônica da doença. Esse triste perfil, felizmente, tem se alterado com recentes avanços que levaram o ravuconazol, pozaconazol e K11777 para estudos em fase clínica. Com base em seu papel fundamental no ciclo do T. cruzi, a sexta enzima da via glicolítica, a gliceraldeído 3-fosfato desidrogenase (GAPDH) vem sendo considerada um alvo promissor para a descoberta e o desenvolvimento de novos agentes quimioterápicos para o tratamento da doença de Chagas. É amplamente conhecida a importância do planejamento de compostos tanto por método baseado na estrutura do alvo quanto do ligante. A docagem molecular foi usada para a seleção inicial dos compostos para o teste biocalorimétrico, e a partir dessa estratégia foi possível, de 25 compostos. Os parâmetros cinéticos da catálise da TcGAPDH foram determinados (KM = 10,51 ± 0,91 µM, Vmax = 4,18 ± 0,09 x 10-4 mM s-1 e kcat = 85,88 ± 3,22 s-1). Os experimentos cinéticos por ITC possibilitou na identificação de cinco compostos bioativos, sendo três com constante de inibição abaixo de 100 µM (13,21 ± 0,88, 35,00 ± 1,70 e 78,45 ± 2,69 µM). Processos de simulação de dinâmica molecular foram aplicados para a predição do modo de interação dos três compostos com Ki app menores que 100 µM. / Chagas disease is a serious health problem in endemic regions ranging from the southern the United States to Argentina. The protozoan Trypanosoma cruzi is the causative agent of this devastating disease that affects millions of people. Exist about 10 million people infected and at least 25 million people live in risk of local infection. There are only two drugs used to treat Chagas disease during acute phase and it show harmful side effects. This gloomy outlook has changed due to major advances in research of anti-trypanosomatid agents; an example is posaconazole, ravuconazole and K11777 both, which currently is in clinical phase. A promising target that is receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) a key protein in the glycolytic pathway of trypanosomatids. SBVS methods were used for the selection of 25 compounds and these were assayed against GAPDH using Isothermal Titration Calorimetry. The kinetic parameters of catalysis were determined TcGAPDH (KM = 10.91 ± 0.91 µM, Vmax = 4.18 ± 0.09 x 10-4 mM s-1 and kcat = 85.88 ± 3.22 s-1). The kinetic experiments by ITC allowed the identification of five bioactive compounds, three with inhibition constant below 100 µM. Simulation process of molecular dynamics were applied to predict the mode of interaction for the three compounds with Kiapp less than 100 µM.
14

Planejamento racional de novos agentes quimioterápicos: Identificação e estudos cinéticos de novos inibidores da gliceraldeído-3-fosfato desidrogenase glicossomal de Trypanosoma cruzi / Rational design of new chemotherapeutic agents: identification and kinetic studies of new inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi

Aderson Zottis 26 March 2009 (has links)
As doenças negligenciadas são conseqüências marcantes do subdesenvolvimento que atinge diversas regiões do planeta. Dentre estas, destaca-se a Doença de Chagas, causada pelo parasita Trypanosoma cruzi, a qual afeta aproximadamente um quarto da população da América Latina e para qual os fármacos utilizados apresentam baixa eficácia, toxidez e sérios efeitos colaterais. Este quadro é agravado pela emergência de cepas resistentes, o que indica a grande necessidade de desenvolvimento de novos agentes quimioterápicos contra esta doença. A enzima gliceraldeído-3-fosfato desidrogenase (GAPDH) da via glicolítica do T. cruzi é um alvo macromolecular interessante devido ao seu papel essencial no metabolismo de tripanossomatídeos. Constitui o objetivo desta tese o desenvolvimento, a padronização e a validação de ensaios enzimáticos para a realização de extensivas triagens bioquímicas de modo a contribuir para a identificação de novos inibidores da GAPDH pertencentes a diversas classes químicas. Os compostos estudados são provenientes de síntese orgânica e de complexos inorgânicos de Rutênio, bem como de origem natural. Paralelamente, a realização do ensaio virtual em larga escala a partir de uma base de dados dirigida e da estrutura da GAPDH de T. cruzi resultou na identificação de um inibidor inédito da proteína alvo. Estudos do mecanismo de ação enzimático levaram à elucidação da modalidade de alguns inibidores identificados nesse estudo. / Parasitic diseases are a major global cause of illness, long-term disability, and death, with severe socio-economic consequences for millions of people worldwide. In Latin America, nearly one fourth of the population is infected by Trypanosoma cruzi, the causative agent of Chagas disease. The limited existing drug therapies suffer from a combination of drawbacks including poor efficacy, resistance and serious side effects. Therefore, there is an urgent need for new drugs that can overcome resistance and are safe and effective for use in human. The crucial dependence on glycolysis as a source of energy makes the glycolytic parasite enzymes promising targets for drug design. In this context, the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an attractive target for drug design. The development of standard enzymatic assays combined with extensive biological screening was the aim of this work and it has been contributing for the identification of novel GAPDH inhibitors. These compounds belong to several chemical classes from different sources, including organic synthesis, inorganic complexes and natural products. In addition, a virtual screening approach was applied in a focused database, previously filtered by drug-like properties, in order to identify new hits. This strategy resulted in the discovery of a novel scaffold with significant inhibitory activity against T. cruzi GAPDH. Kinetic and inhibition assays were conducted to shed light on the mechanism of action of the promising inhibitors.
15

Estudos em biologia estrutural e química medicinal no planejamento de novos inibidores da enzima Gliceraldeído-3-Fosfato Desidrogenase de Trypanosoma cruzi / Studies in structural biology and medicinal chemistry on the new inhibitors design of the glyceraldehyde-3-phosphate dehydrogenase enzyme from Trypanosoma cruzi

Tatiane Luciano Balliano 18 March 2010 (has links)
A doença de Chagas é causada pelo protozoário flagelado Trypanosoma cruzi e foi descoberta em 1909 por Carlos Chagas. A doença atinge cerca de 18 milhões de indivíduos na região das Américas, causando 50.000 mortes ao ano e deixando mais de 100 mil pessoas sob risco de infecção. Os tratamentos disponíveis foram desenvolvidos ainda na década de 70 apresentando baixa eficácia e fortes efeitos colaterais. Assim, é extremamente importante o desenvolvimento de novos fármacos mais seguros e eficazes para o tratamento da doença de Chagas. Uma importante estratégia que pode ser utilizada para o planejamento de novas moléculas bioativas é o planejamento baseado em um receptor-alvo. Nessa tese o alvo em estudo é a enzima gliceraldeído-3-fosfato desidrogenase (GAPDH) que faz parte da via glicolítica do protozoário T. cruzi. Este trabalho compreendeu os estudos estruturais e mecanísticos de quatro complexos cristalográficos da GAPDH na presença de ligantes diferentes. As estruturas obtidas subsidiaram estudos que forneceram informações importantes no planejamento de novos inibidores. Foi elucidado o modo pelo qual os compostos alquilantes iodoacetamida e iodoacetato atuam causando a inativação enzimática e as diferenças existentes nesse processo foram esclarecidas, mostrando que é necessária a expulsão do NAD+ do sítio ativo para que a inativação ocorra por parte do iodoacetamida. Além disso, o mecanismo de nitrosilação por complexos de rutênio foi investigado fornecendo informações que contribuem para o entendimento do mecanismo de inibição enzimática por parte dessa classe compostos. Além disso, a partir de um dos complexos estruturais obtidos, foi possível identificar a localização de um novo sítio alostérico que se forma na superfície da proteína. Essa informação é extremamente importante, pois abre novas perspectivas para o planejamento de novos inibidores mais potentes e seletivos da enzima GAPDH de T. cruzi. / Chagas disease, caused by Trypanosoma cruzi protozoan, was discovered in 1909 by Carlos Chagas. The disease affects about 18 million people in the American region, causing 50,000 deaths per year, leaving more than 100 thousand people at risk of infection. Available treatments developed in the 70 decade present low efficiency and strong side effects. Thus, it is extremely important the development of new drugs that safer and more effective. An important strategy used for the design of new bioactive molecules is based on a macromolecular target. The goal of this thesis is to study the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme that participates of the glycolytic pathway of the parasite T. cruzi. This work comprised structural and mechanistic studies of four complex crystallographic GAPDH in the presence of different ligands. The structures obtained subsidized structural and mechanistic studies that provided important information for the design of new inhibitors. It was clarified the way in which the alkylating agents iodoacetamide and iodoacetate acts causing enzyme inactivation and the differences in this process were resolved, showing that it is necessary the NAD+ is excluded of the active site wherefore the inactivation occurs by the iodoacetamide. Moreover, the mechanism of enzyme nitrosylation by ruthenium complexes was investigated, providing information that contributed to the understanding of the mechanism of enzyme inhibition by this class of compounds. Moreover, from the structural complexes obtained, it was possible to identify the location of a new allosteric site formed at the surface of the protein. This information is extremely important, because it opens new perspectives for the design of new inhibitors that are more potent and selective for the enzyme GAPDH of T. cruzi.
16

Planejamento racional de novos agentes quimioterápicos: Identificação e estudos cinéticos de novos inibidores da gliceraldeído-3-fosfato desidrogenase glicossomal de Trypanosoma cruzi / Rational design of new chemotherapeutic agents: identification and kinetic studies of new inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi

Zottis, Aderson 26 March 2009 (has links)
As doenças negligenciadas são conseqüências marcantes do subdesenvolvimento que atinge diversas regiões do planeta. Dentre estas, destaca-se a Doença de Chagas, causada pelo parasita Trypanosoma cruzi, a qual afeta aproximadamente um quarto da população da América Latina e para qual os fármacos utilizados apresentam baixa eficácia, toxidez e sérios efeitos colaterais. Este quadro é agravado pela emergência de cepas resistentes, o que indica a grande necessidade de desenvolvimento de novos agentes quimioterápicos contra esta doença. A enzima gliceraldeído-3-fosfato desidrogenase (GAPDH) da via glicolítica do T. cruzi é um alvo macromolecular interessante devido ao seu papel essencial no metabolismo de tripanossomatídeos. Constitui o objetivo desta tese o desenvolvimento, a padronização e a validação de ensaios enzimáticos para a realização de extensivas triagens bioquímicas de modo a contribuir para a identificação de novos inibidores da GAPDH pertencentes a diversas classes químicas. Os compostos estudados são provenientes de síntese orgânica e de complexos inorgânicos de Rutênio, bem como de origem natural. Paralelamente, a realização do ensaio virtual em larga escala a partir de uma base de dados dirigida e da estrutura da GAPDH de T. cruzi resultou na identificação de um inibidor inédito da proteína alvo. Estudos do mecanismo de ação enzimático levaram à elucidação da modalidade de alguns inibidores identificados nesse estudo. / Parasitic diseases are a major global cause of illness, long-term disability, and death, with severe socio-economic consequences for millions of people worldwide. In Latin America, nearly one fourth of the population is infected by Trypanosoma cruzi, the causative agent of Chagas disease. The limited existing drug therapies suffer from a combination of drawbacks including poor efficacy, resistance and serious side effects. Therefore, there is an urgent need for new drugs that can overcome resistance and are safe and effective for use in human. The crucial dependence on glycolysis as a source of energy makes the glycolytic parasite enzymes promising targets for drug design. In this context, the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an attractive target for drug design. The development of standard enzymatic assays combined with extensive biological screening was the aim of this work and it has been contributing for the identification of novel GAPDH inhibitors. These compounds belong to several chemical classes from different sources, including organic synthesis, inorganic complexes and natural products. In addition, a virtual screening approach was applied in a focused database, previously filtered by drug-like properties, in order to identify new hits. This strategy resulted in the discovery of a novel scaffold with significant inhibitory activity against T. cruzi GAPDH. Kinetic and inhibition assays were conducted to shed light on the mechanism of action of the promising inhibitors.
17

Estudos em biologia estrutural e química medicinal no planejamento de novos inibidores da enzima Gliceraldeído-3-Fosfato Desidrogenase de Trypanosoma cruzi / Studies in structural biology and medicinal chemistry on the new inhibitors design of the glyceraldehyde-3-phosphate dehydrogenase enzyme from Trypanosoma cruzi

Balliano, Tatiane Luciano 18 March 2010 (has links)
A doença de Chagas é causada pelo protozoário flagelado Trypanosoma cruzi e foi descoberta em 1909 por Carlos Chagas. A doença atinge cerca de 18 milhões de indivíduos na região das Américas, causando 50.000 mortes ao ano e deixando mais de 100 mil pessoas sob risco de infecção. Os tratamentos disponíveis foram desenvolvidos ainda na década de 70 apresentando baixa eficácia e fortes efeitos colaterais. Assim, é extremamente importante o desenvolvimento de novos fármacos mais seguros e eficazes para o tratamento da doença de Chagas. Uma importante estratégia que pode ser utilizada para o planejamento de novas moléculas bioativas é o planejamento baseado em um receptor-alvo. Nessa tese o alvo em estudo é a enzima gliceraldeído-3-fosfato desidrogenase (GAPDH) que faz parte da via glicolítica do protozoário T. cruzi. Este trabalho compreendeu os estudos estruturais e mecanísticos de quatro complexos cristalográficos da GAPDH na presença de ligantes diferentes. As estruturas obtidas subsidiaram estudos que forneceram informações importantes no planejamento de novos inibidores. Foi elucidado o modo pelo qual os compostos alquilantes iodoacetamida e iodoacetato atuam causando a inativação enzimática e as diferenças existentes nesse processo foram esclarecidas, mostrando que é necessária a expulsão do NAD+ do sítio ativo para que a inativação ocorra por parte do iodoacetamida. Além disso, o mecanismo de nitrosilação por complexos de rutênio foi investigado fornecendo informações que contribuem para o entendimento do mecanismo de inibição enzimática por parte dessa classe compostos. Além disso, a partir de um dos complexos estruturais obtidos, foi possível identificar a localização de um novo sítio alostérico que se forma na superfície da proteína. Essa informação é extremamente importante, pois abre novas perspectivas para o planejamento de novos inibidores mais potentes e seletivos da enzima GAPDH de T. cruzi. / Chagas disease, caused by Trypanosoma cruzi protozoan, was discovered in 1909 by Carlos Chagas. The disease affects about 18 million people in the American region, causing 50,000 deaths per year, leaving more than 100 thousand people at risk of infection. Available treatments developed in the 70 decade present low efficiency and strong side effects. Thus, it is extremely important the development of new drugs that safer and more effective. An important strategy used for the design of new bioactive molecules is based on a macromolecular target. The goal of this thesis is to study the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme that participates of the glycolytic pathway of the parasite T. cruzi. This work comprised structural and mechanistic studies of four complex crystallographic GAPDH in the presence of different ligands. The structures obtained subsidized structural and mechanistic studies that provided important information for the design of new inhibitors. It was clarified the way in which the alkylating agents iodoacetamide and iodoacetate acts causing enzyme inactivation and the differences in this process were resolved, showing that it is necessary the NAD+ is excluded of the active site wherefore the inactivation occurs by the iodoacetamide. Moreover, the mechanism of enzyme nitrosylation by ruthenium complexes was investigated, providing information that contributed to the understanding of the mechanism of enzyme inhibition by this class of compounds. Moreover, from the structural complexes obtained, it was possible to identify the location of a new allosteric site formed at the surface of the protein. This information is extremely important, because it opens new perspectives for the design of new inhibitors that are more potent and selective for the enzyme GAPDH of T. cruzi.
18

Deciphering the mechanism and function of stage-specific protein association with the membrane cytoskeleton of Toxoplasma gondii:

Dubey, Rashmi January 2017 (has links)
Thesis advisor: Marc-Jan Gubbels / Apicomplexan parasites like Toxoplasma gondii have a complex life cycle comprising of transitions between different hosts, different organ systems and between the extracellular and intracellular milieu. The parasite must thus adjust itself and its cellular processes in accordance with its environment. In this dissertation, I have focused on such stage specific behaviors of three distinct intermediate filament-like proteins as well as a glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1). These proteins relocate from the cytosol to the unique cortical membrane skeleton of non-dividing parasites. The intermediate filament-like proteins IMC7, 12 and 14, localize exclusively to the mature cytoskeleton. One model of function was that these proteins differentially stabilized mother and budding daughter cytoskeletons in the division process, but we ruled out this role for the individual proteins, as they are not essential for the lytic cycle of the parasite. However, we determined that IMC7 and IMC14 are contributing to the maintenance of rigidity of the cytoskeleton under osmotic stress conditions in extracellular parasites. In addition, IMC14 is critical in cell cycle progression as its depletion results in the formation of multiple daughters per division round. When the parasite egresses from the host cell, glycolytic enzyme GAPDH1 translocates to the cortex. The functional role of GAPDH1 in the parasite and the mechanism of its cortical translocation are deciphered based on the 2.25Å resolution crystal structure of the GAPDH1 holoenzyme in a quaternary complex. These studies identified that GAPDH1’s enzymatic function is essential for intracellular replication but we confirmed the previous reports that glycolysis is not strictly essential in presence of excess L-glutamine. We identify, for the first time, S-loop phosphorylation as a novel, critical regulator of enzymatic activity that is consistent with the notion that the S-loop is critical for cofactor binding, allosteric activation and oligomerization. We show that neither enzymatic activity nor phosphorylation state correlate with the ability to translocate to the cortex. However, we demonstrate that association of GAPDH1 with the cortex is mediated by Cysteine 3 in the N-terminus, likely by palmitoylation. Overall, glycolysis and cortical translocation are functionally decoupled by post-translational modifications. Collectively, the discoveries made in this dissertation reveal unprecedented detail in mechanism and function of cortical protein translocation and thereby identifying new drug targets. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
19

Inhibition of macrophage metabolism by oxLDL

Katouah, Hanadi January 2012 (has links)
Intracellular oxidative stress is induced by oxidised low density lipoprotein (oxLDL) in macrophages. In the atherosclerotic lesions, this oxLDL dependent oxidative stress appears to cause macrophage cell death, a key process in the development of the necrotic core within the complex plaque. Macrophages are activated by γ-interferon to synthesise and release a potent antioxidant, 7,8-dihydroneopterin (7,8-NP), which has been previously shown to protect human monocyte-like U937 cells and human monocyte-derived macrophage (HMDM) cells from oxLDL cytotoxicity. This study examined whether oxLDL causes the loss of cellular metabolic function and whether 7,8-dihydroneopterin can prevent this loss of metabolic activity in U937 cells and HMDM cells. OxLDL prepared by copper oxidation caused cell death in both U937 and HMDM cells at concentrations of 0.5 and 2.0 mg/ml, respectively. Cell morphology showed the oxLDL caused a necrotic like death in both cells as indicated by cell swelling and lysis. The decrease in cell viability was only observed after the loss of intracellular glutathione (GSH) which occurred in the first 3 hours in U937 cells following oxLDL addition. The loss of GSH appeared to be due to the production of intracellular oxidants generated in response to the presence of the oxLDL. Within 3 hours of oxLDL addition to both cell types, there was a rapid and progressive shutdown of cell metabolism indicated by a significant decrease in the enzymatic activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fall in lactate production and intracellular ATP levels. GAPDH activity was found to be inactivated rather than being lost from the cell. Gel electrophoresis with specific staining for oxidised proteins showed that the GAPDH had been oxidatively inactivated in the cells when oxLDL was present. Unlike GAPDH, lactate dehydrogenase (LDH) was not inactivated by the oxidation but was lost from the cells due to cell lysis. The observed rate of glycolysis failure was similar in both cell types except the HMDM cells did not lose lactate, LDH activity and cell viability until 6 hours compared to 3 hours with the U937 cells. The rate of oxygen consumption (VO2) was measured in U937 cells by taking cells at set time points and placing them in the respirometers to measure the VO2. U937 cells were found to increase their VO2 with incubation but this increase was inhibited in the presence of oxLDL within 3 hours. The addition of the 7,8 dihydroneopterin above 100 μM to both the U937 and HMDM cells significantly inhibited the oxLDL-induced loss of cell viability. GAPDH activity loss was also inhibited while lactate production was maintained. The 7,8-dihydroneopterin also prevented the decrease in the VO2 in oxLDL-treated U937 cells. OxLDL was labelled with fluorescent DiI to measure the uptake of oxLDL by HMDM cells. The incorporation of DiI into oxLDL was found to make it non-cytotoxic, possibly due to DiI’s antioxidant properties. Studies were therefore conducted using either a mixture of oxLDL and DiI labelled oxLDL (DiI-oxLDL) at non-protective concentrations or low concentration of DiI-oxLDL alone. These studies showed that 7,8-dihydroneopterin downregulated the oxLDL uptake in oxLDL-treated HMDM cells. Surprisingly the uptake rates also suggested that there was no relationship between oxLDL uptake and cell death assuming oxLDL and DiI-oxLDL are taken up by the same mechanism. This research showed that oxLDL-induced oxidative stress in macrophage cells causes a rapid oxidative loss of GAPDH activity which leads to the loss of glycolytic activity and a fall in ATP levels. The failure of cell metabolism appears to be a key event in the death mechanism triggered by the oxLDL. The radical scavenging activity of 7,8-dihydroneopterin appears to prevent the oxidative stress as indicated by the protection of the GSH pool. Without the oxidative stress, GAPDH remains functioning, glycolytic activity is maintained and both the U937 cells and HMDM cells did not die. This suggests that within the atherosclerotic plaque, 7,8-dihydroneopterin may act to stabilise the metabolism of macrophage cells in the presence of oxLDL and downregulate the oxLDL uptake.
20

Molecular and Cellular Characterization of Dopamine Neuron Stimulating Peptides

Kelps, Kristen 01 January 2013 (has links)
Parkinson’s disease, the second most common neurodegenerative disease, is characterized by the loss of dopaminergic neurons within the substantia nigra. Currently, the treatments available for PD are symptomatic treatments that do not stop the progression of the disease. Trophic molecules, such as glial cell-line derived neurotrophic factor (GDNF), have been evaluated as potential therapeutic molecules that could stop the loss of neurons and potentially restore some of the neurons that have already been lost. However, these trophic molecules are large making them difficult to produce and delivery. Here we characterize three peptides (DNSP-5, DNSP-11, and DNSP-17) to determine it they are stable and offer protective effects similar to GNDF allowing them to be potential therapeutic molecules. The data presented here involves the evaluation of the molecular and cellular mechanism of DNSP-5, DNSP-11, and DNSP-17, which are derived from prosequence of GDNF. Initial studies were carried out to evaluate the physical characteristics of these three peptides to determine their viability as potential therapeutic molecules. The structure and stability of these peptides were evaluated. Based on the data it was determined that the three peptides do not interact in vitro, allowing for further individual evaluations of the peptides. It was also determined that the peptides were stable when stored at both -80°C and 37°C for one month, allowing them to both potentially be stored during treatment. Cell culture assays and proteomic profiling were utilized to determine binding partners and potential mechanisms through which DNSP-11 may be able to mediate apoptosis. It was determined that DNSP-11 was able to interact with a variety of binding partners that are involved in metabolism. These studies have aided in the understanding of neurotrophic factor prosequence function, but will also serve as a starting point for the development of novel trophic factors for PD treatment. Finally, the interaction between DNSP-11 and GAPDH was evaluated as a potential anti-apoptotic mechanism. GAPDH has previously shown to play a role in mediating apoptotic pathways. It was hypothesized that the observed interaction between DNSP-11 and GAPDH could mediate that role of GAPDH in apoptosis and afford DNSP-11 its observed anti-apoptotic effects. It was observed that while DNSP-11’s interaction with GAPDH may play a role in its anti-apoptotic effects, it does not appear to be the only mechanism involved. Based on this data, it is likely that the other metabolic binding partners play a role in DNSP-11’s anti-apoptotic mechanisms and therefore, these interactions should be further evaluated.

Page generated in 0.0603 seconds