• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 15
  • 15
  • 11
  • 10
  • 9
  • 9
  • 9
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alternative Auslesemöglichkeiten für Hefe-Ganzzellsensoren

Altenkirch, Falko 18 January 2019 (has links)
Ganzzellsensoren sind potentielle Kandidaten für den Einsatz in der Umwelttechnik zur Detektion von Schwermetallen, organischen Lösungsmitteln oder Xenobiotika. Ebenso können mit ihrer Hilfe andauernde Prozesse, wie z.B. in der Biogasentwicklung, überwacht werden. Etablierte, auf Genexpression basierende Ausleseverfahren besitzen unterschiedliche Nachteile, die den Einsatz bisher weitestgehend auf das Labor beschränken. In der vorliegenden Arbeit wurden dazu drei alternative Auslesemöglichkeiten evaluiert, die durch kostengünstige Messverfahren und einem einfachen experimentellen Aufbau realisiert werden können. Die gezielte Morphologieänderung von Sensorhefen, die analytinduzierte Aggregation von Zellen und die analytabhängige Anlagerung von Goldnanopartikeln an Sensorhefen. Während sich die zwei erstgenannten Verfahren derzeit noch in Entwicklungszustand befinden, konnte durch die Anlagerung von Goldnanopartikeln an Sensorhefen der Wirkstoff Diclofenac erfolgreich detektiert werden. Die dazu notwendige Inkubationsdauer der Sensorhefen mit Diclofenac als auch das Detektionslimit wurde im Vergleich zu veröffentlichten Daten um je eine Größenordnung verringert.
2

In vitro Interaction of Nanoparticles with Mitochondria for Surface Enhanced Raman Spectroscopy and Cell Imaging

Mkandawire, Msaukiranji 18 November 2010 (has links) (PDF)
Mitochondria are an attractive target for the design of cancer therapy. One of the mechanisms by which chemotherapeutics destroy cancer cells is by inducing apoptosis through extrinsic or intrinsic apoptotic pathways. Extrinsic pathways target cell surface receptors whilst intrinsic pathways target mitochondria. Several studies have shown cancer cell destruction through the extrinsic pathways, which target cancer-specific overexpressed growth factor receptors on the cell membrane. Although the mitochondria dependent apoptotic process is well understood, its application in cancer therapy is still not well developed. Therefore, to design an effective cancer therapy targeting mitochondria, a good understanding in mitochondria dependent apoptotic process is required. Recent developments in nanotechnology have enabled live cell investigations and non-destructive methods to obtain cellular information. The availability of such information would assist to design methods of targeted apoptosis induction. In view of this, I report on studies towards development of cancer therapy where nanoparticles (NPs) were targeted to human cell mitochondria for two purposes: (a) development of cell-imaging tools to investigate the fundamental cell biological pathways inside cells and (b) induction of apoptosis by targeting nanoparticles to mitochondria. Current medical and biological fluorescent imaging methods are mainly based on dye markers, which are limited in light emission per molecule, as well as photostability. Consequently, NPs are gaining prominence for molecular imaging because of their strong and stable fluorescence. Additionally, in order to get insight of mitochondrial molecular information, I investigated the use of optical properties of gold nanoparticles (Au NPs) for surface enhanced Raman spectroscopy (SERS). In this study, two types of Au NPs - nanospheres (Au NS) and nanorods (Au NR) were investigated. Results from this study showed the enhancement effect of Au NPs in Raman spectra of mitochondria, especially in the region from 1500 to 1600 cm-1. In this region, normal Raman spectra of mitochondria showed the presence of some understated Raman peaks probably due to the excitation wavelength dependence. Au NRs showed a larger enhancement effect than Au NS with respect to the penetration depth of the plasmonic nearfield enhancement effect. Although, the details of the enhancement mechanism are beyond the current studies, Au NPs could be enhancing vibrations of aromatic residues in proteins. This study therefore showed that Au NPs could enhance Raman spectra of mitochondria and in addition the shape of the nanoparticles had a significant effect on SERS spectra. In living cells, I investigated some transfection methods and targeting of NPs to mitochondria or cytosolic actin subunits. I tested the performance of three transfection reagents to deliver nanodiamonds (NDs) into living cells. Antibody functionalized NDs were targeted to mitochondria or cytosolic actin subunits. Three transfection reagents were used: cationic liposomes PULSin™, the cell penetrating peptide protamine, and oligosaccharide modified polypropylene imine (PPI) dendrimers. Fluorescence imaging results revealed that dendrimers were the most efficient in delivering ND conjugates to targeted organelles. Protamine-mediated transfections appeared to target ND conjugates to intended organelles, although there was a tendency of unfunctionalized NDs to be directed to the nucleus. PULSin™-mediated transfection formed ND aggregates regardless of the functionalization moiety. This reflected the unsuitability of the cationic liposome to mediate ND transfections. Further, I investigated the potential use of Au NPs for cell imaging and photothermal lysis of mitochondria inside cells. Just as above, I also tested the performance of the three-transfection reagents mentioned above on transfection capacity of Au NPs into living cells. Using transmission electron microscopy (TEM), oligosaccharide modified dendrimers showed the best transfection of functionalized Au NPs. Further experiments explored the use of the nearfield enhancement effect of Au NPs in combination with low-level laser irradiation (LLLI) to induce apoptosis in living cells. Analysis of the apoptotic process using cytochrome c release showed that Au NPs induced apoptosis most probably through mechanical disruption of the outer mitochondrial membrane. However, apoptosis was significantly accelerated in cells with mitochondrially targeted Au NRs than in cells without Au NRs. This study showed successful targeting of Au NPs to mitochondria in living cells, and demonstrated the potential of using Au NPs in combination with laser irradiation to induce the mitochondria dependent apoptotic pathway. In conclusion, the potential use of Au NPs in SERS of mitochondria and the application of NDs for cell imaging of intracellular organelles were demonstrated. Lastly, Au NPs were targeted to mitochondria in living cells and could induce apoptosis due to mechanical disruption of the outer mitochondrial membrane. Consequently, application of low-level laser irradiation to Au NP transfected cells accelerated the apoptotic process.
3

Biohybrid sensor systems for the detection of metal ions in water

Jung, Jonas 20 February 2020 (has links)
Die Wasserverschmutzung durch Seltenen Erden (REEs) und Schwermetallen verursacht viele Probleme für die Umwelt und die menschliche Gesundheit. Daher ist der Nachweis solcher Elemente von hoher Priorität. Derzeit verwendete Methoden haben einige Nachteile, wie hohe Messkosten, beschränke Selektivität, komplexe Handhabung oder der Bedarf von hochqualifiziertem Personal für die Probenanalyse. Die Kombination von biologischen Komponenten und Nanomaterialien zur Sensorentwicklung bietet eine Möglichkeit diese Nachteile ausgleichen. Mikroorganismen haben evolutionäre Strategien entwickelt, um sich vor toxischen Schwermetallen zu schützen, z.B durch Binden der Metallionen an ihrer Zelloberfläche mit speziellen Oberflächenproteinen (S-Layer). Diese bestehen aus einer Monolage identischer (Glyco-) Proteine, die sich selbst assemblieren und eine hochgeordnete kristalline Struktur unterschiedlicher Symmetrie bilden können. Studien haben die Bindung von Metallionen (einschließlich REEs) durch S-Layer-Proteine gezeigt. In dieser Dissertation wurden drei Nanomaterialien (Goldnanopartikel (AuNPs), planare Goldoberflächen und Nanodiamanten (NDs)) mit acht verschiedene S-Layer-Proteinen beschichtet. Ziel war die Entwicklung von Biohybrid-Sensor-Systemen für die Detektion von bis zu 12 Metallionen in Wasser. Ein kolorimetrisches Sensorsystem mit biofunktionalisierten AuNPs zur Detektion von REEs und Schwermetallen, einschließlich der aktuell vermehrt auftretenden Schadstoffe Lanthan und Gadolinium, wurde etabliert. Die Nachweisgrenzen lagen im Bereich vergleichbarer AuNPs-Systeme zum Nachweis von Schwermetallen, während die Slayer-AuNP-Biohybride ein breiteres Spektrum von Metallionen detektieren konnten. Das Screening aller acht S-Layer-AuNP-Biohybride mit 12 Metallsalzlösungen ergab charakteristische Wechselwirkungsmuster für jede der Kombinationen und ermöglichte den spezifischen Nachweis einer einzelnen Metallionenspezies in unbekannten Lösungen. Eine Kosten- und Ressourcenoptimierung ist über die Lagerung bis zu drei Monate und Wiederverwendbarkeit gegeben. Auf planaren Goldoberflächen ermöglichten die SPR-Spektroskopie die Messung der Adsorption von S-Layer-Proteinen, sowie die anschließende Detektion von CuSO4, NiCl2 und YCl3. Die Detektionslimits lagen dabei unter den kolorimetrischen Biohybridsystemen. Die SPR-Chips wurden erfolgreich regeneriert und für mehrere Funktionalisierungen mit S-Layer-Proteinen wiederverwendet. Das S-Layer-Protein SslA von S. ureae ATCC 13881 wurde erstmals an NDs adsorbiert. Die NDs/SslA-Biohybride wurden zur Detektion von CuCl2 und NiCl 2 verwendet, indem die Agglomeration und das Fluoreszenzquenching gemessen wurden. Es hat sich gezeigt, dass die vorgestellten Systeme viele der Nachteile ausgleichen, die mit derzeit verwendeten Systemen verbunden sind. Sie detektieren eine Vielzahl von Metallionen und minimieren so den Bedarf für mehrere Methoden. Die Nachweisgrenzen waren vergleichbar mit aktuellen kolorimetrischen und chemischen Kit-Systemen. Die S-layer-AuNPs und NDs/S-layer-Biohybride waren schnell und einfach zu handhaben, wodurch der Bedarf an hochqualifiziertem Messpersonal minimiert werden kann. Darüber hinaus führt die Verwendung von kostengünstigen Materialien wie NDs und die Wiederverwendbarkeit der Biohybride zu einem ressourceneffizienten und kostengünstigen Nachweissystem. Diese Dissertation hat das enorme Potenzial von S-Layer-Proteinen für den Nachweis von REEs und Schwermetallen in Wasser unter Verwendung verschiedener Nachweissysteme wie kolorimetrischer AuNPs-Assays, SPR-Spektroskopie und NDs gezeigt. / The pollution of aqueous systems with rare earth elements (REEs) and heavy metals causes serious problems for environmental and human health. Therefore, the detection of such elements is of uttermost importance. Currently used methods have some disadvantages, such as high measurement costs, limited selectivity, complex sample handling, or the need for highly qualified personnel for sample analysis. The combination of biological components and nanomaterials for sensor development offers a way to offset these disadvantages. Microorganisms have developed strategies to protect themselves from heavy metal toxicity, e.g. by binding the metal ions on their cell surface with special Surface layer (S-layer) proteins. They consist of a monolayer of identical (glyco-) proteins, which can self-assemble and form a highly ordered crystalline structure of varying symmetry. Studies on the heavy metal binding of S-layer proteins have demonstrated their affinity for metal ions, including REE. The combination of nanomaterials with S-layer proteins enables the development of new sensors for these elements. Within this dissertation several nanomaterials in combination with S-layer proteins were investigated to obtain sensors for REEs and heavy metals. Eight different S-layer proteins were used to functionalize AuNPs, flat gold surfaces and nanodiamonds (NDs) for the detection of up to 12 metal ions in water. Colorimetric sensor systems with biofunctionalized AuNPs for the detection of REE and heavy metals, including the newly emerging pollutants lanthanum and gadolinium, were established. The detection limits of reference measurements and spiked tapwater samples were in the range of comparable AuNPs systems for the detection of heavy metals, while offering a broader range of metal ions to detect. The screening of all eight S-layer-AuNP biohybrids with 12 metal ions revealed specific interaction patterns for each of the combinations. The optimization cost and resource is achieved by storage up to three months and reusability of the S-layer-AuNP biohybrids. Surface plasmon resonance (SPR) spectroscopy enabled the measurement of S-layer proteins binding to flat gold surfaces, resulting in a stable protein layer used for the subsequent detection of CuSO4, NiCl2 and YCl3. The SPR chips were succesfully regenerated and reused for multiple functionalizations with S-layer proteins. The S-layer protein SslA from S. ureae ATCC 13881 was successfully adsorbed to the pristine NDs by physical conjugation. The NDs/SslA conjugates were used for the detection of CuCl2 and NiCl2, by measuring the agglomeration of the NDs and fluorescence quenching. The presented systems compensate many of the disadvantages associated with currently used techniques. They detect a broad variety of metal ions, minimizing the need for multiple methods. The detection limits were comparable to current colorimetric and chemical kit systems. The S-layer-AuNPs and NDs/S-layer biohybrids were quick and easy to handle, minimizing the need for highly qualitified personnel. In addition, the use of cost-effective materials such as NDs and the reusability of the biohybrids results in resource-efficient and cost-effective sensor systems. This project has shown the tremendous potential of S-layer proteins for the detection of REE and metal ions in water, by utilizing different detection systems like colorimetric AuNPs assays, SPR spectroscopy and NDs.
4

In vitro Interaction of Nanoparticles with Mitochondria for Surface Enhanced Raman Spectroscopy and Cell Imaging

Mkandawire, Msaukiranji 15 October 2010 (has links)
Mitochondria are an attractive target for the design of cancer therapy. One of the mechanisms by which chemotherapeutics destroy cancer cells is by inducing apoptosis through extrinsic or intrinsic apoptotic pathways. Extrinsic pathways target cell surface receptors whilst intrinsic pathways target mitochondria. Several studies have shown cancer cell destruction through the extrinsic pathways, which target cancer-specific overexpressed growth factor receptors on the cell membrane. Although the mitochondria dependent apoptotic process is well understood, its application in cancer therapy is still not well developed. Therefore, to design an effective cancer therapy targeting mitochondria, a good understanding in mitochondria dependent apoptotic process is required. Recent developments in nanotechnology have enabled live cell investigations and non-destructive methods to obtain cellular information. The availability of such information would assist to design methods of targeted apoptosis induction. In view of this, I report on studies towards development of cancer therapy where nanoparticles (NPs) were targeted to human cell mitochondria for two purposes: (a) development of cell-imaging tools to investigate the fundamental cell biological pathways inside cells and (b) induction of apoptosis by targeting nanoparticles to mitochondria. Current medical and biological fluorescent imaging methods are mainly based on dye markers, which are limited in light emission per molecule, as well as photostability. Consequently, NPs are gaining prominence for molecular imaging because of their strong and stable fluorescence. Additionally, in order to get insight of mitochondrial molecular information, I investigated the use of optical properties of gold nanoparticles (Au NPs) for surface enhanced Raman spectroscopy (SERS). In this study, two types of Au NPs - nanospheres (Au NS) and nanorods (Au NR) were investigated. Results from this study showed the enhancement effect of Au NPs in Raman spectra of mitochondria, especially in the region from 1500 to 1600 cm-1. In this region, normal Raman spectra of mitochondria showed the presence of some understated Raman peaks probably due to the excitation wavelength dependence. Au NRs showed a larger enhancement effect than Au NS with respect to the penetration depth of the plasmonic nearfield enhancement effect. Although, the details of the enhancement mechanism are beyond the current studies, Au NPs could be enhancing vibrations of aromatic residues in proteins. This study therefore showed that Au NPs could enhance Raman spectra of mitochondria and in addition the shape of the nanoparticles had a significant effect on SERS spectra. In living cells, I investigated some transfection methods and targeting of NPs to mitochondria or cytosolic actin subunits. I tested the performance of three transfection reagents to deliver nanodiamonds (NDs) into living cells. Antibody functionalized NDs were targeted to mitochondria or cytosolic actin subunits. Three transfection reagents were used: cationic liposomes PULSin™, the cell penetrating peptide protamine, and oligosaccharide modified polypropylene imine (PPI) dendrimers. Fluorescence imaging results revealed that dendrimers were the most efficient in delivering ND conjugates to targeted organelles. Protamine-mediated transfections appeared to target ND conjugates to intended organelles, although there was a tendency of unfunctionalized NDs to be directed to the nucleus. PULSin™-mediated transfection formed ND aggregates regardless of the functionalization moiety. This reflected the unsuitability of the cationic liposome to mediate ND transfections. Further, I investigated the potential use of Au NPs for cell imaging and photothermal lysis of mitochondria inside cells. Just as above, I also tested the performance of the three-transfection reagents mentioned above on transfection capacity of Au NPs into living cells. Using transmission electron microscopy (TEM), oligosaccharide modified dendrimers showed the best transfection of functionalized Au NPs. Further experiments explored the use of the nearfield enhancement effect of Au NPs in combination with low-level laser irradiation (LLLI) to induce apoptosis in living cells. Analysis of the apoptotic process using cytochrome c release showed that Au NPs induced apoptosis most probably through mechanical disruption of the outer mitochondrial membrane. However, apoptosis was significantly accelerated in cells with mitochondrially targeted Au NRs than in cells without Au NRs. This study showed successful targeting of Au NPs to mitochondria in living cells, and demonstrated the potential of using Au NPs in combination with laser irradiation to induce the mitochondria dependent apoptotic pathway. In conclusion, the potential use of Au NPs in SERS of mitochondria and the application of NDs for cell imaging of intracellular organelles were demonstrated. Lastly, Au NPs were targeted to mitochondria in living cells and could induce apoptosis due to mechanical disruption of the outer mitochondrial membrane. Consequently, application of low-level laser irradiation to Au NP transfected cells accelerated the apoptotic process.
5

Goldnanopartikel: Eine Plattform für multimodale Diagnostik und Therapie in der experimentellen Nuklearmedizin

Pretze, Marc 17 January 2024 (has links)
Es wurden Goldnanopartikel (AuNP) hergestellt, die eine einheitliche Größenverteilung von 3–5 nm aufweisen. Damit kann eine Mehrfachfunktionalisierung erreicht werden, d.h. gleich mehrere tumorspezifischen Moleküle an einen AuNP gekoppelt werden können und somit eine stark erhöhte Avidität zur Tumorzelle erzielt werden kann. Diese so hergestellten AuNP wurden mit diagnostisch oder therapeutisch wirksamen Radionukliden beladen bzw. radiomarkiert. Diese so funktionalisierten und radiomarkierten AuNP reicherten sich in Tumorgewebe an mit nur geringfügiger Akkumulation in gesundem Gewebe.:1. Einleitung 1 1.1 Radioaktive Arzneimittel zur Diagnostik und Therapie in der Nuklearmedizin 1 1.2 Radioaktives Gold gegen Krebs 2 1.3 Aktueller Stand der Forschung zu Goldnanopartikeln 3 1.4 Chemische Charakterisierung von oberflächen-modifizierten AuNP 5 1.5 Zielstellung 7 2. Ergebnisse 8 2.1 Gastrin-Releasing Peptide Receptor- and Prostate-Specific Membrane Antigen-Specific Ultrasmall Gold Nanoparticles for Characterization and Diagnosis of Prostate Carcinoma via Fluorescence Imaging 8 2.2 Targeted 64Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging 20 2.3 αvβ3-Specific gold nanoparticles for fluorescence imaging of tumor angiogenesis 34 2.4 68Ga-NeoB: Preclinical results on imaging of gastrointestinal stromal tumors and determination of target receptor density in the gastrointestinal tract 65 2.5 GMP-compliant production of [68Ga]Ga-NeoB for positron emission tomography imaging of patients with gastrointestinal stromal tumor 80 2.6 Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application 93 3. Diskussion 105 3.1 Entwicklung von klinisch anwendbaren radiomarkierten Goldnanopartikeln gegen Krebs 105 3.2 Klinische Translation von neuen diagnostischen und therapeutischen Radiopharmaka 106 4. Zusammenfassung und Ausblick 108 5. Literaturverzeichnis 110 Abkürzungsverzeichnis 115 Erklärungen und Versicherung 117 / Gold nanoparticles (AuNPs) with a uniform size distribution of 3-5 nm were produced. This allows multiple functionalization to be achieved, i.e. several tumour-specific molecules can be coupled to one AuNP at the same time and thus a greatly increased avidity to the tumour cell can be achieved. These AuNPs produced in this way were loaded or radiolabeled with diagnostically or therapeutically effective radionuclides. These functionalized and radiolabeled AuNPs accumulated in tumour tissue with only slight accumulation in healthy tissue.:1. Einleitung 1 1.1 Radioaktive Arzneimittel zur Diagnostik und Therapie in der Nuklearmedizin 1 1.2 Radioaktives Gold gegen Krebs 2 1.3 Aktueller Stand der Forschung zu Goldnanopartikeln 3 1.4 Chemische Charakterisierung von oberflächen-modifizierten AuNP 5 1.5 Zielstellung 7 2. Ergebnisse 8 2.1 Gastrin-Releasing Peptide Receptor- and Prostate-Specific Membrane Antigen-Specific Ultrasmall Gold Nanoparticles for Characterization and Diagnosis of Prostate Carcinoma via Fluorescence Imaging 8 2.2 Targeted 64Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging 20 2.3 αvβ3-Specific gold nanoparticles for fluorescence imaging of tumor angiogenesis 34 2.4 68Ga-NeoB: Preclinical results on imaging of gastrointestinal stromal tumors and determination of target receptor density in the gastrointestinal tract 65 2.5 GMP-compliant production of [68Ga]Ga-NeoB for positron emission tomography imaging of patients with gastrointestinal stromal tumor 80 2.6 Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application 93 3. Diskussion 105 3.1 Entwicklung von klinisch anwendbaren radiomarkierten Goldnanopartikeln gegen Krebs 105 3.2 Klinische Translation von neuen diagnostischen und therapeutischen Radiopharmaka 106 4. Zusammenfassung und Ausblick 108 5. Literaturverzeichnis 110 Abkürzungsverzeichnis 115 Erklärungen und Versicherung 117
6

Kinetische Untersuchungen zur Reduktion von Nitroaromaten mit Goldnanopartikeln

Fenger, Robert 22 July 2013 (has links)
Goldnanopartikel werden in der kolloidalen Katalyse als Modellsystem genutzt, um den Einfluss des Partikelgröße, der Partikelform und der Zusammensetzung in bimetallischen Systemen sowie der Ligandensphäre auf die katalytische Reduktion von 4-Nitrophenol zu 4-Aminophenol zu untersuchen. Goldnanopartikel eignen sich vor allem deshalb als Modellsystem, da sie in kurzer Zeit, in hohen Ausbeuten und mit definierten Eigenschaften hergestellt werden können. Es konnte erstmals nachgewiesen werden, dass Goldnanopartikel mit einem Durchmesser von 13 nm die höchste katalytische Umsetzungsrate bei der Reduktion von 4-Nitrophenolzu 4-Aminophenol besitzen. Im Zuge dieser Arbeit wird dieses Aktivitätsmaximum der Nanopartikel näher untersucht. Dazu werden drei Aspekte vorgestellt: die Abhängigkeit von der Goldnanopartikelform, die Abhängigkeit der Substratgröße und der Einfluss der Ligandensphäre auf die Katalyse. Überraschenderweise ist CTAB als oberflächenaktiver Ligand ein Co-Katalysator bei der Reduktion, während die Anwesenheit von Natriumcitrat die Reaktion verlangsamt. Es wurden Aspekte wie die Konzentration und die Größe der Goldnanopartikel in dem komplexen Wechselspiel der Aktivitäten des Katalysators und Co-Katalysators untersucht. Dies führte zu der beispielgebenden Erkenntnis, dass oberflächenaktive Liganden mit positiver Ladung und Stickstofffunktionen die Katalyse positiv beeinflussen. In einer weiteren Studie wurde der Reaktionsmechanismus der 6-Elektronenreduktion von 4-Nitrophenol zu 4-Aminophenol erforscht. Es konnte zum ersten Mal gezeigt werden, dass die Reduktion in zwei Teilschritten abläuft. N-Arylhydroxylamin ist als wichtiges Intermediat in der Lösung der Reduktion erstmals nachgewiesen worden. Drei kinetische Regime werden für die Reduktion von 4-Nitrophenol gefunden und geben einen Einblick in die Oberflächenreaktion von Nitroaromaten an Goldnanopartikeln. / Gold nanoparticles as model systems in colloidal catalysis are used to gain insights into the decisive parameters of the catalytic model reduction. Size, shape, composition of bimetallic systems, and ligand sphere are factors influencing the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride in the presence of gold nanoparticles. The increasing interest in gold nanoparticle catalysis is mainly due to their stability, their fast and high yield synthesis as well as their extraordinary diversity of the modes of preparation. This thesis is assigned to unravel the important parameters of gold nanoparticle catalysis. In the first part of the thesis, CTAB-stabilized gold nanoparticles were synthesized by applying the seeding-growth approach in order to gain information about the size dependence of the catalytic reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. Unexpectedly, CTAB-stabilized gold nanoparticles with a diameter of 13nm were most efficient in this complex system. In this context, molecular aspects such as shape, size of the substrate and ligand sphere were discussed as possible reasons for the enhanced activity for medium sized gold nanoparticles. Here, it was shown for the first time that the ligand sphere plays a crucial role in colloidal catalysis. Micellar catalysis with colloidal gold nanoparticles was performed by means of ligand exchange procedures. In addition, this thesis shows for the first time that intermediates can be unambiguously identified in the reaction solution with colloidal gold nanoparticles as catalysts. 4-N-hydroxylaminophenol was found to be the key intermediate in this system. In this context, three kinetic regimes which were crucial for the aromatic nitro reduction are found to cover the reaction kinetics. Thus, this thesis provides new insight into the catalytic process itself and leads to a better understanding of the catalytic activity of gold nanoparticles.
7

Aufbau colorimetrischer Sensoren mit Goldnanopartikeln für unterschiedliche Analytgrößen

Lakatos, Mathias 14 May 2013 (has links) (PDF)
Nanopartikel basierte colorimetrische Assays bieten vielfältige Anwendungsmöglichkeiten vom Nachweis ionischer oder molekularer Spezies bis hin zu komplexen Strukturen, wie zum Beispiel Zellen oder Bakterien. Trotz der großen Anzahl von Anwendungsbeispielen in der Literatur gibt es nur sehr wenige Beispiele für den Fall, wenn Analyt und Sensorpartikel etwa gleich groß sind. Jedoch nimmt das Interesse an dem Nachweis solcher Analyten, wie zum Beispiel von Viren, in der Bioverfahrenstechnik, der Umwelttechnik und Medizin stetig zu. In der Dissertation wird anhand von drei unterschiedlichen Anwendungsbeispielen die lückenlose Anwendbarkeit des Nanopartikel basierten colorimetrischen Sensorprinzips für verschiedene Analyten aus dem gesamten interessierenden Größenspektrum nachgewiesen. Für die Detektion von Ionen bzw. Ionenkomplexen ist mit der Funktionalisierung der Goldnanopartikel mit bakteriellen Zellhüllenproteinen ein spezifisches Nachweisverfahren für spezielle Ionenkomplexe entwickelt worden. Erste Ergebnisse zum Nachweis von toxischen Arsen(V)-Komplexen in wässriger Lösung belegen das enorme Potential. Als Nachweisgrenze konnten Werte im Bereich herkömmlicher sensitiver Messverfahren ermittelt werden. Durch Untersuchung der Wechselwirkung von Au- und AuxAg1-x–Nanopartikeln mit dendritischen Polymerstrukturen mit Abmessungen im Größenbereich zwischen 2 und 5 nm konnten tiefere Einblicke in das Aggregationsverhalten der Partikel bei der Ausbildung größerer komplexer Strukturen erzielt werden, die eine sensorische Umsetzung ermöglichen. Derartige Betrachtungen existieren bisher nur für Ionen oder kleinere molekulare Spezies. Der Nachweis von Analyten mit zu den Nanopartikeln vergleichbarer Größe wird am Beispiel zweier unterschiedlicher viraler Proben, dem Rinder-Coronavirus (BCV) und einem humanen Influenzavirus (H3N2) in grundlegenden Experimenten demonstriert. Die Durchführung dieser Arbeiten mit prozessnahem Virusprobenmaterial ist mit besonderen Herausforderungen an die Signalgewinnung und Interpretation verbunden. Aufbauend auf diesen experimentellen Ergebnissen konnte in einer skalenübergreifenden Betrachtung für Analytgrößen vom Subnanometerbereich bis hin zu einigen hundert Nanometern die lückenlose, universelle Anwendbarkeit des colorimetrischen Sensorprinzips demonstriert werden. Diese Betrachtungen ermöglichen generelle Aussagen zur Lage des Farbumschlagbereiches sowohl in Abhängigkeit von der Analytgröße als auch der Funktionalisierung, der Konzentration und der Größe der Nanopartikel.
8

Synthesis of Functional Block Copolymers for use in Nano-hybrids

Ibrahim, Saber 12 May 2011 (has links) (PDF)
Polystyrene block polyethyleneimine (PS-b-PEI) copolymer prepared by combining PS and poly(2-methyl-2-oxazoline) (PMeOx) segments together through two strategies. Furthermore, PMeOx block was hydrolysis to produce PEI block which linked with PS block. Macroinitiator route is one of these two ways to prepare PS-b-PEI copolymer. Polystyrene macroinitiator or poly(2-methyl-2-oxazoline) macroinitiator prepared through Nitroxide Mediate Radical Polymerization (NMRP) or Cationic Ring Opening Polymerization (CROP) respectively. Each macroinitiator has active initiated terminal group toward another block monomer. Second strategy based on coupling of PS segment with PMeOx block through “click” coupling chemistry. Polystyrene modified with terminal azide moiety are combined with PMeOx functionalized with alkyne group via 1,3 dipolar cycloaddition reaction “click reaction”. PS-b-PMeOx was hydrolysis in alkaline medium to produce amphiphilic PS-b-PEI copolymer. A set of block copolymer with different block ratios was prepared and investigated to select suitable block copolymer for further applications. Stichiometric PS-b-PEI copolymer selected to stabilize gold nanoparticle (Au NPs) in polymer matrix. PEI segment work as reducing and stabilizing agent of gold precursor in aqueous solution. Various concentrations of gold precursor were loaded and its effect on UVVIS absorbance, particle size and particle distribution studied. In addition, reduction efficiency of PEI block was determined from XPS measurements. The thickness of Au NPs/PS-b-PEI thin film was determined with a novel model for composite system. On the other hand, Gallium nitride quantum dots (GaN QDs) stabilized in PS-b-PEI copolymer after annealing. Our amphiphilic block copolymer exhibit nice thermal stability under annealing conditions. GaN QDs prepared in narrow nano-size with fine particle distribution. Blue ray was observed as an indication to emission activity of GaN crystal. Over all, PS-b-PEI copolymer synthesized through macroinitiator and click coupling methods. It was successfully stabilized Au NPs and GaN QDs in polymer matrix with controlled particle size which can be post applied in tremendous industrial and researcher fields.
9

Application of Single Optically Heated Gold Nanoparticles to Sensing and Actuation

Heber, André 07 December 2017 (has links)
Diese Dissertation demonstriert die Nutzung von einzelnen optisch geheizten Goldnanopartikeln als Sensoren f ¨ur die Untersuchung von W¨armetransport und als Intensit¨atsmodulator f ¨ur Licht. Die beschriebenen Experimente basieren auf der photothermischen Mikroskopie, die die selektive Abbildung and Untersuchung von einzelnen absorbierenden Objekten erm¨oglicht. Goldnanopartikel werden optisch angeregt. Die Relaxation erfolgt durch nichtstrahlende Prozesse, die zu einer lokalen Erh¨ohung der Temperatur f ¨uhren. Die Erw¨armung f ¨uhrt zu einer Verringerung der Brechzahl, die als thermische Linse wirkt und dadurch die Ausbreitung eines zweiten nicht absorbierten Lichtstrahls vera¨ndert. Da die thermische A¨ nderung der Brechzahl sehr gering ist, wird das photothermische Signal durch das moduliertes Detektionsverfahren verst¨arkt. Der Heizlaserstrahl wird intensit¨atsmoduliert und erzeugt dadurch eine geringe Modulation der Strahlbreite des Detektionslaserstahls. Damit ver¨andert sich die Leistung, die durch eine Blende transmittiert wird. Diese Modulationsamplitude and Phaseverz¨ogerung werden mittels eines phasenempfindlichen Gleichrichters detektiert. Amplitude und Phase h¨angen von Modulationsfrequenz und thermischer Diffusivit¨at ab. Die frequenzaufgel¨oste Messung der beiden Gr¨oßen und deren Modellierung mittels einer verallgemeinerten Lorenz–Mie Theorie erm¨oglicht die Messung von der thermischen Diffusivit¨at des Mediums, das das Goldnanopartikel umgibt. In der zweiten Variante wird die Ausbreitung der W¨arme beobachtet. Ein Nanopartikel wird optisch geheizt und die ausgedehnte thermische Linse wird mit Hilfe der Ablenkung eines zweiten Laserstrahls vermessen. Das Ablenkungssignal wird mittels eines strahlenoptischen Models berechnet, um die thermische Diffusivit ¨at des Materials zu bestimmen, das das Nanopartikel umgibt. In einem weiteren Experiment wird das große Potential von optisch geheizten Nanopartikeln verdeutlicht. Einzelne Goldnanopartikel werden in eine d¨unne nematische Fl¨ussigkristallschicht eingebettet, deren Dicke darauf abgestimmt ist, dass die Schicht eine l/2-Platte darstellt. Die Goldnanopartikel werden optisch geheizt und steuern damit den Phasen¨ubergang von der nematischen zur isotropen Phase. Damit wird die Transmission eines zweiten Laserstrahls im Polarisationskontrast ge¨andert. Mit Hilfe dieser Anordnung kann die Intensit¨at eines Lichtstrahls um bis zu 100% moduliert werden. / This dissertation demonstrates the use of individual optically heated gold nanoparticles as sensors for investigations of heat transport and intensity modulation of light. The experiments employ the photothermal effect, which allows the selective detection and investigation of individual absorbers. The photothermal contrast is based on absorbing particles that are optically excited and relax via nonradiative processes. The absorbers act as nanosources of heat. The local temperature elevation leads to a local refractive index change due to thermal expansion which then acts as a lens. This thermal lens alters the propagation of a second non-absorbed beam of light. As the refractive index change with temperature is minuscule, the transmission changes of the detection are tiny as well. The photothermal signal is amplified by the use of a modulated detection scheme which enables the methods high sensitivity and provides a time scale for the measurement of thermal transport. The heating laser beam is intensity-modulated and thereby produces a small modulation of the beam waist of the detection laser beam and thus the transmitted power through an aperture. This modulation amplitude and phase are detected by a lock-in amplifier. Amplitude and phase depend on the modulation frequency and the thermal diffusivity of the material surrounding the nanoparticle. The frequency-resolved measurement of the two observables and their modeling using a generalized Lorenz–Mie theory allows the measurement of thermal diffusivities. In the second variant, the spread of heat into space is observed. A nanoparticle is optically heated, and the extended thermal lens is characterized by the deflection of a second laser beam. The deflection signal is modeled using ray optics to determine the thermal diffusivity of the material surrounding the nanoparticle. In a further experiment, the great potential of optically heated nanoparticles is demonstrated. Individual gold nanoparticles are embedded in a thin nematic liquid-crystal layer acting as a half-wave plate. The gold particles are optically heated. They control the transmission of a detection laser set up in polarization contrast. The intensity of the detection beam is modulated by up to 100%.
10

Synthesis of Functional Block Copolymers for use in Nano-hybrids

Ibrahim, Saber 22 March 2011 (has links)
Polystyrene block polyethyleneimine (PS-b-PEI) copolymer prepared by combining PS and poly(2-methyl-2-oxazoline) (PMeOx) segments together through two strategies. Furthermore, PMeOx block was hydrolysis to produce PEI block which linked with PS block. Macroinitiator route is one of these two ways to prepare PS-b-PEI copolymer. Polystyrene macroinitiator or poly(2-methyl-2-oxazoline) macroinitiator prepared through Nitroxide Mediate Radical Polymerization (NMRP) or Cationic Ring Opening Polymerization (CROP) respectively. Each macroinitiator has active initiated terminal group toward another block monomer. Second strategy based on coupling of PS segment with PMeOx block through “click” coupling chemistry. Polystyrene modified with terminal azide moiety are combined with PMeOx functionalized with alkyne group via 1,3 dipolar cycloaddition reaction “click reaction”. PS-b-PMeOx was hydrolysis in alkaline medium to produce amphiphilic PS-b-PEI copolymer. A set of block copolymer with different block ratios was prepared and investigated to select suitable block copolymer for further applications. Stichiometric PS-b-PEI copolymer selected to stabilize gold nanoparticle (Au NPs) in polymer matrix. PEI segment work as reducing and stabilizing agent of gold precursor in aqueous solution. Various concentrations of gold precursor were loaded and its effect on UVVIS absorbance, particle size and particle distribution studied. In addition, reduction efficiency of PEI block was determined from XPS measurements. The thickness of Au NPs/PS-b-PEI thin film was determined with a novel model for composite system. On the other hand, Gallium nitride quantum dots (GaN QDs) stabilized in PS-b-PEI copolymer after annealing. Our amphiphilic block copolymer exhibit nice thermal stability under annealing conditions. GaN QDs prepared in narrow nano-size with fine particle distribution. Blue ray was observed as an indication to emission activity of GaN crystal. Over all, PS-b-PEI copolymer synthesized through macroinitiator and click coupling methods. It was successfully stabilized Au NPs and GaN QDs in polymer matrix with controlled particle size which can be post applied in tremendous industrial and researcher fields.

Page generated in 0.0675 seconds