171 |
Caractérisation d’un rôle inédit de la glycolyse : contrôle du senseur du glucose et de la voie de la signalisation du glucose chez la levure Kluyveromyces lactis / Caracterization of a new role for glycolysis : control of the glucose sensor and the glucose signaling pathway in the yeast Kluyveromyces lactisCairey-Remonnay, Amélie 28 November 2014 (has links)
Chez les levures, organismes eucaryotes unicellulaires, le glucose est la source d'énergie préférée. La levure modèle Kluyveromyces lactis possède deux perméases au glucose. L'expression d'une de ces deux perméases, codée par le gène RAG1, est induite par la présence de glucose extracellulaire et cette régulation transcriptionnelle dépend de la détection du glucose par un senseur membranaire spécifique, Rag4. Cependant, la régulation de l'expression de RAG1 dépend également de la capacité des cellules à métaboliser le glucose via la glycolyse. En effet, l'expression de RAG1 est fortement affectée dans des mutants glycolytiques malgré la présence de glucose extracellulaire. Au cours de cette thèse, nous nous sommes attachés à déterminer les mécanismes via lesquels la glycolyse contrôle l'expression de RAG1. Grâce à l'utilisation de mutants glycolytiques ou d'inhibiteurs chimiques de la glycolyse chez K. lactis, nous avons démontré que la glycolyse régule la stabilité du senseur Rag4 à la membrane plasmique et contrôle ainsi la voie de signalisation du glucose et l'expression de RAG1. De plus, ce mécanisme de contrôle est conservé chez la levure modèle Saccharomyces cerevisiae. L'étude plus approfondie de Rag4 nous a permis de déterminer que la transmission du signal glucose requiert la queue C-terminale cytoplasmique de Rag4, qui sert de plateforme d'interaction protéique. La caractérisation fonctionnelle de Rag4 nous a permis de mettre en évidence que la protéine contient plusieurs domaines impliqués dans le contrôle de sa stabilité en fonction du type de signal induisant la déstabilisation: signal glycolytique ou changement de source de carbone. Enfin, la nature du signal issu de la glycolyse qui cible le senseur membranaire Rag4 a été étudiée en testant deux hypothèses : le signal est protéique (enzyme de la glycolyse) ou métabolique (métabolite intermédiaire de la glycolyse). Ces travaux de thèse ont permis de mettre en évidence un rôle inédit de la glycolyse dans le contrôle de la stabilité des senseurs membranaires du glucose chez les levures K. lactis et S. cerevisiae / Yeasts are unicellular eukaryotic organisms which prefer glucose as energy source. The yeast model Kluyveromyces lactis has two glucose permeases. The expression of one of its permeases, RAG1, is induced by extracellular glucose. The glucose signaling pathway responsible for RAG1 expression regulation is dependent upon glucose sensing through a specific membrane glucose sensor, Rag4. However, RAG1 expression is also dependent upon glucose metabolism by glycolysis. Indeed, in glycolytic mutants RAG1 expression is strongly affected even when glucose is present. During these doctoral studies, we characterized mechanisms involved in glycolytic control on glucose signaling. Using glycolytic mutant or glycolysis chemical inhibitors, we have demonstrated that, in K. lactis, glycolysis targets the stability of the glucose sensor Rag4, controlling glucose signaling and RAG1 expression. This glycolytic control appears to be conserved in the yeast model Saccharomyces cerevisiae. We have shown that the C-terminal cytoplasmic tail of glucose sensor Rag4 is necessary for glucose signaling and forms a protein interaction platform. Rag4 protein contains several domains controlling Rag4 stability in response to different destabilization signals: glycolytic signal or carbon source signal. Finally, the nature of the glycolytic signal was studied considering two hypotheses: protein nature (e.g. glycolytic enzyme) or metabolic nature (e.g. glycolysis metabolic intermediate). This doctoral thesis underlines a new role of glycolysis in controlling membrane glucose sensor stability in K. lactis and S. cerevisiae
|
172 |
Finding novel Neural Crest regulators : Pfkfb4, a key glycolysis partner, controls Neural Crest early patterning in Xenopus laevis / A la découverte de nouveaux régulateurs de la Crête Neurale : Pfkfb4, un régulateur de la glycolyse, contrôle aussi le développement précoce de la Crête Neurale chez l’amphibien.Pegoraro, Caterina 12 December 2012 (has links)
La crête neurale (CN) est une population transitoire de cellules multipotentes qui émerge à la frontière entre l’ectoderme neural et non-neural, dans une région appelée la bordure neurale (BN). Lorsque la BN se soulève pour former le tube neural, les cellules de la CN subissent une transition épithélium-mésenchyme (TEM), et migrent de façon intensive dans l’ensemble de l’embryon pour atteindre leur destination finale et se différencier. Elles sont à l’origine de nombreux types de dérivés : neurones, cellules gliales, cartilage de la tête, os et tissus connectifs, cellules pigmentaires, cellules sympatho-adrenales. Tous ces processus sont régulés par l’action coordonnée de nombreux gènes qui forment un réseau de régulations génétiques complexe, au sein duquel de nombreuses interactions ont été décrites, même si de nombreuses relations restent à élucider à ce jour. Une mauvaise régulation de gènes normalement impliqués dans la formation de la CN provoque des malformations congénitales appelées neurocristopathies. Par ailleurs, la TEM subie par les cellules de CN avant leur migration est également observée dans les cellules cancéreuses acquérant des propriétés métastatiques. Les événements moléculaires et de nombreux gènes impliqués dans la TEM sont communs au développement de la CN et au cancer.Les liens existant entre le développement de la CN et les neurocristopathies, ainsi que les métastases, soulignent l’importance de l’étude du réseau de régulations génétiques permettant la formation de la CN et l’EMT.Au laboratoire, nous nous intéressons aux événements précoces d’induction et de spécification de la CN. Dans le but d’identifier les gènes préférentiellement impliqués dans le développement précoce de la CN et non dans la formation de l’ectoderme neural et non-neural, un crible a été effectué sur le transcriptome de différents tissus embryonnaires micro-disséqués. La validation des résultats de ce crible a permis d’identifier plusieurs gènes intéressants possédant une fonction potentielle dans la formation de la CN. Nous nous sommes particulièrement intéressés à deux d’entre eux, en raison de leur fonction originale comparée à la majorité des gènes impliqués dans le développement de la CN : serca1 et pfkfb4, un régulateur de l’homéostasie calcique et un régulateur de la glycolyse respectivement.Nous avons analysé les patrons d’expression des gènes des familles serca et pfkfb au cours du développement de Xenopus laevis. En raison de son expression spécifique dans la CN, nous avons étudié plus en détails le rôle de pfkfb4 dans la formation de la CN. Cette analyse a montré que pfkfb4 est nécessaire pour la spécification neurale et de la crête neurale.Toutefois, malgré son rôle documenté dans la glycolyse, le phénotype des morphants pfkfb4 dans l’embryon de Xenopus laevis n’est pas dû à une altération de la glycolyse.En conclusion, nos résultats démontrent l’existence d’un nouveau rôle non glycolytique pour Pfkfb4 au cours du développement embryonnaire de Xenopus Laevis. / Neural Crest (NC) is a transient population of multipotent cells that arises at the border between neural and non-neural ectoderm, in a region named the neural border (NB). As the neural border elevates to form the neural tube, NC cells undergo an Epithelial-To-Mesenchymal Transition (EMT), migrate extensively into the whole body to reach their final destinations and differentiate. They give rise to multiple derivatives: neurons and glia, head cartilage, bones and connective tissue, pigment cells, sympatho-adrenal cells. All these processes are regulated by the concerted actions of several genes that form a complex Gene Regulatory Network (GRN), in which many interactions have been elucidated, but even more relationships still need to be understood. Misregulation of genes normally involved in NC formation causes birth defects called neurocristopathies. Moreover, the EMT that NC cells undergo before migration also takes place when cancer cells become metastatic: the molecular events and many of the genes involved in EMT and migration are shared between NC development and cancer. The links with metastasis, neurocristopathies and the fact that still little is known about the earliest steps of NC formation, highlight the importance and the interest in understanding the Gene Regulatory Network (GRN) leading to NC formation and EMT.In the laboratory, we are interested in the early steps of NC induction and specification. In order to identify genes preferentially involved in early NC development compared to genes involved in neural and non-neural ectoderm formation, a transcriptome screen on different microdissected embryonic tissues has been performed. The validation of the results of the screen revealed several interesting genes with a potential function in NC formation. We focused particularly on two of them, due to their original function compared to the majority of the genes involved in NC development: serca1 and pfkfb4, a calcium homeostasis regulator and a glycolysis regulator respectively. We analysed the expression patterns of serca and pfkfb family genes during Xenopus laevis development. Then, due to its specific expression in NC, we studied more in details the role of pfkfb4 in NC formation. This analysis revealed that pfkfb4 is necessary for neural and neural crest specification. However, despite its known role in glycolysis, pfkfb4 morphant phenotype in Xenopus laevis embryos is not due to an alteration of the glycolytic pathway.In conclusion, our results reveal a novel extra-glycolytic role for Pfkfb4 during Xenopus laevis embryonic development.
|
173 |
Sperm mitochondria: Species specificity and relationships to sperm morphometric features and sperm function in selected mammalian speciesMaree, Liana January 2011 (has links)
<p>Numerous studies on mammalian spermatozoa have reported large variations in the dimensions of the main sperm structural components, namely the head, midpiece and flagellum. These variations in sperm architecture are believed to be adaptations for functioning of spermatozoa in complex environments outside the male reproductive system. The midpiece of the mammalian  / permatozoon contains a varied number of mitochondria, but the reason for the marked difference in the size and structure of this sperm component is not clear. This study  / confirmed the variations in the sperm morphometry of seven selected mammalian species and revealed unique features of the sperm midpiece and sperm mitochondria of these seven species. Evaluation of several sperm kinematic parameters revealed the unique swimming characteristics of the different spermatozoa. The importance of using standardized motility  / parameters was highlighted as well as the assessment of different subpopulations of spermatozoa in order to produce more reliable and comparable data. Investigating the role of sperm mitochondria in human sperm  / metabolism indicated that these organelles are related to sperm function in terms of sperm motility. Furthermore, it was suggested that glycolysis and mitochondrial respiration are linked processes and that both are important for the maintenance of human sperm motility. By optimizing and employing standardized experimental procedures and analysis techniques, this study was  / able to confirm the species specificity of almost all the sperm parameters evaluated, while also elucidating the phylogenetic relatedness of the non-human primate species. In conclusion, the present study has confirmed that the various midpiece morphometry parameters are related to the remaining sperm morphometry parameters as well as to the sperm kinematic parameters.  / These proposed associations between the various sperm parameters were used to explain the sperm velocity of two hypothetical and morphologically different sperm structures. Therefore, the results of the current study support the idea of co-evolution between sperm components in mammalian spermatozoa and propose that the midpiece morphometry parameters that are selected for in these spermatozoa are midpiece volume, total number of mitochondrial gyres, thickness of the mitochondrial sheath and mitochondrial height.</p>
|
174 |
Investigation of glycolysis in Bacillus subtilis / Untersuchung der Glykolyse in Bacillus subtilisPietack, Nico 29 April 2010 (has links)
No description available.
|
175 |
Präklinische Evaluation: Glykolyseinhibition in Kombination mit GnRH-Rezeptor-vermittelter Therapie zur Behandlung gynäkologischer Karzinome / Preclinical Evaluation: Inhibition of Glycolysis in Combination with GnRH Receptor Targeted Therapy for Treatment of Gynecological CarcinomasReutter, Madita Dora 12 July 2011 (has links)
No description available.
|
176 |
Sperm mitochondria: Species specificity and relationships to sperm morphometric features and sperm function in selected mammalian speciesMaree, Liana January 2011 (has links)
<p>Numerous studies on mammalian spermatozoa have reported large variations in the dimensions of the main sperm structural components, namely the head, midpiece and flagellum. These variations in sperm architecture are believed to be adaptations for functioning of spermatozoa in complex environments outside the male reproductive system. The midpiece of the mammalian  / permatozoon contains a varied number of mitochondria, but the reason for the marked difference in the size and structure of this sperm component is not clear. This study  / confirmed the variations in the sperm morphometry of seven selected mammalian species and revealed unique features of the sperm midpiece and sperm mitochondria of these seven species. Evaluation of several sperm kinematic parameters revealed the unique swimming characteristics of the different spermatozoa. The importance of using standardized motility  / parameters was highlighted as well as the assessment of different subpopulations of spermatozoa in order to produce more reliable and comparable data. Investigating the role of sperm mitochondria in human sperm  / metabolism indicated that these organelles are related to sperm function in terms of sperm motility. Furthermore, it was suggested that glycolysis and mitochondrial respiration are linked processes and that both are important for the maintenance of human sperm motility. By optimizing and employing standardized experimental procedures and analysis techniques, this study was  / able to confirm the species specificity of almost all the sperm parameters evaluated, while also elucidating the phylogenetic relatedness of the non-human primate species. In conclusion, the present study has confirmed that the various midpiece morphometry parameters are related to the remaining sperm morphometry parameters as well as to the sperm kinematic parameters.  / These proposed associations between the various sperm parameters were used to explain the sperm velocity of two hypothetical and morphologically different sperm structures. Therefore, the results of the current study support the idea of co-evolution between sperm components in mammalian spermatozoa and propose that the midpiece morphometry parameters that are selected for in these spermatozoa are midpiece volume, total number of mitochondrial gyres, thickness of the mitochondrial sheath and mitochondrial height.</p>
|
177 |
A Novel Pathway for Enhanced Metabolic Capacities Underlies the Neuroprotective Actions of Teneurin C-Terminal Associated Peptide (TCAP)-1Xu, Mei 27 November 2012 (has links)
Teneurin C-terminal Associated Peptide (TCAP)-1 is postulated to play a critical role in cellular defense mechanisms as it is highly neuroprotective against alkalotic and hypoxic stress. Optimization of metabolic pathways is recognized as an essential survival tactic by alleviating energy deficits and meeting the demands to cope with the stressors. The aim of this research was to delineate the mechanism through which TCAP-1 confers protection. My findings show that TCAP-1 increases the overall expression of GLUT1 and enhances overall expression and membrane localization of GLUT3. With respect to metabolic parameters, chronic TCAP-1 application led to increased intracellular [ATP] with decreased intracellular [lactate], both in a dose-dependent manner, but did not alter tumourgenic glycolytic enzyme expression or mitochondrially associated apoptotic protein expression. Contrastingly, acute TCAP-1 led to decreased intracellular [ATP]. Indicative of increased cellular ATP production and physiological energy expenditure, TCAP-1 reduced serum insulin levels and subcutaneous adipocyte size in vivo.
|
178 |
A Novel Pathway for Enhanced Metabolic Capacities Underlies the Neuroprotective Actions of Teneurin C-Terminal Associated Peptide (TCAP)-1Xu, Mei 27 November 2012 (has links)
Teneurin C-terminal Associated Peptide (TCAP)-1 is postulated to play a critical role in cellular defense mechanisms as it is highly neuroprotective against alkalotic and hypoxic stress. Optimization of metabolic pathways is recognized as an essential survival tactic by alleviating energy deficits and meeting the demands to cope with the stressors. The aim of this research was to delineate the mechanism through which TCAP-1 confers protection. My findings show that TCAP-1 increases the overall expression of GLUT1 and enhances overall expression and membrane localization of GLUT3. With respect to metabolic parameters, chronic TCAP-1 application led to increased intracellular [ATP] with decreased intracellular [lactate], both in a dose-dependent manner, but did not alter tumourgenic glycolytic enzyme expression or mitochondrially associated apoptotic protein expression. Contrastingly, acute TCAP-1 led to decreased intracellular [ATP]. Indicative of increased cellular ATP production and physiological energy expenditure, TCAP-1 reduced serum insulin levels and subcutaneous adipocyte size in vivo.
|
179 |
Biochemical And Genetic Studies On The Pyruvate Branch Point Enzymes Of Rhizopus OryzaeAcar, Seyda 01 January 2004 (has links) (PDF)
Rhizopus oryzae is a filamentous fungi which produces lactic acid and ethanol in fermentations. R. oryzae has numerous advantages for use industrial production of L-(+)-lactic acid but the yield of lactic acid produced on the basis of carbon consumed is low.
Metabolic flux analysis of R. oryzae has shown that most of the pyruvate produced at the end of the glycolysis is channelled to ethanol, acetyl-CoA and oxaloacetate production. This study aimed to answer some questions addressed on the regulation of pyruvate branch point in R. oryzae and for this purpose biochemical characterisation of the enzymes acting at this branch point and cloning the genes coding for these enzymes have been done.
Pyruvate decarboxylase was purified and characterised for the first time from R. oryzae. The purified enzyme has a Hill coefficient of 1.84 and the Km of the
enzyme is 8.6 mM for pyruvate at pH 6.5. The enzyme is inhibited at pyruvate
concentrations higher than 30 mM. The optimum pH for enzyme activity shows a broad range from 5.7 and 7.2. The monomer molecular weight was estimated as 59± / 2 kDa by SDS-PAGE analysis.
Pyruvate decarboxylase (pdcA and pdcB) and lactate dehydrogenase (ldhA and ldhB) genes of R. oryzae have been cloned by PCR-cloning approach and the filamentous fungi Aspergillus niger was transformed with these genes. The A. niger transformed with either of the ldh genes of R. oryzae showed enhanced production of lactic acid compared to wild type. Citric acid production was also increased in these transformants while no gluconate production was observed
Cloning of hexokinase gene from R. oryzae using degenerate primers was studied by the use of GenomeWalker kit (Clontech). The results of this study were evaluated by using some bioinformatics tools depending on the unassembled clone sequences of R. oryzae genome.
|
180 |
Examining the role of metabolism in Myc-driven tumorigenesisPlym Forshell, Tacha Zi January 2011 (has links)
Myc transcriptionally regulates genes involved in processes such as cell proliferation, metabolism, differentiation, and angiogenesis. MYC expression is deregulated in many types of human cancer; therefore discovering the mechanisms behind MYCs role in tumorigenesis is essential. In this dissertation, I have focused on several Myc target genes, Spermidine synthase (Srm); Lactate dehydrogenase (Ldh); 3-phosphoglycerate dehydrogenase (Phgdh); Serine hydroxymethyltransferase (SHMT) 1 and 2; and Pim-3 (a member of the Pim family of serine/threonine kinases). These enzymes play a role in various functions: Spermidine synthase (polyamine synthesis); Lactate dehydrogenase (glycolysis); Phgdh and Shmt (serine metabolism); and Pim-3 (cell signaling). In order to elucidate the impact Myc over-expression has on metabolism in tumorigenesis, we use human cell lines, and transgenic mice as well as cell lines and tissues derived from these mice. The impact of inhibition of these target genes on Myc-driven tumorigenesis was done by genetically inhibiting the target gene (using RNAi or mouse models) or inhibiting the protein with a chemical inhibitor. Investigating these Myc target genes will help determine if inhibition of Myc target genes is a viable approach for chemotherapeutics, and under what conditions this inhibition may be the most valuable. In paper I, we examine SRM; a highly expressed enzyme in the polyamine synthesis pathway that converts putrescine to spermidine, and is important for actively growing cells. Genetic inhibition via RNAi against Srm, or chemical inhibition of Srm, resulted in decreased proliferation of B-cell tumor lines from transgenic mice in vitro. In vivo treatment of λ-Myc transgenic mice with a chemical SRM inhibitor exhibited a significant chemopreventative effect on tumor formation. These results support previous findings that inhibition of polyamine synthesis pathway enzymes has a place in cancer therapy. Many Myc target genes have been suggested as attractive targets in battling Myc-driven tumorigenesis. Surprisingly in paper II, when we analyzed the inhibition of other Myc target genes, such as Ldh, Shmt, and Phgdh, we found that inhibition of these genes did not inhibit Myc-driven tumorigenesis to any significant degree. However, inhibition of Ldh, Phgdh and Shmt2 had a notable effect on in vitro Ras-driven transformation. These findings suggest that chemotherapeutic inhibition of metabolic genes such as Ldh, Phgdh and Shmt2 may be effective in genetically defined settings, keeping in mind the oncogenic lesion behind the tumor. The Pim kinase family consists of three serine/threonine kinases, Pim1-3. In paper III, we found that Pim-3 is a direct Myc target gene and that Pim-3 expression is high in Burkitt Lymphoma samples taken from human patients, as well as spontaneously arising lymphomas from Myc transgenic mice. We also found that inhibition of Pim-3 using a pan-Pim kinase inhibitor, Pimi, in these spontaneously arising Myc lymphomas resulted in caspase independent cell death. These results indicate that Pim kinase inhibition may be a potential chemotherapeutic strategy in human lymphomas that rely on Pim-3 kinase expression.
|
Page generated in 0.0536 seconds