• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 153
  • 65
  • 29
  • 6
  • 2
  • Tagged with
  • 886
  • 529
  • 241
  • 241
  • 188
  • 184
  • 143
  • 143
  • 143
  • 143
  • 143
  • 143
  • 137
  • 128
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Application of Genomic and Expression Arrays for Identification of new Cancer Genes

Nord, Helena January 2010 (has links)
Copy number variation (CNV) comprises a recently discovered kind of variation involving deletion and duplication of DNA segments of variable size, ranging from a few hundred basepairs to several million. By altering gene dosage levels or disrupting proximal or distant regulatory elements CNVs create human diversity. They represent also an important factor in human evolution and play a role in many disorders including cancer. Array-based comparative genomic hybridization as well as expression arrays are powerful and suitable methods for determination of copy number variations or gene expression changes in the human genome. In paper I we established a 32K clone-based genomic array, covering 99% of the current assembly of the human genome with high resolution and applied it in the profiling of 71 healthy individuals from three ethnic groups. Novel and previously reported CNVs, involving ~3.5% of the genome, were identified. Interestingly, 87% of the detected CNV regions overlapped with known genes indicating that they probably have phenotypic consequences. In papers II through IV we applied this platform to different tumor types, namely two collections of brain tumors, glioblastoma (paper II) and medulloblastoma (paper III), and a set of bladder carcinoma (paper IV) to identify chromosomal alterations at the level of DNA copy number that could be related to tumor initiation/progression. Tumors of the central nervous system represent a heterogeneous group of both benign and malignant neoplasms that affect both children and adults. Glioblastoma and medulloblastoma are two malignant forms. Glioblastoma often affects adults while the embryonal tumor medulloblastoma is the most common malignant brain tumor among children. The detailed profiling of 78 glioblastomas, allowed us to identify a complex pattern of aberrations including frequent and high copy number amplicons (detected in 79% of samples) as well as a number of homozygously deleted loci. These regions encompassed not only previously reported oncogenes and tumor suppressor genes but also numerous novel genes. In paper III, a subset of 26 medulloblastomas was analyzed using the same genomic array. We observed that alterations involving chromosome 17, especially isochromosome 17q, were the most common genomic aberrations in this tumor type, but copy number alterations involving other chromosomes: 1, 7 and 8 were also frequent. Focal amplifications, on chromosome 1 and 3, not previously described, were also detected. These loci may encompass novel genes involved in medulloblastoma development. In paper IV we examined for the presence of DNA copy number alterations and their effect on gene expression in a subset of 21 well-characterized Ta bladder carcinomas, selected for the presence or absence of recurrences. We identified a number of novel genes as well as a significant association between amplifications and high-grade and recurrent tumors which might be clinically useful. The results derived from these studies increase our understanding of the genetic alterations leading to the development of these tumor forms and point out candidate genes that may be used in future as targets for new diagnostic and therapeutic strategies.
302

Assessment of Novel Molecular Prognostic Markers in Chronic Lymphocytic Leukemia

Bin Kaderi, Mohamed Arifin January 2010 (has links)
The clinical course of chronic lymphocytic leukemia (CLL) is highly heterogeneous, which has prompted the search for biomarkers that can predict prognosis in this disease. The IGHV gene mutation status and certain genomic aberrations have been identified as reliable prognostic markers of clinical outcome for this disorder. However, the search for more feasible prognostic markers in CLL is still being pursued. Recently, certain single nucleotide polymorphisms (SNPs) in the GNAS1, BCL2 and MDM2 genes and the RNA expression levels of the LPL, ZAP70, TCL1, CLLU1 and MCL1 genes were suggested as novel prognostic markers in CLL. In papers I-III, we performed genotyping analyses of the GNAS1 T393C, BCL2 -938C>A and MDM2 SNP309 polymorphisms in 268-418 CLL patients and related the genotypes with clinical data. Association studies between the polymorphisms and established prognostic markers (i.e. IGHV mutation status, genomic aberrations, CD38 expression) were also performed. Our studies did not find any significant relationship between these SNPs with either clinical outcome or other known prognostic markers in CLL. In paper IV, we measured the RNA expression levels of LPL, ZAP70, TCL1, CLLU1 and MCL1 in 252 CLL cases and correlated these levels with clinical outcome. Here, we verified that high expression of all these RNA-based markers, except MCL1, were associated with an unfavourable prognosis. We also confirmed a close relationship between IGHV mutation status and the RNA-based markers, especially for LPL and CLLU1 expression. Among the RNA-based markers, multivariate analysis revealed LPL expression as the strongest independent prognostic marker for overall survival and time to treatment. Furthermore, the RNA-based markers could add further prognostic information to established markers in subgroups of patients, with LPL expression status giving the most significant results. In summary, data from papers I-III could not verify the GNAS1 T393C, BCL2 -938C>A and MDM2 SNP309 polymorphisms as prognostic markers in CLL. Future SNP markers must hence be confirmed in large, independent cohorts before being proposed as prognostic marker in CLL. In paper IV, we conclude that LPL expression appears to be the strongest among the RNA-based markers for CLL prognostication. Further efforts to standardize LPL quantification are required before it can be applied in the clinical laboratory to predict clinical outcome in this disease.
303

Detektion funktioneller RNAs in Genomsequenzen / Detection of functional RNAs in genome sequences

Heinemeyer, Isabelle 15 April 2009 (has links)
No description available.
304

The Role of Cdep in the Embryonic Morphogenesis of Drosophila melanogaster

Morbach, Anne 27 July 2016 (has links) (PDF)
Many organs and structures formed during the embryonic morphogenesis of animals derive from epithelia. Epithelia are made up of apicobasally polarized cells which adhere to and communicate with each other, allowing for epithelial integrity and plasticity. During embryonic morphogenesis, epithelia change their shape and migrate in a coordinated manner. How these epithelial processes are regulated is still not fully understood. In a forward genetic screen using the embryo of the fruit fly Drosophila melanogaster, candidate genes influencing the morphogenesis of epithelial structures were identified. Three genes, CG17364, CG17362 and CG9040 were identified as possible regulators of lumen stability in the salivary glands, tubular organs deriving from the embryonic epithelium. Furthermore, the gene Cdep was found to play a crucial role in epithelial sheet migration during dorsal closure of the embryo. Embryos carrying genomic insertions that could affect the expression of CG17364, CG17362 and CG9040 show a luminal penotype of the embryonic salivary glands characterized by alternating bloated and seemingly closed sections. Therefore, one of these genes or a combination of them likely plays a role in stabilizing the salivary gland lumen. However, neither CG17364 nor CG17362 or CG9040 contain any known protein domains, hence their molecular roles remain unknown. Cdep (Chondrocyte-derived ezrin-like protein) is a member of the FERM-FA subclass of proteins. Proteins of the FERM family have been shown to interact with the plasma membrane and membrane-bound proteins as well as cytoskeleton components. Accordingly, they have been implicated in stabilizing the cell cortex, and some of them are involved in signal transduction mechanisms. In addition to a FERM domain, Cdep also contains a RhoGEF domain, although is still not clear whether it actually exerts GEF activity. Genomic insertions in the Cdep locus cause defects in embryonic dorsal closure and atypical migratory behaviour in epithelial tubes. In order to study the molecular role of Cdep, the CRISPR/Cas9 system was employed to establish loss-of-function mutants of Cdep. The mutants show aberrations in germ band retraction, dorsal closure and head involution. Moreover, I found that two mutants carrying a premature STOP codon in the Cdep ORF, CdepE16X and CdepG17X, rescue the defects observed in embryonic cuticles mutant for two other FERM-FA members yurt (yrt) and coracle (cora). A deletion of the full Cdep ORF did not rescue those defects. I hypothesize that CdepE16X and CdepG17X encode Cdep variants with increased activity, which compensates for the loss of yrt or cora function, respectively. In conclusion, this leads to a model in which Cdep acts in parallel to Yrt and Cora during Drosophila embryonic morphogenesis. Many of the defects described in this study are reminiscent of phenotypes found in embryos mutant for components and downstream effectors of the Jun-N-terminal Kinase (JNK) pathway. Hence, my work supports an earlier hypothesis according to which a mouse homologue of Cdep, Farp2, acts as an upstream activator of the JNK pathway during epithelial cell migration in vitro (Miyamoto et al., 2003) The data provided here shows that Cdep plays a role in the morphogenesis of a great number of epithelia-derived organs and structures in vivo. My study therefore elucidates a missing link between cell migration cues and JNK pathway activation.
305

Domestication Effects on the Stress Response in Chickens : Genetics, Physiology, and Behaviour

Fallahshahroudi, Amir January 2017 (has links)
Animal domestication, the process where animals become adapted to living in proximity to humans, is associated with the alteration of multiple traits, including decreased fearfulness and stress response. With an estimated population of 50 billion, the domesticated chicken is the most populous avian species in the world. Hundreds of chicken breeds have been developed for meat and egg production, hobby or research purposes. Multidirectional selection and the relaxation of natural selection in captivity have created immense phenotypic diversity amongst domesticates in a relatively short evolutionary time. The extensive phenotypic diversity, existence of the wild ancestor, and feasibility of intercrossing various breeds makes the chicken a suitable model animal for deciphering genetic determinants of complex traits such as stress response. We used chicken domestication as a model to gain insights about the mechanisms that regulate stress response in an avian species. We studied behavioural and physiological stress response in the ancestral Red Junglefowl and one of its domesticated progenies, White Leghorn. An advanced intercross between the aforementioned breeds was later used to map genetic loci underlying modification of stress response. The general pattern of the stress response in chickens was comparable with that reported in mammals, however we identified distinctive differences in the stress modulatory pathways in chickens. We showed that changes in the expression levels of several stress modulatory genes in the brain, the pituitary and the adrenal glands underlie the observed modified stress response in domesticated chickens. Using quantitative trait loci (QTL) mapping, several QTL underlying stress induced corticosterone, aldosterone and baseline dehydroepiandrosterone (DHEA) levels were detected. As a next step, we combined QTL mapping with gene expression (eQTL) mapping and narrowed two QTL down to the putative causal genes, SERPINA10 and PDE1C. Both of these genes were differentially expressed in the adrenal glands of White Leghorn and the Red Junglefowl, had overlapping eQTL with hormonal QTL, and their expression levels in the adrenal glands were correlated with plasma levels of corticosterone and al-dosterone. These two genes thus serve as strong candidates for further functional investigation concerning modification of the stress response during domestication. This dissertation increase the knowledge about genetics and physiology of the stress response in an avian species and its modification during domestication. Our findings expand the basic knowledge about the stress response in chicken, which can potentially be used to improve welfare through appropriate genetic selection.
306

Fcγ Receptors in the Immune Response

Díaz de Ståhl, Teresita January 2001 (has links)
<p>Circulating immune complexes play an important role in the modulation of antibody responses and in the pathogenesis of immune diseases. This thesis deals with the <i>in vivo </i>regulatory properties of antibodies and their specific Fc receptors.</p><p>The immunosuppressive function of IgG is used clinically, to prevent rhesus-negative women from becoming sensitized to rhesus-positive erythrocytes from the fetus. The mechanism behind this regulation is poorly understood but involvement of a receptor for IgG, FcγRII, has been suggested. It is shown in this thesis that IgG and also IgE induce immunosuppression against sheep erythrocytes to a similar extent both in mice lacking all the known Fc receptors as in wild-type animals. These findings imply that antibody-mediated suppression of humoral responses against particulate antigens is Fc-independent and that the major operating mechanism is masking of epitopes.</p><p>Immunization with soluble antigens in complex with specific IgG leads to an augmentation of antibody production. The cellular mechanism behind this control is examined here and it is found that the capture of IgG2a immune complexes by a bone marrow-derived cell expressing FcγRI (and FcγRIII) is essential. An analysis of the ability of IgG3 to mediate this regulation indicated that, in contrast, this subclass of IgG augments antibody responses independently of FcγRI (and FcγRIII). These findings suggest that distinct mechanisms mediate the enhancing effect of different subclasses of antibodies.</p><p>Finally, the contribution of FcγRIII was studied in the development of collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis in humans. It was discovered that while DBA/1 wild-type control mice frequently developed severe CIA, with high incidence, FcγRIII-deficient mice were almost completely protected, indicating a crucial role for FcγRIII in CIA.</p><p>The results presented here help to understand how immune complexes regulate immune responses <i>in vivo</i> and show that Fc receptors for IgG, if involved, could be new targets for the treatment of immune complex-related disorders.</p>
307

Regulatory Effects of TGF-β Superfamily Members on Normal and Neoplastic Thyroid Epithelial Cells

Franzén, Åsa January 2002 (has links)
<p>Thyroid growth and function is partly regulated by growth factors binding to receptors on the cell surface. In the present thesis, the transforming growth factor-β (TGF-β) superfamily members have been studied for their role in regulation of growth and differentiation of both normal and neoplastic thyroid epithelial cells.</p><p>TGF-β1 is a negative regulator of thyrocyte growth and function. However, the importance of other TGF-β superfamily members has not been fully investigated. TGF-β1, activin A, bone morphogenetic protein (BMP)-7 and their receptors were found to be expressed in porcine thyrocytes. In addition to TGF-β1, activin A was also found to be a negative regulator of thyroid growth and function, and both stimulated phosphorylation and nuclear translocation of Smad proteins. Furthermore, TGF-β1 and epidermal growth factor (EGF) demonstrated a synergistic negative effect on thyrocyte differentiation. Simultaneous addition of the two factors resulted in a loss of the transepithelial resistance and expression of the epithelial marker E-cadherin. This was followed by a transient expression of N-cadherin.</p><p>Despite the extremely malignant character of anaplastic thyroid carcinoma (ATC) tumor cells, established cell lines are still responsive to TGF-β1. A majority of the cell lines were also found to be growth inhibited by BMP-7. BMP-7 induced cell cycle arrest of the ATC cell line HTh 74 in a dose- and cell density-dependent manner. This was associated with upregulation of p21<sup>CIP1</sup> and p27<sup>KIP1</sup>, decreased cyclin-dependent kinase (Cdk) activity and hypophosphorylation of the retinoblastoma protein (pRb). TGF-β1, and to some extent also BMP-7, induced the expression of N-cadherin and matrix metalloproteinase (MMP)-2 and -9. Stimulation of HTh 74 cells with TGF-β1 increased the migration through a reconstituted basement membrane indicating an increased invasive phenotype of the cells.</p><p>Taken together, these data show that TGF-β superfamily members not only affect growth and function of normal thyroid follicle cells but may also, in combination with EGF, play a role in cell dedifferentiation. This study additionally suggests that the TGF-β superfamily members may be important for the invasive properties of ATC cells.</p>
308

Functional Significance of Multiple Poly(A) Polymerases (PAPs)

Nordvarg, Helena January 2002 (has links)
<p>3’ end cleavage and polyadenylation are important steps in the maturation of eukaryotic mRNAs. Poly(A) polymerase (PAP), the enzyme catalysing the addition of adenosine residues, exists in multiple isoforms. In this study the functional significance of multiple poly(A) polymerases have been investigated. It is concluded (i) that at least three mechanisms generate the multiple isoforms i.e. gene duplication, post-translational modification and alternative mRNA processing and (ii) that the different isoforms of poly(A) polymerases have different catalytic properties. The study highlights regulation of poly(A) polymerase activity through modulation of its affinity for the substrate as visualised by the K<sub>M</sub> parameter. We suggest that trans-acting factors modulating the K<sub>M</sub> of poly(A) polymerase will play important roles in regulating its activity.</p><p>A new human poly(A) polymerase (PAPγ) encoded by the PAPOLG gene was identified. PAPγ is 65% homologous to the previously identified PAP. In human cells three isoforms of poly(A) polymerases being 90, 100 and 106 kDa in sizes are present. These native isoforms were purified. The PAPOLA gene encoded the 100 and 106 kDa isoforms while the 90 kDa isoform was encoded by the PAPOLG gene. Native PAPγ was found to be more active than 100 kDa PAP while the hyperphosphorylated 106 kDa PAP isoform was comparably inactive due to a 500-fold decrease in affinity for the RNA substrate. </p><p>The PAPOLG gene was shown to encode one unique mRNA while the PAPOLA gene generated five different PAP mRNAs by alternative splicing of the last three exons. The PAPOLA encoded mRNAs were divided into two classes based on the composition of the last three exons. Poly(A) polymerases from the two classes were shown to differ in polyadenylation activities. These differences revealed two novel regulatory motifs in the extreme C-terminal end of PAP, one being inactivating and the other activating for polyadenylation activity.</p>
309

Studies on Human Endogenous Retroviruses (HERVs) with Special Focus on ERV3

Andersson, Ann-Catrin January 2002 (has links)
<p>Human endogenous retroviruses (HERVs) represent approximately 7% of the human genome. This investigation was focused on one particular HERV, ERV3, with the main purpose of characterising its gene expression patterns and genomic distribution of ERV3-like sequences. Furthermore, this careful expression study should provide insights into the biological role of HERVs. The impact of HERVs in health and disease is not yet clarified. ERV3 is expressed as three envelope (<i>env</i>) transcripts, of which two also contain a cellular gene, <i>H-plk</i> (human proviral linked <i>Krüppel</i>). ERV3 <i>env</i> expression was mainly investigated at the RNA level. The gene expression of two other HERVs, HERV-K and HERV-E was analysed and compared with ERV3 activity.</p><p>Real-time PCRs were developed and in combination with in situ hybridisation, it was found that ERV3 is expressed in a tissue- and cell-specific way. High levels of ERV3 mRNA (up to six times over Histone3.3) were demonstrated in placenta, sebaceous glands, foetal and adult adrenal glands, brown adipose tissue, corpus luteum, pituitary gland, thymus and testis. In monocytic cells including both normal monocytes and malignant U-937 cells, elevated mRNA levels were observed after retinoic acid (RA)-induced differentiation. ERV3-encoded Env protein was detected in selected cases, one following RA-treatment. In addition, several new ERV3-like sequences were discovered in the human genome. </p><p>ERV3 was found to have conserved open reading frames in contrast to other ERV3-like sequences in the human genome. This suggests that ERV3 may be involved in important cellular processes such as differentiation, cell fusion, immunomodulation and protection against infectious retroviruses. The developed techniques and obtained results will allow further studies of HERV expression to better correlate HERV activity to both normal development and disease. </p>
310

Genetic Mapping of Susceptibility Genes for Systemic Lupus Erythematosus

Johanneson, Bo January 2002 (has links)
<p>Systemic lupus erythematosus (SLE) is a complex autoimmune disease with unknown etiology. The aim of this thesis was to identify susceptibility regions through genetic mapping, using model-based linkage analysis on nuclear and extended SLE multicase families.</p><p>In the first paper we performed a genome scan on 19 genetically homogenous Icelandic and Swedish families. One region at 2q37 was identified with a significant linkage with contribution from both populations (Z=4.24). Five other regions 2q11, 4p13, 9p22, 9p13 and 9q13 showed suggestive linkage (Z>2.0).</p><p>In the second paper, 87 families from 10 different countries were analysed only for chromosome 1. One region at 1q31 showed significant linkage (Z=3.79) with contribution from families from all populations, including Mexicans and Europeans. Four other regions 1p36, 1p21, 1q23, and 1q25, showed levels of suggestive linkage. Linkage for most regions was highly dependent on what population was used, which indicated strong genetic heterogeneity in the genetic susceptibility for SLE.</p><p>In the two last papers, we used the positional candidate gene strategy, in order to investigate candidate genes in two regions linked to SLE. For the Bcl-2 gene (at 18q21) we could not detect any association with SLE using three different markers. However, when we investigated the tightly linked low-affinity family of FcγR genes (at 1q23), we could find association for two risk alleles in the FcγRIIA and FcγRIIIA genes. The risk alleles were transmitted to SLE patients on one specific haplotype and therefore are not independent risk alleles.</p><p>The results show that model-based linkage analysis is a strong approach in the search for susceptibility genes behind complex diseases like SLE.</p>

Page generated in 0.034 seconds