• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 42
  • 18
  • 16
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 447
  • 447
  • 442
  • 437
  • 115
  • 69
  • 64
  • 55
  • 55
  • 53
  • 51
  • 50
  • 45
  • 44
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Configurable Architecture for System-Level Prototyping of High-Speed Embedded Wireless Communication Systems

Subramanian, Visvanathan 02 October 2003 (has links)
Broadband wireless technologies have the potential to provide integrated data and multimedia services in several niche areas. There is a growing need to develop high-performance communication systems that can satisfy high-end data processing requirements inherent in these technologies. The speed and complexity of these systems necessitates designers to break away from traditional architectures and design methodologies. A more comprehensive and demanding design and verification process including both hardware and software is required. Field-programmable gate arrays (FPGA) offer an attractive alternative to the low efficiency of Digital Signal Processor (DSP) based systems and low flexibility of Application Specific Integrated Circuits(ASIC). The availability of high-density, high-performance field-programmable gate arrays with several capabilities, like embedded memory and advanced routing, together with the adaptability that they offer make them highly desirable for developing hardware prototypes of communication systems. This thesis describes the development of a configurable architecture and FPGA-based design methodology used in the development of a Local Multipoint Distribution Service (LMDS) gateway for a disaster response network. The design of the gateway posed several challenges due to high data rates (120 Mbits/sec) and adaptive features like variable Forward Error Correction Coding and optional link-level retransmissions. The design decisions and simulation results of the verification process are discussed in detail. Finally, the aspects of testing and integration of the prototype in the overall system are discussed. / Master of Science
302

Hybrid FPGA and GPP Implementation of IEEE 802.15.4 Physical Layer

Jeong, Jeong-O 28 August 2012 (has links)
In this thesis, two different cases of hybrid IEEE 802.15.4 PHY (Physical Layer) implementation are explored. The first case is an FPGA implementation of IEEE 802.15.4 PHY on the Xilinx Spartan-3A DSP FPGA of USRP N210. All of the signal processing tasks are performed on the FPGA, while less complex MAC (Media Access Control) layer tasks are performed in GNU Radio on the host. The second case is an implementation of a multi-channel IEEE 802.15.4 receiver. A four-channel channelizer is implemented on the external Virtex 5 FPGA, while the IEEE 802.15.4 receiver is implemented in GNU Radio on the host. The first case demonstrates how spare resources in USRP's FPGA can be used to implement signal processing task while still interfacing with GNU Radio. The second case builds a platform on which a combination of GNU Radio and an external FPGA can be used for signal processing and USRP as an RF source. This thesis lays out the groundwork for more complex wireless protocols to be implemented on any combination of USRP's FPGA, an external FPGA, and GNU Radio. / Master of Science
303

VLSI Implementation of a Run-time Reconfigurable Custom Computing Integrated Circuit

Musgrove, Mark D. 07 November 1996 (has links)
The growth of high performance computing to date can largely be attributed to continuing breakthroughs in materials and manufacturing.In order to increase computing capacity beyond these physical bounds, new computing paradigms must be developed that make more efficient use of existing manufacturing technologies. Custom Computing Machines (CCMs) are an emerging class of computers that offer promising possibilities for future high-performance computational needs. With the increasing popularity of the run-time reconfigurable (RTR) concept in the CCM community, questions have arisen as to what computational device should be at the heart of an RTR platform. Currently the preferred device, and really the only practical device, has been the RAM-based Field-Programmable Gate Array (FPGA). Unfortunately, for applications that require high performance, FPGAs are limited by their narrow data path and small computational density. The Colt integrated circuit has been designed from the start to be the computational processing element in an RTR platform. Colt is an RTR data-flow processor array with a course-grain architecture (16-bit data path). This thesis covers the VLSI implementation and verification of the Colt integrated circuit, including the approach and methods necessary to make a functionally working integrated circuit. / Master of Science
304

Image Chipping with a Common Architecture for Microsensors (CAuS)

Scalera, Jonathan E. 16 August 2001 (has links)
Recent interest has emerged in microsensor platforms that are capable of supporting reconnaissance, surveillance and target acquisition operations. These devices typically consist of one or more sensors, signal conditioning and processing subsystems, a radio link and a power source. Sensors employed can range from acoustic, to seismic, to magnetic, to visible/infrared imagers. A notable shortcoming of these systems is the fact that they are battery powered. The use of a finite power source places an upper limit on the lifespan of such a system. Thus, a major thrust in the development and usage of these microsensor platforms lies in the conservation of their limited energy resources. In attempt to reduce power consumption and hence extend the system's lifespan, communication bandwidths are often limited. In order to reduce the required bandwidth, much of the signal processing necessary to achieve a desired functionality must be performed within the microsensor platform itself. This thesis effort provides this crucial bandwidth reduction by implementing in hardware an algorithm developed by the University of Maryland, which limits transmissions to the best view Regions-of-Interest (ROI) data, on the CAuS platform by BAE Systems. The hardware implementation was verified with a Matlab script that compared its results with those of the original algorithm. It was shown that these implementations were consistent for all of the data sets tested. Moreover, a subjective analysis, in which the detected ROIs were visually inspected, was performed to corroborate the former quantitative results. / Master of Science
305

An 8 GHz Ultra Wideband Transceiver Testbed

Agarwal, Deepak 06 December 2005 (has links)
Software defined radios have the potential of changing the fundamental usage model of wireless communications devices, but the capabilities of these transceivers are often limited by the speed of the underlying processors and FPGAs. This thesis presents the digital design for an impulse-based ultra wideband communication system capable of supporting raw data rates of up to 100 MB/s. The transceiver is being developed using software/reconfigurable radio concepts and will be implemented using commercially available off-the-shelf components. The receiver uses eight 1 GHz ADCs to perform time interleaved sampling at an aggregate rate of 8 Gsamples/s. The high sampling rates present extraordinary demands on the down-conversion resources. Samples are captured by the high-speed ADC and processed using a Xilinx Virtex-II Pro (XC2VP70) FPGA. The testbed has two components: a non real-time part for data capture and signal acquisition, and a real-time part for data demodulation and signal processing. The overall objective is to demonstrate a testbed that will allow researchers to evaluate different UWB modulation, multiple access, and coding schemes. As proof-of-concept, a scaled down prototype receiver which utilized 2 ADCs and a Xilinx Virtex-II Pro (XC2VP30) FPGA was fabricated and tested. / Master of Science
306

An FPGA Software-Defined Ultra Wideband Transceiver

Blanton, Matthew Bruce 25 September 2006 (has links)
Increasing interest in ultra-wideband (UWB) communications has engendered the need for a test bed for UWB systems. An FPGA-based software-defined radio provides both post-fabrication definition of the radio and ample parallel processing power. This thesis presents the FPGA design for a software-defined radio targeted to impulse ultra-wideband signals. The system is capable of an effective sampling frequency of up to 8 G-samples/s using time interleaved sampling with eight 1-GHz ADCs. The system is also capable of transmitting UWB pulses using a transmitter board controlled by the FPGA. In this thesis, the FPGA design used to capture and export data from the eight ADCs is presented, along with two systems which make use of the transceiver: a pilot-based matched filter communications system, and a remote vital signs monitor. / Master of Science
307

Design and Implementation of an FPGA-based Soft-Radio Receiver Utilizing Adaptive Tracking

Davies, John Clay IV 14 September 2000 (has links)
The wireless market of the future will demand inexpensive hardware, expandability, interoperability, and the implementation of advanced signal processing functions--i.e. a software radio. Configurable computing machines are often ideal software radio platforms. In particular, the Stallion reconfigurable processor's efficient hardware reuse and scalability fulfill these radios' demands. The advantages of Stallion-based design inspired an FPGA-based software radio - the proto-Stallion receiver. This thesis introduces the proto-Stallion architecture and details its implementation on the SLAAC-1V FPGA platform. Although this thesis presents a specific radio implementation, this architecture is flexible; it can support a variety of applications within its fixed framework. This implemented single-user DS-CDMA receiver utilizes an LMS adaptive filter that can combat MAI and constructively combine multipath; most notably, this receiver employs an adaptive tracking algorithm that harnesses the LMS algorithm to maintain symbol synchronization. The proto-Stallion receiver demonstrates the dependence of adaptive tracking on channel noise; the algorithm requires significant noise levels to maintain synchronization. / Master of Science
308

Design and Analysis of Four Architectures for FPGA-Based Cellular Computing

Morgan, Kenneth J. 09 November 2004 (has links)
The computational abilities of today's parallel supercomputers are often quite impressive, but these machines can be impractical for some researchers due to prohibitive costs and limited availability. These researchers might be better served by a more personal solution such as a "hardware acceleration" peripheral for a PC. FPGAs are the ideal device for the task: their configurability allows a problem to be translated directly into hardware, and their reconfigurability allows the same chip to be reprogrammed for a different problem. Efficient FPGA computation of parallel problems calls for cellular computing, which uses an array of independent, locally connected processing elements, or cells, that compute a problem in parallel. The architecture of the computing cells determines the performance of the FPGA-based computer in terms of the cell density possible and the speedup over conventional single-processor computation. This thesis presents the design and performance results of four computing-cell architectures. MULTIPLE performs all operations in one cycle, which takes the least amount of time but requires the most chip area. BIT performs all operations bit-serially, which takes a long time but allows a large cell density. The two other architectures, SINGLE and BOOTH, lie within these two extremes of the area/time spectrum. The performance results show that MULTIPLE provides the greatest speedup over common calculation software, but its usefulness is limited by its small cell density. Thus, the best architecture for a particular problem depends on the number of computing cells required. The results also show that with further research, next-generation FPGAs can be expected to accelerate single-processor computations as much as 22,000 times. / Master of Science
309

Evaluation of GNU Radio Platform Enhanced for Hardware Accelerated Radio Design

Karve, Mrudula Prabhakar 05 January 2011 (has links)
The advent of software radio technology has enabled radio developers to design and implement radios with great ease and flexibility. Software radios are effective in experimentation and development of radio designs. However, they have limitations when it comes to high-speed, high-throughput designs. This limitation can be overcome by introducing a hardware element to the software radio platform. Enhancing GNU Radio for Hardware Accelerated Radio Design project implements such a scheme by augmenting an FPGA co-processor to a conventional GNU Radio flow. In this thesis, this novel platform is evaluated in terms of performance of a radio design, as well as hardware and software system requirements. A simple and efficient Zigbee receiver design is presented. Implementation of this receiver is used as a proof-of-concept for the effectiveness and design methodology of the modified GNU Radio. This work also proposes a scheme to extend this idea for design of ultra-wideband radio systems based on multiband-OFDM. / Master of Science
310

An FPGA-Based Multiuser Receiver Employing Parallel Interference Cancellation

Swanchara, Steven F. 17 September 1998 (has links)
Research efforts have shown that capacity in a DS/CDMA cellular system can be increased through the use of digital signal processing techniques that exploit the nature of the multiple access interference (MAI). By jointly demodulating the users in the system, this interference can be characterized and reduced thus decreasing the overall probability of error in the system. Numerous multiuser structures exist, each with varying degrees of complexity and performance. However, the size and complexity of these structures is large relative to a conventional receiver. This effort demonstrates a practical approach to implementing parallel interference cancellation applied to DBPSK DS/CDMA on an FPGA-based configurable computing platform. The system presented acquires, tracks, cancels, and demodulates four users independently and performs various levels of interference cancellation. The performance gain of the receiver in a four-user environment under various levels of noise and cancellation are presented. / Master of Science

Page generated in 0.0453 seconds