Spelling suggestions: "subject:"gpc"" "subject:"gpr""
331 |
Intestinal Gene Expression Profiling and Fatty Acid Responses to a High-fat DietCedernaes, Jonathan January 2013 (has links)
The gastrointestinal tract (GIT) regulates nutrient uptake, secretes hormones and has a crucial gut flora and enteric nervous system. Of relevance for these functions are the G protein-coupled receptors (GPCRs) and the solute carriers (SLCs). The Adhesion GPCR subfamily is known to mediate neural development and immune system functioning, whereas SLCs transport e.g. amino acids, fatty acids (FAs) and drugs over membranes. We aimed to comprehensively characterize Adhesion GPCR and SLC gene expression along the rat GIT. Using qPCR we measured expression of 78 SLCs as well as all 30 Adhesion GPCRs in a twelve-segment GIT model. 21 of the Adhesion GPCRs had a widespread (≥5 segments) or ubiquitous (≥11 segments) expression. Restricted expression patterns were characteristic for most group VII members. Of the SLCs, we found the majority (56 %) of these transcripts to be expressed in all GIT segments. SLCs were predominantly found in the absorption-responsible gut regions. Both Adhesion GPCRs and SLCs were widely expressed in the rat GIT, suggesting important roles. The distribution of Adhesion GPCRs defines them as a potential pharmacological target. FAs constitute an important energy source and have been implicated in the worldwide obesity increase. FAs and their ratios – indices for activities of e.g. the desaturase enzymes SCD-1 (SCD-16, 16:1n-7/16:0), D6D (18:3n-6/18:2n-6) and D5D (20:4n-6/20:3n-6) – have been associated with e.g. overall mortality and BMI. We examined whether differences in FAs and their indices in five lipid fractions contributed to obesity susceptibility in rats fed a high fat diet (HFD), and the associations of desaturase indices between lipid fractions in animals on different diets. We found that on a HFD, obesity-prone (OP) rats had a higher SCD-16 index and a lower linoleic acid (LA) proportions in subcutaneous adipose tissue (SAT) than obesity-resistant rats. Desaturase indices were significantly correlated between many of the lipid fractions. The higher SCD-16 may indicate higher SCD-1 activity in SAT in OP rats, and combined with lower LA proportions may provide novel insights into HFD-induced obesity. The associations between desaturase indices show that plasma measurements can serve as proxies for some lipid fractions, but the correlations seem to be affected by diet and weight gain.
|
332 |
Étude de la pharmacologie de ligands du récepteur EP4 de prostaglandine E2Leduc, Martin 11 1900 (has links)
La prostaglandine E2 est une hormone lipidique produite abondamment dans le corps, incluant dans le rein où elle agit localement pour réguler les fonctions rénales. Un couplage à la protéine Gαs menant à une production d’AMPc a classiquement été attribué au récepteur EP4 de PGE2. La signalisation d’EP4 s’est cependant avérée plus complexe et implique aussi un couplage aux protéines sensibles à la PTX Gαi et des effets reliés aux β-arrestines. Il y a maintenant plusieurs exemples de l’activation sélective de voies de signalisation indépendantes par des ligands des récepteurs couplés aux protéines G (RCPG), et ce concept désigné sélectivité fonctionnelle pourrait être exploité dans le développement de nouveaux médicaments plus spécifiques et efficaces.
Dans une première étude, la puissance et l’activité intrinsèque d’une série de ligands d’EP4 pour l’activation de Gαs, Gαi et de la ß-arrestine ont été systématiquement déterminées relativement au ligand endogène PGE2. Dans ce but, trois essais de transfert d’énergie de résonance de bioluminescence (BRET) ont été adaptés pour évaluer les différentes voies dans des cellules vivantes. Nos résultats montrent une sélectivité fonctionnelle importante parmi les agonistes évalués et ont une implication pour l’utilisation d’analogues de la PGE2 dans un contexte expérimental et possiblement clinique, puisque leur spectre d’activité diffère de l’agoniste naturel. La méthodologie basée sur le BRET utilisée lors de cette première évaluation systématique d’une série d’agonistes d’EP4 devrait être applicable à l’étude d’autres RCPG.
Dans une deuxième étude, des peptides reproduisant des régions juxtamembranaires extracellulaires du récepteur EP4 ont été conçus selon le raisonnement que des peptides ciblant des régions éloignées du site de liaison du ligand naturel ont le potentiel de ne moduler qu’une partie des activités du récepteur. L’insuffisance rénale aiguë est une complication médicale grave caractérisée par un déclin brusque et soutenu de la fonction rénale et pour laquelle il n’y a pas de traitement efficace à l’heure actuelle. Nos résultats montrent que le peptidomimétique dérivé d’EP4 optimisé (THG213.29) améliore significativement les fonctions rénales et les changements histologiques dans une insuffisance rénale aiguë induite par cisplatine ou par occlusion des artères rénales dans des rats Sprague-Dawley. Le THG213.29 ne compétitionnait pas la liaison de la PGE2 à EP4, mais modulait la cinétique de dissociation de la PGE2, suggérant une liaison à un site allostérique d’EP4. Le THG213.29 démontrait une sélectivité fonctionnelle, puisqu’il inhibait partiellement la production d’AMPc induite par EP4 mais n’affectait pas l’activation de Gαi ou le recrutement de la ß-arrestine. Nos résultats indiquent que le THG213.29 représente une nouvelle classe d’agent diurétique possédant les propriétés d’un modulateur allostérique non-compétitif des fonctions du récepteur EP4 pour l’amélioration des fonctions rénales suite à une insuffisance rénale aiguë. / Prostaglandin E2 (PGE2) is a lipid hormone mediator widely produced in the body, including in the kidney where it acts locally to regulate renal function. Classically, the PGE2 receptor EP4 has been classified as coupling to the Gαs subunit, leading to intracellular cAMP increases. However EP4 signaling has been revealed to be more complex and also involves coupling to PTX-sensitive Gαi proteins and ß-arrestin mediated effects. There are now many examples of selective activation of independent pathways by G-protein coupled receptor (GPCR) ligands, a concept referred to as functional selectivity that could be exploited for the development of more specific and efficacious drugs.
In a first study, the potencies and efficacies of a panel of EP4 ligands were systematically determined for the activation of Gαs, Gαi and ß-arrestin relative to the endogenous ligand PGE2. For this purpose, three bioluminescence resonance energy transfer (BRET) assays were adapted to evaluate the respective pathways in living cells. Our results suggest considerable functional selectivity among the tested, structurally related agonists and have implications for the use of PGE2 analogues in experimental and possibly clinical settings, as their activity spectra on EP4 differ from that of the native agonist. The BRET-based methodology used for this first systematic assessment of a set of EP4 agonists should be applicable for the study of other GPCRs.
In a second study, peptides were derived from extracellular juxtamembranous regions of the EP4 receptor following the rationale that peptides that target regions of the receptor remote of the ligand-binding site might modulate a subset of the EP4-mediated activities. Acute renal failure is a serious medical complication characterized by an abrupt and sustained decline in renal function and for which there is currently no effective treatment. Our results show that the optimized EP4-derived peptidomimetic THG213.29 significantly improved renal functions and histological changes in acute renal failure induced by either cisplatin or renal artery occlusion in Sprague-Dawley rats. THG213.29 did not displace PGE2 binding to EP4, but modulated PGE2 binding dissociation kinetics, indicative of an allosteric binding mode. THG213.29 exhibited functional selectivity, as it partially inhibited EP4-mediated cAMP production but did not affect Gαi activation or ß-arrestin recruitment. Our results demonstrate that THG213.29 represents a novel class of diuretic agent with noncompetitive allosteric modulator effects on EP4 receptor function for improving renal function following acute renal failure.
|
333 |
Mécanismes de régulation du trafic et de l’activité du récepteur GABABLahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur.
Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation.
Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale.
La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2).
En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination.
In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization.
We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation.
In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability.
In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
|
334 |
Le traductome induit par le récepteur FSH et l'implication des B-arrestines dans le contrôle de la traduction des ARNm 5' TOP / Translatome induced by FSH receptor and beta-arrestins implications involved in translation control of 5'Top mRNATréfier, Aurelie 21 December 2017 (has links)
La FSH est une des hormones clés qui régule la reproduction chez les mammifères. Chez le mâle, elle cible les cellules de Sertoli, qui expriment le RFSH. La cellule de Sertoli a un rôle trophique important pour le bon développement de la spermatogenèse. Dans cette thèse, nous avons établi le premier traductome, c’est-à-dire l’ensemble des ARNm en cours de traduction, dépendant du RFSH. La traduction de certains ARNm significativement modulés par la FSH exercerait un rétrocontrôle sur la signalisation FSH-dépendante. L’analyse du protéome nous a permis de valider ce traductome au niveau systémique. Nous avons également démontré l’implication des β-arrestines dans la traduction d’ARNm dépendante de la FSH. Les β-arrestines forment un assemblage moléculaire avec le module de traduction p70S6K/rpS6. Cet assemblage est impliqué dans la traduction des ARNm 5’TOP, qui encodent la machinerie traductionnelle. C’est l’activation FSHdépendante des protéines G qui promeut l’activation de p70S6K au sein du module β-arrestines/ p70S6K/ rpS6. Ce travail constitue une nouvelle avancée sur les mécanismes grâce auxquels la FSH exerce sa fonction biologique de dans ses cellules-cibles naturelles de la gonade mâle. / FSH is one of the key hormones that regulate the reproductive function in mammals. In the male, FSH targets Sertoli cells, which express the FSHR. Sertoli cells play an important trophic role in the development of spermatogenesis. Here, we have provided the first FSHR-induced translatome, that encompasses all the mRNA being actively translated. The translation of some mRNAs significantly modulated by FSH may exert a feedback control on FSH-dependent signaling. The analysis of the proteome has validated the FSHR translatome at the systems level. We also demonstrated the involvement of β-arrestins in the FSH-stimulated translation of mRNA. β-arrestins form a molecular assembly with the p70S6K / rpS6 translation module. This molecular assembly is involved in the translation of 5'TOP mRNA, which encode proteins of the translational machinery. FSH-activated G proteins leads to p70S6K activation within the β-arrestins/ p70S6K/ rpS6 module. This work provides new advance on the mechanisms whereby FSH exerts its biological function in its natural target cells of the male gonad.
|
335 |
Étude des déterminants moléculaires de la signalisation des récepteurs couplés aux protéines G et développement d'outils pour l'étude de l'effecteur bêta-arrestineAudet, Martin 08 1900 (has links)
No description available.
|
336 |
Etude d'un récepteur orphelin apparenté aux récepteurs aux hormones glycoprotéiques, LGR4 / Study of an orphan receptor belonging to the glycoprotein hormone receptors family, LGR4Van Schoore, Grégory 07 January 2008 (has links)
Les récepteurs couplés aux protéines G (RCPG) sont impliqués dans la majeure partie des communications intercellulaires. Un grand nombre de RCPG ont été découverts en comparant la séquence des récepteurs connus avec les données fournies par le séquençage du génome humain. Pour plus d'une centaine de ces récepteurs, le ligand activateur ou agoniste est inconnu. Ces récepteurs sont dès lors qualifiés d'orphelins.<p>Les LGR forment une sous-famille de RCPG structurellement proches de la rhodopsine qui comprend les récepteurs aux hormones glycoprotéiques (TSH, LH, hCG, FSH) et à la relaxine. LGR4 est un membre de cette famille dont ni la fonction précise, ni l'agoniste ne sont connus.<p>Dans un premier temps, une cartographie détaillée de l'expression de Lgr4 chez la souris a été obtenue. Nous avons tiré parti de l'existence d'une lignée de souris transgéniques dont le gène Lgr4 a été interrompu par l'introduction d'une cassette comportant deux marqueurs histologiques. L'activité beta-galactosidase d'un de ces marqueurs a été analysée chez les souris hétérozygotes. Ces dernières ne présentent pas de phénotype particulier, ce qui permet d'estimer que l'expression des marqueurs rend effectivement compte de l'expression normale du gène Lgr4. Lgr4 est exprimé dans un grand nombre de structures, notamment dans le cartilage, le rein, les appareils reproducteurs mâle et femelle et certaines cellules du système nerveux.<p>Ensuite, le phénotype des souris homozygotes pour l'inactivation de Lgr4 (LGR4KO) a été exploré. Ces souris présentent à la naissance un poids inférieur à leurs congénères des autres phénotypes. Les mâles sont stériles à cause d'une malformation des tubules efférents et de l'épididyme. Un blocage au niveau des tubules efférents reliant le testicule à l'épididyme contraint les spermatozoïdes à s'accumuler à la sortie du testicule, dans la région du rete testis. De plus, les tubes de l'épididyme, pourtant normaux à la naissance, ne s'allongent pas pour former la structure convolutée habituelle. L'épithélium de ces tubes est aplati et est entouré d'une quantité anormalement élevée de mésenchyme.<p>Dans un troisième temps, des outils nécessaires aux futures tentatives d'identification de l'agoniste naturel de LGR4 ont été réalisés. Il s'agit :(1) d'anticorps monoclonaux dirigés contre la partie extracellulaire du récepteur humain. (2) d'un appât moléculaire pour la ‘pêche au ligand’. Cet appât est constitué du domaine extracellulaire du récepteur humain couplé à un marqueur histologique. (3) d'une construction peptidique constituée du domaine extracellulaire du récepteur humain couplé à une queue poly-histidine. Cette construction est destinée à servir de greffon lors de chromatographies d'affinités devant permettre de purifier le ligand. (4) de lignées cellulaires exprimant le récepteur LGR4 humain ainsi que le système æquorine devant permettre de détecter l'activation de ce récepteur.<p>Les données apportées par ce travail montrent un rôle important du récepteur LGR4 au cours du développement et permettent de circonscrire le champ des recherches futures. Ceci, ainsi que les outils moléculaires développés, constitue une base pour l'identification future de l'agoniste et la détermination précise de la fonction de LGR4. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
337 |
Rôles non-canoniques des arrestines dans la signalisation et l’endocytose des récepteurs couplés aux protéines GParadis, Justine 04 1900 (has links)
G protein-coupled receptors (GPCRs) form the biggest family of membrane receptors and are involved in numerous physiological processes. Collectively, these receptors are also prominently targeted by the pharmaceutical industry due to their implications in multiple diseases and disorders. GPCR signaling is tightly regulated. Several kinases, activated downstream of the receptor, initiate negative feedback loops; and arrestins play a crucial role in these regulatory processes by desensitizing the ligand–activated receptor and promoting its endocytosis. By doing so, arrestins control the duration and the amplitude of signal transduction at the cell surface. In the last few years, several non-canonical roles have also been attributed to arrestins, such as the post-endocytic activation of several signalling pathways, or the regulation of crosstalks between GPCRs and various other signalling events. My thesis project was aimed at providing a better understanding of the non-canonical functions of arrestins.
The first objective of my research work was to investigate a possible reciprocal effect of the activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) on GPCR signaling. We demonstrated that stimulation of ERK1/2, either by a cell surface receptor or a constitutively active mutant, leads to a reduction in steady-state expression levels of many GPCRs at the cell surface. This receptor redistribution mechanism is dependent on beta-arrestins phosphorylation. In vitro kinase assays combined with complementation experiments in mouse embryonic fibroblasts (MEFs) lacking beta-arrestins, revealed that beta-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This ERK1/2- and arrestins mediated regulatory process was found to result in a global dampening of cell responsiveness.
The second objective of my research work was to identify and develop a small organic compound that inhibits the interaction between arrestins and the adaptor protein AP-2, without interfering with the recruitment of arrestin to the receptor. This inhibitor, named Barbadin, was found to specifically block endocytic processes that are dependent on the interaction between arrestins and the appendage domain of the b-subunit of AP-2. We demonstrated its value as an analytical tool in studying the role of the arrestins in GPCR signaling, such as cAMP production and ERK1/2 activation. These results support the concept that beta-arrestin/AP-2-dependent signaling is important to both G protein-dependent and -independent pathways.
The third objective of my research work was to develop a BRET-based biosensor able to detect signal-dependent PTEN conformational changes. This biosensor was validated by monitoring PTEN activation induced by targeted mutations affecting key intramolecular interactions or by modulating signalling pathways that impact PTEN function. We also demonstrated the value of this biosensor in studying PTEN/protein interactions using two known interactors that activate PTEN, beta-arrestin-2 and RhoA. Finally, we uncovered PTEN activation by several GPCRs, previously unknown as PTEN regulators. Given the central role of the tumor suppressor PTEN in oncogenesis, this biosensor could also provide a precious tool for anti-cancer drug research.
To conclude, my research work highlighted non-canonical mechanisms for arrestins to activate GPCR-dependent signaling pathways, such as cAMP, ERK1/2 and PTEN, as well as negatively regulate GPCR signaling upon phosphorylation by ERK1/2. This work was made possible by the development of new tools: a beta-arrestin inhibitor named Barbadin and a PTEN BRET-based biosensor that have both shown their usefulness in studying beta-arrestin noncanonical signaling. / Les récepteurs couplés aux protéines G (RCPG) représentent la plus grande famille de récepteurs membranaires et sont impliqués dans un grand nombre de processus physiologiques. Cette famille de récepteurs constitue aussi une cible majeure dans la recherche pharmaceutique
au vu de son importance dans de nombreuses pathologies. La signalisation des RCPG est étroitement régulée. Plusieurs kinases activées en aval du récepteur initient des boucles de régulation négative. Les arrestines jouent un rôle clé dans ces processus de régulation en favorisant la désensibilisation du récepteur activé par le ligand, suivie de son endocytose. Ainsi, les arrestines contrôlent la durée et l’amplitude de la transmission du signal à la surface de la cellule. Ces dernières années, plusieurs rôles non-canoniques ont été attribués aux arrestines comme l’activation de voies de signalisation post-endocytiques, ou la modulation de la régulation croisée entre les RCPG et d’autres acteurs de la signalisation cellulaire.
Le premier objectif de mon travail de recherche est d’examiner l’effet réciproque de l’activation des kinases ERK1/2 (extracellular signal-regulated kinases 1/2) sur la signalisation des RCPG. Nous avons démontré que la stimulation de ERK1/2, soit par un récepteur de surface soit par l’utilisation d’un mutant constitutivement actif, conduit à la baisse de l’expression de surface basale de nombreux RCPG. Des essais kinases in vitro, combinés à des expériences de complémentation dans des fibroblastes embryonnaires de souris (MEF), où les gènes beta-arrestine-1/2 ont été supprimés, démontrent l’importance de la phosphorylation par ERK1/2 des résidus Ser14 et Thr276 dans ce mécanisme de séquestration des RCPG. Cette régulation, contrôlée par ERK1/2 et arrestine, conduit à une baisse globale de la capacité de réponse de la cellule aux stimuli extracellulaires.
Le deuxième objectif de mon travail de recherche est d’identifier et de développer une petite molécule organique qui inhibe l’interaction entre l’arrestine et la protéine adaptatrice du complexe d’endocytose AP-2, sans toutefois empêcher la formation du complexe arrestine/récepteur. Cet inhibiteur, nommé Barbadin, bloque sélectivement les processus d’internalisation dépendants de l’interaction entre arrestine- et la sous-unité beta2 de la protéine adaptatrice AP-2. Barbadin représente le premier inhibiteur des fonctions d’arrestine, et nous avons démontré son utilité comme outil analytique pour déterminer la contribution des arrestines dans l’activation de plusieurs voies de signalisation en aval des RCPG, telles que la production d’AMP cyclique (AMPc) ou l’activation des kinases ERK1/2. Nos résultats démontrent l’importance du complexe arrestine/AP-2 dans la signalisation dépendante et indépendante des protéines G.
Le troisième objectif de mon travail de recherche est de développer un biosenseur BRET capable de mesurer les changements de conformation du suppresseur de tumeur PTEN. Nous avons validé ce biosenseur en mesurant l’activation de PTEN suite à des mutations ciblées déstabilisant les interactions intramoléculaires au sein de cette protéine ou en modulant différentes voies de signalisation qui affectent sa fonction. Nous avons démontré l’intérêt de ce nouvel outil dans l’étude des interactions entre PTEN et des partenaires protéiques, en utilisant deux interacteurs connus pour activer PTEN : b-arrestine-2 et RhoA. Finalement, en utilisant ce biosenseur, nous avons démontré pour la première fois la capacité de plusieurs RCPG à induire l’activation de PTEN. Étant donné le rôle central de PTEN dans le développement tumoral, ce biosenseur constitue aussi un outil précieux pour la recherche de nouveaux médicaments anticancer.
Ainsi, au travers de ces trois lignes directrices, nous avons pu mettre en lumière de nouveaux rôles non-canoniques des arrestines, soit dans l’activation de voies de signalisation, (comme la production d’AMPc, l’activation de ERK1/2 ou de PTEN), soit comme régulateur
négatif de la signalisation des RCPG après phosphorylation par ERK1/2. Ce travail a été rendu possible par le développement de nouveaux outils pour l’étude des RCPG : un inhibiteur de beta-arrestine, Barbadin, et un biosenseur BRET de PTEN ; tous deux ayant démontré leur utilité dans l’étude des voies de signalisation non-canoniques des arrestines.
|
338 |
Identification de nouveaux partenaires protéiques des récepteurs couplés aux protéines G contrôlant leur transport du reticulum endoplasmique à la membrane plasmiqueSauvageau, Etienne 07 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) forment la plus grande et la plus diversifiée des familles de protéines localisées à la surface cellulaire et responsables de la transmission de signaux à l’intérieur des cellules. D’intenses recherches effectuées au cours des trente dernières années ont mené à l’identification de dizaines de protéines interagissant avec les RCPGs et contrôlant la signalisation, la désensibilisation, l’internalisation et la dégradation de ces importantes cibles pharmacologiques. Contrairement aux processus régulant l’activité des récepteurs à partir de la membrane plasmique, les mécanismes moléculaires contrôlant la biosynthèse des RCPGs dans le reticulum endoplasmique (RE) et leur transport jusqu’à la surface cellulaire sont très peu caractérisés. Une meilleure compréhension de ces processus nécessite l’identification de la machinerie protéique responsable de la maturation des RCPGs.
Un crible protéomique basé sur le transfert d’énergie de résonance de bioluminescence (BRET), qui permet la mesure d’interactions protéiques dans les cellules vivantes, a mené à l’identification de plusieurs nouvelles protéines localisées dans la voie de sécrétion et interagissant potentiellement avec les RCPGs. Ces protéines étant localisées dans les compartiments cellulaires (reticulum endoplasmique et appareil de Golgi) responsables de la synthèse, du repliement adéquat et du transport à la membrane plasmique des récepteurs, il est très probable qu’elles soient impliquées dans le contrôle de l’expression des RCPGs à la surface cellulaire.
La caractérisation de l’homologue humain de cornichon 4 (CNIH4), un nouvel intéracteur des RCPGs identifié dans le crible, a démontré que cette protéine localisée dans les compartiments précoces de la voie de sécrétion (RE et ERGIC) interagit de façon sélective avec les RCPGs. De plus, la suppression de l’expression endogène de cette protéine préalablement non-caractérisée, diminue le transport à la membrane plasmique d’un récepteur, indiquant que CNIH4 influence positivement l’export des RCPGs du RE. Ceci est supporté par l’observation que la surexpression de CNIH4 à de faibles niveaux favorise la maturation d’un récepteur mutant normalement retenu dans le RE. Nous avons également pu démontrer que CNIH4 est associée à la protéine Sec23, une des composantes de l’enveloppe des vésicules COPII qui sont responsables du transport des protéines du RE vers le Golgi, suggérant que CNIH4 pourrait favoriser le recrutement des récepteurs dans ces vésicules.
La surexpression de CNIH4 à de très hauts niveaux provoque également la rétention intracellulaire des récepteurs. Cet effet dominant négatif pourrait être causé par la titration d’un autre facteur d’export des RCPGs. Une deuxième étude a permis de révéler que la protéine transmembranaire 9 (TMEM9), un nouvel intéracteur des RCPGs également identifié dans le crible, interagit sélectivement avec les récepteurs et avec CNIH4. La surexpression de cette protéine aux fonctions précédemment inconnues, rétablit le transport normal d’un récepteur en présence de CNIH4 surexprimée. De plus, la co-expression de TMEM9 potentialise la capacité de CNIH4 à augmenter la maturation d’un récepteur mutant normalement retenu dans le RE, suggérant que ces deux protéines forment un complexe régulant la maturation des RCPGs.
Au cours de cette thèse, de nouvelles protéines interagissant avec les RCPGs et contrôlant leur expression à la membrane plasmique ont donc été identifiées, permettant une meilleure compréhension des mécanismes régulant le transport des récepteurs du RE à la surface cellulaire. / G protein coupled receptors (GPCR) form the largest and most diversified family of cell-surface receptors responsible for signal transduction inside the cells. Extensive research over the last thirty years have led to the identification of multiple proteins interacting with GPCRs and controlling the signalisation, desensitization, internalization and degradation of these important pharmaceutical targets. In contrast to the processes regulating GPCR activity at the plasma membrane, the molecular mechanisms controlling GPCR biogenesis in the endoplasmic reticulum (ER) and their transport to the cell-surface are poorly characterized. The identification of the proteins regulating GPCR maturation is essential in order to understand how receptors are expressed at the plasma membrane.
A proteomic screen based on bioluminescence resonance energy transfer (BRET), which allows for the detection of protein-protein interaction in living cells, led to the identification of several potential novel GPCR interactors localized in the secretory pathway. Since the cellular compartments where these proteins are localized are responsible for the synthesis, proper folding and transport to the plasma membrane of the receptors, it is highly probable that they are involve in regulating GPCR cell-surface expression.
The characterization of the human cornichon homolog 4 (CNIH4), a novel GPCR interactor identified in the screen, showed that this protein localized in the early secretory pathway (ER and ERGIC), selectively interacts with GPCRs. Knockdown of the endogenous expression of this previously uncharacterized protein led to a decrease in the cell-surface expression of a receptor indicating that CNIH4 has a positive function in the ER export of GPCR. Supporting this, over-expression of CNIH4 at low levels increased the maturation of a mutant receptor normally retained in the ER. Moreover, CNIH4 interacts with Sec23, a component of the inner coat of COPII vesicles which transport proteins from the ER to the Golgi apparatus, suggesting that CNIH4 could recruit GPCRs in these vesicles.
CNIH4 over-expression at very high levels also resulted in the intracellular trapping of the receptors. This dominant negative effet could be caused by the titration of another component of the GPCR export process. Another study showed that the transmembrane protein 9 (TMEM9), a novel GPCR interactor also identified in the screen, selectively interacts with GPCRs and CNIH4. Over-expression of this protein of previously unknown function restored normal receptor trafficking in presence of over-expressed CNIH4. Morevover, co-expression of TMEM9 potentialized CNIH4 ability to increase the maturation of a mutant receptor normally retained in the ER, suggesting that these proteins form a complex regulating GPCR maturation.
During this thesis, novel GPCR interacting proteins controlling receptor expression at the plasma membrane were identified, allowing for a better understanding of the mechanisms controlling receptor trafficking from the ER to the cell-surface.
|
339 |
Effet de chaperones pharmacologiques sur les formes mutantes du récepteur mélanocortine de type 4 responsables de l'obésité morbide précoceMichaud, Douce 08 1900 (has links)
Le récepteur mélanocortine de type 4 (MC4R) est un récepteur couplé aux protéines G impliqué dans la régulation de la prise alimentaire et de l’homéostasie énergétique. Quatre-vingt pour cent des mutants du MC4R reliés à l’obésité morbide précoce (OMP) sont retenus à l’intérieur de la cellule. Le système de contrôle de qualité (SCQ) est probablement responsable de cette rétention, par la reconnaissance d’une conformation inadéquate des mutants. Le rétablissement de l’expression à la surface cellulaire et de la fonctionnalité de ces mutants est donc d’intérêt thérapeutique. Dans cette optique, des composés lipophiles spécifiques pour le MC4R ont été sélectionnés sur la base de leur sélectivité. Nous avons démontré qu’ils agissent à titre de chaperone pharmacologique (CP) en rétablissant l’expression à la surface cellulaire et la fonctionnalité des récepteurs mutants S58C et R165W, et qu’ils favorisent leur N-glycosylation complexe (maturation). Le suivi par BRET du site d’action des CP du MC4R suggère une action en aval de l’interaction calnexine-MC4R. De manière générale, une CP peut avoir un effet différent selon le mutant traité en induisant des conformations distinctes du récepteur plus ou moins aptes à se dissocier du SCQ et à activer la voie de signalisation, et un mutant peut répondre différemment selon la CP utilisée par des différences d’affinité pour le ligand, la CP et les effecteurs. Une meilleure compréhension du mode d’action des CP pourrait aider au développement de nouvelles approches thérapeutiques non seulement pour l’OMP, mais aussi pour d’autres maladies conformationnelles causées par le mauvais repliement de protéines. / The MC4R is a G-protein coupled receptor involved in the central regulation of food intake and energy homeostasis. Eighty percent of childhood obesity-related MC4R mutants are retained intracellularly, probably via the quality control system acting on misfolded receptors. Thus, rescuing cell surface targeting and functionality of these mutant receptors could be of therapeutic value. Cell permeable MC4R selective ligands have been tested and were able to restore cell surface expression and signalling activity of S58C and R165W MC4R mutants. Those compounds, according to their mode of action, are described as pharmacological chaperones (PC). The MC4R-PCs also helps to rescue the glycosylation pattern (maturation) of the MC4R mutants. The site of action of MC4R-PCs of the MC4R mutants monitored by BRET suggests an action downstream of the calnexin-MC4R interaction, most likely at the level of the Golgi apparatus. Generally, a CP can have different effects according to the mutant by stabilizing distinct conformations of the receptor that are more or less able to exit the quality control system and to activate the signaling pathway, and a mutant can respond differently according to the CP used by its distinct affinity to the ligand, the CP itself and the effectors. A better understanding of PCs’ mode of action could help in the design of novel therapeutic approaches not only for early-onset morbid obesity (EOMO) but also for other conformational diseases resulting from protein misfolding.
|
340 |
Identification de nouveaux partenaires protéiques des récepteurs couplés aux protéines G contrôlant leur transport du reticulum endoplasmique à la membrane plasmiqueSauvageau, Etienne 07 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) forment la plus grande et la plus diversifiée des familles de protéines localisées à la surface cellulaire et responsables de la transmission de signaux à l’intérieur des cellules. D’intenses recherches effectuées au cours des trente dernières années ont mené à l’identification de dizaines de protéines interagissant avec les RCPGs et contrôlant la signalisation, la désensibilisation, l’internalisation et la dégradation de ces importantes cibles pharmacologiques. Contrairement aux processus régulant l’activité des récepteurs à partir de la membrane plasmique, les mécanismes moléculaires contrôlant la biosynthèse des RCPGs dans le reticulum endoplasmique (RE) et leur transport jusqu’à la surface cellulaire sont très peu caractérisés. Une meilleure compréhension de ces processus nécessite l’identification de la machinerie protéique responsable de la maturation des RCPGs.
Un crible protéomique basé sur le transfert d’énergie de résonance de bioluminescence (BRET), qui permet la mesure d’interactions protéiques dans les cellules vivantes, a mené à l’identification de plusieurs nouvelles protéines localisées dans la voie de sécrétion et interagissant potentiellement avec les RCPGs. Ces protéines étant localisées dans les compartiments cellulaires (reticulum endoplasmique et appareil de Golgi) responsables de la synthèse, du repliement adéquat et du transport à la membrane plasmique des récepteurs, il est très probable qu’elles soient impliquées dans le contrôle de l’expression des RCPGs à la surface cellulaire.
La caractérisation de l’homologue humain de cornichon 4 (CNIH4), un nouvel intéracteur des RCPGs identifié dans le crible, a démontré que cette protéine localisée dans les compartiments précoces de la voie de sécrétion (RE et ERGIC) interagit de façon sélective avec les RCPGs. De plus, la suppression de l’expression endogène de cette protéine préalablement non-caractérisée, diminue le transport à la membrane plasmique d’un récepteur, indiquant que CNIH4 influence positivement l’export des RCPGs du RE. Ceci est supporté par l’observation que la surexpression de CNIH4 à de faibles niveaux favorise la maturation d’un récepteur mutant normalement retenu dans le RE. Nous avons également pu démontrer que CNIH4 est associée à la protéine Sec23, une des composantes de l’enveloppe des vésicules COPII qui sont responsables du transport des protéines du RE vers le Golgi, suggérant que CNIH4 pourrait favoriser le recrutement des récepteurs dans ces vésicules.
La surexpression de CNIH4 à de très hauts niveaux provoque également la rétention intracellulaire des récepteurs. Cet effet dominant négatif pourrait être causé par la titration d’un autre facteur d’export des RCPGs. Une deuxième étude a permis de révéler que la protéine transmembranaire 9 (TMEM9), un nouvel intéracteur des RCPGs également identifié dans le crible, interagit sélectivement avec les récepteurs et avec CNIH4. La surexpression de cette protéine aux fonctions précédemment inconnues, rétablit le transport normal d’un récepteur en présence de CNIH4 surexprimée. De plus, la co-expression de TMEM9 potentialise la capacité de CNIH4 à augmenter la maturation d’un récepteur mutant normalement retenu dans le RE, suggérant que ces deux protéines forment un complexe régulant la maturation des RCPGs.
Au cours de cette thèse, de nouvelles protéines interagissant avec les RCPGs et contrôlant leur expression à la membrane plasmique ont donc été identifiées, permettant une meilleure compréhension des mécanismes régulant le transport des récepteurs du RE à la surface cellulaire. / G protein coupled receptors (GPCR) form the largest and most diversified family of cell-surface receptors responsible for signal transduction inside the cells. Extensive research over the last thirty years have led to the identification of multiple proteins interacting with GPCRs and controlling the signalisation, desensitization, internalization and degradation of these important pharmaceutical targets. In contrast to the processes regulating GPCR activity at the plasma membrane, the molecular mechanisms controlling GPCR biogenesis in the endoplasmic reticulum (ER) and their transport to the cell-surface are poorly characterized. The identification of the proteins regulating GPCR maturation is essential in order to understand how receptors are expressed at the plasma membrane.
A proteomic screen based on bioluminescence resonance energy transfer (BRET), which allows for the detection of protein-protein interaction in living cells, led to the identification of several potential novel GPCR interactors localized in the secretory pathway. Since the cellular compartments where these proteins are localized are responsible for the synthesis, proper folding and transport to the plasma membrane of the receptors, it is highly probable that they are involve in regulating GPCR cell-surface expression.
The characterization of the human cornichon homolog 4 (CNIH4), a novel GPCR interactor identified in the screen, showed that this protein localized in the early secretory pathway (ER and ERGIC), selectively interacts with GPCRs. Knockdown of the endogenous expression of this previously uncharacterized protein led to a decrease in the cell-surface expression of a receptor indicating that CNIH4 has a positive function in the ER export of GPCR. Supporting this, over-expression of CNIH4 at low levels increased the maturation of a mutant receptor normally retained in the ER. Moreover, CNIH4 interacts with Sec23, a component of the inner coat of COPII vesicles which transport proteins from the ER to the Golgi apparatus, suggesting that CNIH4 could recruit GPCRs in these vesicles.
CNIH4 over-expression at very high levels also resulted in the intracellular trapping of the receptors. This dominant negative effet could be caused by the titration of another component of the GPCR export process. Another study showed that the transmembrane protein 9 (TMEM9), a novel GPCR interactor also identified in the screen, selectively interacts with GPCRs and CNIH4. Over-expression of this protein of previously unknown function restored normal receptor trafficking in presence of over-expressed CNIH4. Morevover, co-expression of TMEM9 potentialized CNIH4 ability to increase the maturation of a mutant receptor normally retained in the ER, suggesting that these proteins form a complex regulating GPCR maturation.
During this thesis, novel GPCR interacting proteins controlling receptor expression at the plasma membrane were identified, allowing for a better understanding of the mechanisms controlling receptor trafficking from the ER to the cell-surface.
|
Page generated in 0.0622 seconds