Spelling suggestions: "subject:"gpc"" "subject:"gpr""
291 |
Vliv chronického působení morfínu na funkci signálních systémů řízených trimérními G-proteiny v srdci potkana / Effect of chronic morphine treatment of rats on myocardial signaling systems regulated by trimeric G-proteinsŠkrabalová, Jitka January 2011 (has links)
It has recently been discovered that the effect of morphine can significantly reduce the tissue damage that occurs during myocardial ischemia. The molecular mechanisms by which morphine acts on the heart are still little understood. The aim of this thesis was to monitor the effect of chronic 27-day and 10-day administration of low (1 mg/kg/day) and high (10 mg/kg/ day) doses of morphine on the expression of selected G-protein-coupled receptors (GPCR) and on the expression and activity of adenylyl cyclase (AC). Chronic (27 days) morphine treatment reduced the expression of к-opioids receptors, but 10-day morphine exposure did not influence the expression of these receptors. Assessment of β1- and β2-AR by immunoblot technique did not show any significant change in the expression, but the more accurate determination of β-AR expression using the saturation binding studies revealed that 27-day treatment with high doses of morphine appreciable increased the total number of these receptors. Administration of high doses of morphine led to marked up-regulation of adenylyl cyclase (AC) isoforms V/VI, and the amount of AC decreased proportionally with the time of discontinuation of morphine administration. Low doses of morphine up- regulated AC only during 27-day administration. Chronic morphine exposure did...
|
292 |
Dopaminergic Signaling and Locomotor Behaviors are Regulated by Gq-Receptor-Mediated Dopamine Transporter Trafficking and the Parkinson's Risk Allele Rit2Kearney, Patrick J. 18 March 2022 (has links)
Dopamine (DA) is a modulatory neurotransmitter required for movement, learning, and reward. Several neuropsychiatric disorders exhibit DAergic dysfunction, including Parkinson’s disease (PD). The presynaptic DA transporter (DAT) constrains DAergic signaling via DA reuptake. Acute PKC activation drives DAT endocytosis, however, endogenous receptor-mediated DAT trafficking in striatal terminals remains ill-defined. Here, I present data supporting biphasic Gq-receptor-mediated DAT trafficking in striatum. Gq-receptor activation drives initial DAT insertion, which requires DA release, DAergic DRD2auto activation, and intact retromer. Subsequent DAT retrieval requires PKC and the neuronal GTPase Rit2. Furthermore, I demonstrate that the endogenous Gq-coupled metabotropic glutamate receptor, mGluR5, expressed on DAergic neurons exerts biphasic DAT regulation. DAergic mGluR5 silencing revealed that mGluR5 is required for motor learning and coordination. DAergic mGluR5 cKO motor deficits were rescued by DAT inhibition, suggesting mGluR5-mediated DAT trafficking is required for these behaviors. Apart from its requisite role in DAT trafficking, Rit2 is a PD associated risk allele. We previously demonstrated that Rit2 is required for psychostimulant response and generalized anxiety, but not basal locomotion. However, Rit2’s roles in more complex motor behaviors and PD pathology remain unknown. DAergic Rit2 silencing revealed that Rit2 is required for male motor learning and prolonged Rit2 suppression leads to progressive manifestation of PD biomarkers, coordination deficits, and decreased DAergic tone. Motor learning deficits were rescued by boosting DA availability, echoing Rit2-mediated hypodopaminergia. Together these results identify receptor-mediated DAT trafficking mechanisms in DA terminals, demonstrate that DAT surface dynamics are required for motor function, and implicate DAergic Rit2 loss in progressive PD-like phenotypes.
|
293 |
Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamineRabe, Philipp, Liebing, Aenne-Dorothea, Krumbholz, Petra, Kraft, Robert, Stäubert, Claudia 14 February 2022 (has links)
Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.
|
294 |
Regulation of the Dopamine D3 Receptor by Adenylyl Cyclase 5Habibi Khorasani, Hedieh 10 May 2022 (has links)
The D3 dopamine receptor (D3R) belongs to D2-class of dopamine receptors (DARs) and is
involved in emotion, movement, and reward. D3R dysfunction has been reported in some
neuropsychiatric disorders such as addiction, cognitive deficits, depression, schizophrenia, and
Parkinson’s disease. Genetic studies have shown two polymorphic variants of the D3R gene
resulting from substitution of serine to glycine at position nine of the amino terminus. Isoform
5 of adenylyl cyclase (AC5) is one of the nine transmembrane bound ACs in the brain and
myocardium. Previous studies in rats have shown that AC5 is expressed in the striatum, nucleus
accumbens and olfactory tubercle and at lower levels in islands of Calleja, where the D3R is
also expressed. Previous studies showed that although D2R and D4R inhibit ACs activity in
different cell types, inhibition of ACs by D3R is weak and often undetectable. It has been
shown that D3R selectively inhibits AC5 activity in human embryonic kidney 293 (HEK293)
cells co-transfected with D3R and AC5. Co-expression of D3R and AC5 in brain regions which
are major coordinators of normal and pathological movement, and the selective inhibition of
AC5 activity by D3R raise the possibility of a functional link between AC5 and D3R in the
modulation of signal transduction and trafficking. I hypothesized that AC5 plays a unique role
in modulation of D3R trafficking and signaling pathways through interaction between D3R
and AC5. Herein, I demonstrated an interaction between D3R and AC5 in vivo and in vitro
using reciprocal co-immunoprecipitation/immunoblotting (co-IP/IB) assays. Interestingly, DA
may facilitate the formation of protein complex between D3R and AC5 in vitro. Radio ligand
binding assays revealed that heterodimerization of D3R polymorphic variants with AC5 does
not change ligand binding affinity and expression of the D3R. Furthermore, taking advantages
of GloSensor assays, selective inhibition of AC5 activity by D3Ser9 and D3Gly9 has been
shown following activation by DA and quinpirole. Using ELISA studies showed that AC5
promotes cell surface expression and total expression of D3Ser9 and D3Gly9. Moreover, ELISA results suggested that AC5 facilitates DA-induced D3Ser9 endocytosis in dynamin and
β-arrestin 2 dependent process, while having no effect on D3Gly9 polymorphic variant. The
results also revealed that AC5 attenuates heterologous (PKC-induced) internalization of
D3Ser9, while it does not have any effect on D3Gly9 heterologous internalization. My results
also displayed a complex formation between D3R, AC5 and, β-arrestin 2 under basal and DA
stimulation conditions, which emphasize the role of β-arrestin 2 in D3R signal transduction.
Overall, a new regulatory mechanism for D3R has been suggested. My results suggested that
complex formation between both D3R polymorphic variants with AC5 can regulate signaling
and trafficking properties of D3R without changing the binding affinity of the receptor. These
data will be meaningful for understanding of diseases and developing treatment strategies.
|
295 |
Le récepteur au thromboxane A2 régule la motilité des cellules de cancer du sein triple négatif à travers les protéines ezrine, radixine et moésineNaffati, Omaima 07 1900 (has links)
La migration cellulaire est un mécanisme important pour divers processus cellulaires tels que
l’embryogenèse et la cicatrisation. De même, elle participe à des processus pathologiques
notamment l’invasion des cellules malignes et la formation des métastases cancéreux. La
dissémination métastatique est un processus très compliqué. L’acquisition du pouvoir migratoire
invasif par la cellule maligne ainsi que son potentiel métastatique est gérée par le cytosquelette
qui est dynamiquement modifié et contrôlé par des voies de signalisation intracellulaires.
Cependant, la physiologie des cellules métastatiques et les cascades de signalisation qui les
poussent à métastaser ne sont toujours pas comprises.
Les protéines Ezrine, Radixine et Moésine (ERMs) jouent un rôle important dans l’organisation du
cytosquelette au cortex cellulaire et elles sont des déterminantes clés de la migration cellulaire.
Ainsi, une dérégulation à ce niveau peut conduire à une migration cellulaire aberrante. D’où
l’implication des ERMs dans différents cancers agressifs et invasifs. Les ERMs sont régulées en
aval de plusieurs acteurs cellulaires notamment les récepteurs membranaires. Plusieurs études
ont rapporté que le récepteur au thromboxane A2 (RTXA2), un récepteur couplé à la protéine G
(RCPG) favorise les métastases. Il a été décrit surtout dans le cadre de cancer du sein triple négatif
(CSTN), l’un des cancers les plus mortels chez la femme. Les RCPG possèdent un rôle central dans
presque toutes les fonctions physiologiques et constituent la plus grande famille des cibles
médicamenteuses. D’une manière intéressante, les deux laboratoires de Dr Sébastien Carréno et
Dr Michel Bouvier, ont découvert que le RTXA2 active les protéines ERMs à travers la GTPase
RhoA.
Dans ce projet de recherche on a identifié une nouvelle voie de signalisation liant le RTXA2 aux
ERMs à travers la GTPase RhoA et la kinase SLK. Cette voie est impliquée dans la migration des
cellules de cancer du sein triple négatif. Ainsi, on a pu démontrer que la moésine et la kinase SLK
agissaient en aval du récepteur étudié pour favoriser la vitesse et la directionnalité de la migration
des cellules de CSTN.
6
On a montré que la migration cellulaire dirigée en aval du RTXA2 est due à une polarité de la
moésine au front de la migration. On a constaté aussi que la moésine est responsable d’une
polarité des filaments d’actine au front de la migration suite à une activation du récepteur.
Ce travail a mis en évidence une nouvelle cascade de signalisation importante pour la migration
des cellules cancéreuses agressives triples négatives du sein ce que pourrait être une nouvelle
cible des thérapies anti-métastatiques. / Cell migration is an important mechanism for various cellular processes such as embryogenesis
and cicatrization. Likewise, it controls pathological processes including the invasion of malignant
cells and the formation of metastases. Metastasis is a very complicated process. The acquisition
of invasive migratory power by a malignant cell as well as its metastatic potential is regulated by
the cytoskeleton which is dynamically modified and controlled by intracellular signaling pathways.
However, metastatic cells physiology and the cascades causing their metastases are not clear yet.
Ezrin, Radixin and Moesin (ERMs) proteins have an important role in organizing the cytoskeleton
at the cell cortex and they are key determinants of cell motility. Thus, a deregulation at this point
may lead to an aberrant cell migration. Hence, the involvement of ERMs in various aggressive and
invasive cancers. ERMs are regulated downstream of several cellular actors in particular
membrane receptors. Several studies have reported that the thromboxane A2 receptor (TXA2R),
a G protein coupled receptor (GPCR) promotes metastasis. It has been described especially in the
context of triple negative breast cancer (TNBC), one of the deadliest cancers in women. GPCR
have a central role in almost all physiological functions and constitute the largest family of drug
targets. Interestingly, the two laboratories of Dr Sébastien Carréno and Dr Michel Bouvier, have
discovered that the TXA2R activates ERM proteins through the GTPase RhoA.
In this research project, we have identified a new signaling pathway linking the TXA2 receptor to
ERMs via RhoA and the kinase SLK. This pathway is involved in the migration of triple negative
breast cancer cells. Thus, we demonstrated that moesin and SLK acted downstream of the
receptor to promote the speed and directionality of TNBC cells migration. We discovered that the
directed cell migration downstream of TXA2R is due to a polarization of moesin at the leading
edge. We also observed that moesin is responsible for actin filaments polarity at the leading edge
following an activation of the receptor.
So, this work has revealed a new signaling cascade important for the migration of aggressive triple
negative breast cancer cells which could be a new target for anti-metastatic therapies.
|
296 |
Discovering Natural Product Chemistries for Vector ControlLide Bi (15347593) 25 April 2023 (has links)
<p> </p>
<p>Vector-borne diseases (VBDs) represent a significant health burden worldwide, threatening approximately 80% of the global population. Insecticide-based vector control is the most effective method to manage many VBDs, but its efficacy has been declining due to high levels of resistance in vector populations to the main insecticide classes which operate via limited modes of action. Therefore, the discovery of new chemistries from non-conventional chemical classes and with novel modes of action is a priority for the control of vectors and VBDs. Natural products (NPs) are diverse in chemical structures and, potentially, modes of action. They have been used as insecticides for many decades and have inspired the development of multiple synthetic insecticides, suggesting the discovery of novel NPs could lead to the development of highly effective insecticides. </p>
<p><br></p>
<p>In this thesis, I report two studies with a main goal to identify novel mosquito-active insecticide leads that operate via modes of action distinct from existing insecticides. First, I tested the hypothesis that new mosquito-active insecticide leads with novel chemical structures, possibly operating via novel modes of action, can be identified by high-content larval phenotypic screening against a natural product collection and using novel phenotypic endpoints in addition to mortality endpoints. Here, I performed a high-content larval phenotypic screen using first instar (L1) larvae of <em>Aedes aegypti</em> (Linnaeus, 1762) against 3,680 compounds from the AnalytiCon MEGx Natural Product Libraries and a screening platform developed by Murgia et al., (2022). Compounds were screened in a 384-well plate format using the Perkin Elmer Opera Phenix and larvae were scored for lethal and novel phenotypic endpoints. Screening revealed five chemistries that caused larval mortality, including rotenone and a new NP chemistry, NP-4. The identification of rotenone confirmed the ability of the screen to detect mosquito-active NP chemistries. NP-4 caused high levels of larval mortality in the screen, and toxicity was confirmed in a subsequent concentration-response assay against third instar (L3) larvae of <em>Ae. aegypti</em>. 140 chemistries that caused atypical larval phenotypes, including cuticular pigmentation and morphometric changes relative to negative controls, were also identified by the screen. Some of these chemistries may operate by disruption of pathways regulating melanization, growth and development, and novel targets in the insect nervous systems, thus representing potential leads for further insecticide toxicity and mode of action studies. To facilitate quantitative analyses of atypical phenotypes, an attempt was made to assess the morphometrics of the thorax in larvae exposed to test chemistry, relative to control larvae. However, assessment was limited by the number of larvae images of suitable quality for measurements. </p>
<p><br></p>
<p>In the second study, I tested the hypothesis that metergoline (Murgia et al., 2022) and NP-4 (this study), two chemistries identified by the HTP phenotypic screen described in this project, operate via disruption of targets in the insect nervous systems that are distinct from the current insecticidal modes of products used in mosquito control programs. Specifically, I explored the hypothesis that metergoline operates via one or more insect orthologs of the mammalian G protein-coupled serotonin and dopamine receptors. An electrophysiology study was performed using the suction electrode technique and ganglia of the German cockroach, <em>Blattella germanica </em>(Linnaeus, 1767). To facilitate the investigation of metergoline agonism/antagonism and disruption of invertebrate GPCR signaling, 5-hydroxytryptamine (5-HT; serotonin) was included as a chemical probe. Electrophysiological recordings showed 5-HT (10µM and 1mM) and metergoline (10µM) caused no significant neurological activity at the tested concentrations in comparison to the saline control. However, a consistent neuro-inhibitory trend was observed, suggesting possible agonism of a 5-HT1-like receptor ortholog and antagonism of a putative 5-HT7-like receptor ortholog in the cockroach, respectively. NP-4 caused significant neuro-inhibition at the tested concentration of 20µM, in comparison to the negative saline control. Given the demonstration of rapid contact toxicity to <em>Ae. aegypti</em> larvae and neurological inhibition in <em>B. germanica</em>, we propose NP-4 may act at one or more conserved targets in the insect nervous systems, which remain to be elucidated. </p>
<p><br></p>
<p>The significance of the present study is three-fold. First, this study reports the first high-content phenotypic screen of mosquito larvae against a NP collection and identification of 145 mosquito-active chemistries associated with lethal and phenotypic endpoints. These data confirm that the screening platform provided an innovative and effective system to rapidly identify mosquito-active small molecules with potential novel modes of action. Second, metergoline and NP-4 represent potential novel chemical leads for the development of new insecticides that can be incorporated into vector control programs targeting insecticide-resistant populations. Lastly, the study describes the first electrophysiology study of 5-HT, metergoline, and NP-4 via the suction electrode technique in an insect system and contributes new knowledge to the study of the insect serotonergic system, which represents an expanding area of vector biology research given its roles in feeding regulation. </p>
<p><br></p>
<p>Future studies resulting from this thesis might include: (1) development of a set of morphometric criteria for quantitative analyses of atypical larval phenotypes, (2) incorporation of new phenotypic endpoints to expand the capacity of the screen to identify novel mode of action chemistries for insecticide discovery, and (3) identification of chemistry candidates suitable for further development from the 140 chemistries associated with atypical larval phenotypes in the primary screen using chemo-informatic and toxicological studies. In addition, studies using reverse transcription-polymerase chain reaction (RT-PCR), cell-based expression systems, mutant/insecticide resistant strains, and patch clamp electrophysiology could be pursued to further investigate the molecular mode of action of metergoline and NP-4, and potential for vector control.</p>
|
297 |
Investigation of Photochemistry and Photobiology of Retinal in Visual and Non-visual Cellular SignalingRatnayake, Kasun Chinthaka January 2020 (has links)
No description available.
|
298 |
Mechanism and function of nuclear HCAR1Mohammad Nezhady, Mohammad Ali 05 1900 (has links)
Les récepteurs couplés aux protéines G (RCPG) sont une famille de protéines hautement conservée chez les eucaryotes et constituent la plus grande famille de récepteurs. Ces récepteurs sont impliqués dans presque tous les processus physiologiques, mais leur capacité à réguler un vaste éventail de processus biologiques différents fait l'objet de recherches intenses. Bien qu'ils soient classiquement considérés comme des récepteurs de la membrane plasmique, les RCPG sont présents dans tous les organites membranaires intracellulaires et certains d'entre eux ont la capacité de transduire des signaux à partir de ces organites. La signalisation d'un RCPG à partir de ces organelles intracellulaires est appelée signalisation biaisée par la localisation et cette signalisation peut avoir un résultat fonctionnel différent de celui des événements de signalisation du récepteur localisé dans la membrane plasmique. La signalisation biaisée par la localisation est un concept émergent en biologie des RCPG et peut ajouter une couche supplémentaire à la fonction du récepteur. D'autre part, avec la détection de certains RCPG à l'intérieur de différents organites, y compris le noyau, une modalité fonctionnelle non réceptrice pour les RCPG pourrait être postulée et pourrait également expliquer les divers rôles de cette famille. Cependant, cet aspect est presque entièrement inexploré.
HCAR1 (GPR81), en tant que RCPG, est activé de manière endogène par le lactate et il a été démontré qu'il favorise la malignité du cancer en favorisant un niveau plus élevé de glycolyse dû à l'effet Warburg et cela par différentes voies. Son niveau d'expression est très élevé dans de nombreux cancers et présente une corrélation négative avec le pronostic du patient. Cependant, son mécanisme d'action n'est pas bien compris. Dans cette thèse, nous avons étudié la localisation nucléaire et les rôles potentiels du HCAR1 et nous avons découvert que ce récepteur est localisé à la membrane nucléaire et à l'intérieur du noyau, en plus de sa localisation à la membrane plasmique. Le HCAR1 nucléaire (N-HCAR1) est capable d'induire une signalisation intranucléaire basée sur la localisation pour induire la phosphorylation de ERK et d’AKT dans le noyau. En utilisant des approches protéomiques et génomiques, nous avons découvert que N-HCAR1 est impliqué dans plusieurs fonctions non réceptrices régulant différents processus à travers ses interactomes nucléaires. Ce regroupement nucléaire de HCAR1, en fonction de ses facteurs de liaison, favorise la traduction des protéines, la biogenèse ribosomale et la réparation des dommages à l'ADN. De manière intéressante, N-HCAR1 interagit également avec des facteurs de remodelage de la chromatine et régule directement l'expression des gènes d'après notre séquençage ChIP à l'échelle du génome. Nous avons également effectué un séquençage de l’ARN et les résultats montrent que N-HCAR1 régule l'expression d'un réseau de gènes plus large que son homologue de la membrane plasmique. Notamment, l'exclusion nucléaire de HCAR1 s'est avérée avoir le même effet que son knockdown complet sur la croissance tumorale et les métastases in vivo. Nos données révèlent une signalisation basée sur la localisation et des fonctions non canoniques pour un RCPG dans le noyau par lesquelles HCAR1 peut réguler différents processus cellulaires. / G Protein-Coupled Receptors (GPCR) are a highly conserved protein family in eukaryotes through evolution and they are the largest receptor family. These receptors are virtually involved in every physiological processes, but their ability to regulate such a vast array of different biological processes is under intense investigation. Although classically considered a plasma membrane receptor, GPCRs are found in every intracellular membranous organelle and some of them are shown to have the capacity for signal transduction from those organelles. The signaling of a GPCR from these intracellular organelles is called location-biased signaling and this signaling could have a different functional output than the signaling events from the plasma membrane-localized receptor. Location-biased signaling is an emerging concept in the GPCR biology and can add an extra layer to the receptor function. On the other hand, with the detection of some GPCRs inside different organelles including the nucleus, a non-receptor functional modality for GPCRs could be postulated and could also account for the diverse roles of this family. However, this aspect is almost entirely unexplored.
HCAR1 (GPR81), as a GPCR, is endogenously activated by lactate and has been shown to promote cancer malignancy via a higher level of glycolysis due to the Warburg effect, through different pathways. Its expression level is highly elevated in many cancers and negatively correlates with the patient’s prognosis. However, its mechanism of action is not well understood. In this thesis, we investigated the nuclear localization and potential roles of HCAR1 therein and we found this receptor is localized to the nuclear membrane and inside the nucleus, besides its plasma membrane localization. The Nuclear HCAR1 (N-HCAR1) is capable of inducing location-biased signaling intranuclearly to induce nuclear-ERK and AKT phosphorylation. Using proteomics and genomics approaches, we discovered that N-HCAR1 is involved in several different non-receptor functions regulating different processes through its nuclear interactomes. This nuclear pool of HCAR1, depending on its binding factors, promotes protein translation, ribosomal biogenesis, and DNA-damage repair. Interestingly, N-HCAR1 also interacts with chromatin remodeling factors and directly regulates gene expression based on our genome-wide ChIP-sequencing. We also performed RNA-seq, and the results show N-HCAR1 regulates the expression of a broader gene network than its plasma membrane counterpart. Notably, nuclear exclusion of HCAR1 proved to have the same effect as its complete knockdown on tumor growth and metastasis in vivo. Our data reveal location-biased signaling and non-canonical functions for a GPCR in the nucleus by which HCAR1 can regulate different cellular processes.
|
299 |
Modulating G Protein-Coupled Receptor Signaling Pathways with Selective Chemical- and Protein-Based Effector MoleculesGulati, Sahil, Gulati 31 August 2018 (has links)
No description available.
|
300 |
Serotonin Modulates a Calcium-Driven Negative Feedback Loop in a C. elegans NociceptorZahratka, Jeffrey Allen January 2015 (has links)
No description available.
|
Page generated in 0.0331 seconds