211 |
Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae / Pathogenität eines Minimalorganismus: Die Rolle von Proteinphosphorylierungen in Mycoplasma pneumoniaeSchmidl, Sebastian 02 November 2010 (has links)
No description available.
|
212 |
Cardioprotection by Drug-Induced Changes in Glucose and Glycogen MetabolismOmar, Mohamed Abdalla Unknown Date
No description available.
|
213 |
Hypoxia-inducible factor hydroxylases are oxygen sensors in the brain /Dalgard, Clifton Lee. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
|
214 |
Intermittent hypoxia elicits a unique physiological coping strategy in Fundulus killifishBorowiec, Brittney G. January 2019 (has links)
Fish encounter daily cycles of hypoxia in the wild, but the physiological strategies for coping with repeated cycles of normoxia and hypoxia (intermittent hypoxia) are poorly understood. Contrastingly, the physiological strategies for coping with continuous (constant) exposure to hypoxia have been studied extensively in fish. The main objective of this thesis was to understand how Fundulus killifish cope with a diurnal cycle of intermittent hypoxia, an ecologically relevant pattern of aquatic hypoxia in the natural environment. To do this, I characterized the effects of intermittent hypoxia on hypoxia tolerance, oxygen transport, metabolism, and the oxidative stress defense system of killifish, and compared these effects to fish exposed to normoxia, a single cycle of hypoxia-normoxia, and constant hypoxia.
Specifically, I studied the following topics: (i) how acclimation to intermittent hypoxia modifies hypoxia tolerance, and the hypoxia acclimation response of Fundulus heteroclitus (Chapter 2), (ii) metabolic adjustments occurring during a hypoxia-reoxygenation cycle (Chapter 3), (iii) how acclimation to intermittent hypoxia alters O2 transport capacity and maximal aerobic metabolic rate (Chapter 4), (iv) the effects of hypoxia and reoxygenation on reactive oxygen species and oxidative stress (Chapter 5), and (v) variation in hypoxia tolerance and in the hypoxia acclimation responses across Fundulus fishes (Chapter 6).
Killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from both the response to a single bout of acute hypoxia-reoxygenation (12 h hypoxia followed by 6 h reoxygenation) and to chronic exposure to constant hypoxia (24 h hypoxia per day for 28 d). Key features of the acclimation response to intermittent hypoxia include (i) maintenance of resting O2 consumption rate in hypoxia followed by a substantial increase in O2 consumption rate during recovery in normoxia, (ii) reversible increases in blood O2 carrying capacity during hypoxia bouts, (iii) minimal recruitment of anaerobic metabolism during hypoxia bouts, and (iv) protection of tissues from oxidative damage despite alterations in the homeostasis of reactive oxygen species and cellular redox status. Of these features, (i) is unique to intermittent hypoxia, (ii) also occurs in fish exposed to acute hypoxia-reoxygenation, and (iii) and (iv) are observed in both fish acclimated to intermittent hypoxia as well as those acclimated to constant hypoxia.
This is the most extensive investigation to date on how fish cope with the energetic and oxidative stress challenges of intermittent hypoxia, and how these responses differ from constant hypoxia. This thesis adds substantial insight into the general mechanisms by which animals can respond to an ecologically important but poorly understood feature of the aquatic environment. / Dissertation / Doctor of Philosophy (PhD) / Oxygen levels in the aquatic environment are dynamic. Many fishes routinely encounter changes in oxygen content in their environment. However, we have very little understanding of how cycles between periods of low oxygen (hypoxia) and periods of high oxygen (normoxia) affect the physiology of fish. This thesis investigated how Fundulus killifish cope with daily cycles between hypoxia and normoxia (intermittent hypoxia) by modifying oxygen transport, metabolism, and oxidative stress defense systems. I found that killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from how they respond to a single bout of hypoxia (followed by normoxia) and to a constant pattern of only hypoxia. This is the most extensive investigation to date on how fish respond to the challenges of intermittent hypoxia, an understudied but ecologically important type of aquatic hypoxia.
|
215 |
Study of the pathophysiological role of nitric oxide on the amyloid-induced toxicity attending to the biochemical modifications and cellular damagesGuix Ràfols, Francesc Xavier 22 January 2009 (has links)
Aquesta tesi demostra que el peroxinitrit produït com a conseqüència del pèptid beta-amiloide (A) contribueix l'augment de la relació A42/A40 que ocorre a la malaltia d'Alzheimer. L'A42 contribueix a l'aparició de la malaltia degut a la seva major toxicitat (quan es compara amb l'A40) que resulta d'una gran estabilitat i capacitat agregativa. A més el peroxinitrit incrementa la toxicitat d'aquest degut a què potencia la seva agregació en forma d'oligomers altament tòxics. De fet els oligomers formats de nitro-A42 presenten una major toxicitat que aquells formats de A42 . En conjunt aquest resultats senyalen l'important paper que l'A42 té en la malaltia d'Alzheimer. Per altra banda, des de la identificació dels agregats d'A i la subseqüent formació dels cabdells neurofibrilars (NFT) com a els dos trets distintius de la malaltia, un gran esforç s'ha dedicat a establir els mecanismes moleculars que uneixen ambdós processos. Aquesta tesi demostra que el peroxinitrit format a partir de l'agregació de d'Ai la conseqüent nitrotirosinació de proteïnes, potencia l'agregació de la proteïna tau en forma de fibres. D'aquesta forma, la nitrotirosinació de la proteïna triosafosfat isomerasa (TPI) podria ser el vincle entre la toxicitat derivada del agregats d'Ai la patologia derivada de la proteïna tau. Per tant, la nitrotirosinació de la TPI podria explicar la progressió temporal que ocorre als cervells de pacients amb la malaltia d'Alzheimer des de la toxicitat induïda per l'Ai l'aparició dels NFT. Els resultats presentats en aquesta tesi podrien obrir nous aspectes en la recerca de la malaltia d'Alzheimer així com en altres malalties que cursin amb estrès oxidatiu i plegament erroni de proteïnes. / This thesis demonstrates that amyloid ß-peptide (Aß)-induced peroxynitrite contributes to the switch of the Aβ42/Aβ40 ratio that occurs in Alzheimer's disease (AD). Since Aβ42 is more toxic due to its higher aggregation and stability, it contributes to the trigger of the disease. In addition the aggregation of Aβ42 in form of the highly toxic oligomers is incremented by the presence of peroxynitrite. Moreover, these nitro-Aß42 oligomers are more toxic than those non-nitrated. All these results support the important role of peroxynitrite in AD etiology. Furthermore, since the identification of Aß accumulation and the subsequent formation of neurofibrillary tangles (NFT) as the two defining pathological hallmarks of AD, a fair amount of research on AD has been driven by the need to find the molecular mechanism linking Aß and NFT. This thesis shows the Aß-induced peroxynitrite, and the consequent nitrotyrosination of proteins, promotes tau fibrillization. Thus triosephosphate isomerase (TPI) nitrotyrosination could be the link between Aß-induced toxicity and tau pathology. Therefore, TPI nitrotyrosination may explain the temporal progression from Aß toxicity to NFT formation in AD brain. The work presented in this thesis could open a novel angle in the research of the pathophysiology of AD and could also have an impact to the research in other neurodegenerative diseases involving oxidative stress and protein misfolding.
|
Page generated in 0.0356 seconds