651 |
Building Systems for Electronic Probing of Single Low Dimensional Nano-objects : Application to Molecular Electronics and Defect Induced GrapheneJafri, Syed Hassan Mujtaba January 2011 (has links)
Nano-objects have unique properties due to their sizes, shapes and structure. When electronic properties of such nano-objects are used to build devices, the control of interfaces at atomic level is required. In this thesis, systems were built that can not only electrically characterize nano-objects, but also allow to analyze a large number of individual nano-objects statistically at the example of graphene and nanoparticle-molecule-nanoelectrode junctions. An in-situ electrical characterization system was developed for the analysis of free standing graphene sheets containing defects created by an acid treatment. The electrical characterization of several hundred sheets revealed that the resistance in acid treated graphene sheets decreased by 50 times as compared to pristine graphene and is explained by the presence of di-vacancy defects. However, the mechanism of defect insertion into graphene is different when graphene is bombarded with a focused ion beam and in this case, the resistance of graphene increases upon defect insertion. The defect insertion becomes even stronger at liquid N2 temperature. A molecular electronics platform with excellent junction properties was fabricated where nanoparticle-molecule chains bridge 15-30nm nanoelectrodes. This approach enabled a systematic evaluation of junctions that were assembled by functionalizing electrode surfaces with alkanethiols and biphenyldithiol. The variations in the molecular device resistance were several orders of magnitude and explained by variations in attachment geometries of molecules. The spread of resistance values of different devices was drastically reduced by using a new functionalization technique that relies on coating of gold nanoparticles with trityl protected alkanedithiols, where the trityl group was removed after trapping of nanoparticles in the electrode gap. This establishment of a reproducible molecular electronics platform enabled the observation of vibrations of a few molecules by inelastic tunneling spectroscopy. Thus this system can be used extensively to characterize molecules as well as build devices based on molecules and nanoparticles.
|
652 |
Graphène synthétisé par dépôt chimique en phase vapeur : du contrôle et de la compréhension des défauts à l'échelle atomique jusqu'à la production de dispositifs fonctionnels macroscopiques / Graphene produced by chemical vapor deposition : from control and understanding of atomic scale defects to production of macroscale functional devicesKalita, Dipankar 25 June 2015 (has links)
Si le graphène est un candidat prometteur pour de nombreuses applications, il reste des questions fondamentales à résoudre. Les objectifs de cette thèse visent à obtenir une crois- sance de graphène de haute qualité, à développer de nouveaux concepts de transfert pour réaliser de nouveaux dispositifs tout en contrôlant la formation de défauts dans sa struc- ture. Nous avons été en mesure d'augmenter la surface d'une monocouche polycristalline de graphène d'une échelle de quelques centimètres à celle d'une plaquette de silicium sans changer de chambre CVD. D'autre part, nous avons démontré une méthode permettant de diminuer la densité de nucléation et ainsi d'obtenir du graphène monocristallin de quelques centaines de microns. Concernant la réalisation de nouveaux dispositifs, nous avons obtenu des circuits à base de graphène polycristallin empilés par transferts successifs où la région de bicouche artificielle se comporte comme un bicouche intrinsèque. Nous avons également développé une nouvelle méthode pour suspendre le graphène à l'échelle macroscopique sur des supports en piliers. Dans un tel système, les contraintes dans le graphène restent in- férieures à 0,2%. Par la suite une méthode de dépôt d'électrodes par voie sèche a été développée pour éviter toute dégradation du graphène. Ce processus de transfert a été amélioré pour atteindre des tailles de substrats allant jusqu'à 4 pouces pour le silicium et le saphir. Il a été enfin utilisé comme électrode transparente d'une LED à puits quantiques pour remplacer des électrodes Ni / Au . Nous avons mis au point des procédés de création sélective de défauts sur le graphène. Tout d'abord des défauts ont été induits chimiquement de façon contrôlable et ont été analysés par spectroscopie Raman et microscopie électronique en transmission qui ont révélé un mécanisme en deux étapes de formation de défauts dans la structure de graphène. Nous avons également étudié l'effet des défauts chargés adsorbés sur la surface du graphène sans former de liaisons avec lui. Contrairement à la littérature où les particules chargées sont déposées a posteriori, les nanoparticules chargées étaient présentes pendant la croissance sur cuivre. Nous interprétons l'existence d'une bande de phonons D' très intense devant celle de la D, et encore jamais signalée avec la présence de ces nanoparticules / Though graphene is strong candidate to make various applications, still there are issues that need to be resolved. The purpose of this thesis is to grow high quality graphene and transfer it to make new graphene based devices and to engineer defects into graphene structure. We have been able to increase the growth polycrystalline monolayer graphene from few centimeter scale to wafer scale without changing the CVD chamber. At the same time, we have demonstrated a method to decrease the nucleation density which allows us to grow large single crystal graphene from few to hundreds of micrometer. Concerning new design of graphene based devices, the polycrystalline graphene was trans- ferred to create artificial bilayer crossbars where the bilayer region behaved like naturally grown bilayer graphene. We have also developed a novel method of suspending graphene in macroscopic scale in pillared surface. In such a system, the strain in graphene is found to be less than 0.2%. Thereafter a completely dry method of depositing electrodes was developed which prevents damaging of graphene. The scale and process of transferring graphene was improved to different substrates such as 4 inch Si and sapphire substrates. It was used as transparent electrode to in a quantum well LED to replace the Ni/Au electrodes. We have been able to engineer defects into graphene. Firstly defects were induced in a controllable way using chemical method and were analyzed using Raman spectroscopy and Transmission Electron Microscopy which revealed a two step mechanism of defect formation in the graphene structure. We have also studied the effect of charged defects which adsorb onto the graphene surface without forming bonds with it. Unlike in literature where charged particles were deposited onto graphene, here the charged nano particles were present dur- ing the growth process in the copper foil. We believe that due to these nano particles, the intensity of D' phonon is greatly enhanced. Such anomalously higher intensity of D' band compared to D band has not been reported before
|
653 |
Síntese de grafenos quimicamente modificados e aplicação em células fotovoltaicas orgânicas / Synthesis of chemically modified graphenes and application in organic photovoltaic cellsSaker Neto, Nicolau, 1989- 26 August 2018 (has links)
Orientador: Ana Flávia Nogueira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T15:49:22Z (GMT). No. of bitstreams: 1
SakerNeto_Nicolau_M.pdf: 15094468 bytes, checksum: d3c20b6e7dbd840a984fe7d8b1b365a8 (MD5)
Previous issue date: 2014 / Resumo: Entre as alternativas promissoras para a produção de energia elétrica de modo econômico e ambientalmente sustentável está o aproveitamento da energia luminosa do Sol pelo efeito fotovoltaico. Células fotovoltaicas orgânicas fazem parte da mais nova geração de células solares, e prometem ser produzidas em larga escala a custo reduzido. Entretanto, células orgânicas atualmente estão limitadas por eficiências comparativamente baixas. O objetivo deste trabalho é introduzir derivados de grafeno em células solares orgânicas poliméricas como aceitador de elétrons e transportadores de cargas na camada absorvedora de luz, em substituição parcial ou total aos atuais materiais mais empregados, derivados de fulerenos C60 e C70. Óxido de grafeno (GO) foi obtido a partir da oxidação de grafite mineral utilizando-se o método de Hummers com modificações. Amostras de grafenos quimicamente modificados (CMGs) foram sintetizadas pela reação direta de dispersões de óxido de grafeno com ácido 2-tiofenoacético (TAA) por uma esterificação de Steglich, ou após um tratamento de óxido de grafeno em meio básico com hidróxido de tetrabutilamônio (TBAH). Os CMGs apresentaram funcionalização bastante limitada, tendo ocorrido principalmente uma desoxigenação dos derivados de grafeno. Ainda assim, os CMGs puderam ser dispersos no solvente usado para a preparação da camada absorvedora de luz, 1,2-diclorobenzeno. Os materiais sintetizados foram aplicados em células poliméricas baseadas no polímero poli(3-hexiltiofeno) (P3HT) e no derivado de fulereno [6,6]-fenil-C71-butanoato de metila (PC71BM), e os parâmetros fotovoltaicos resultantes foram obtidos. As eficiências de conversão fotovoltaicas em células contendo CMGs foram potencialmente limitadas pelo processo de desoxigenação / Abstract: Among the promising alternatives for the economically and environmentally sustainable production of electrical energy is the harnessing of the Sun's luminous energy by the photovoltaic effect. Organic photovoltaic cells are part of the newest generation of solar cells, promising large-scale production at reduced costs. However, organic cells are currently limited by comparatively low efficiencies. The objective of this work is to introduce graphene derivatives in polymer organic solar cells as electron acceptors and charge transporters in the light-absorbing layer, partially or fully replacing the currently most used materials, derivatives of C60 and C70 fullerenes. Graphene oxide (GO) was obtained by the oxidation of mineral graphite using a modified Hummers' method. Samples of chemically modified graphenes (CMGs) were synthesized by the direct reaction of graphene oxide dispersions with 2-thiopheneacetic acid (TAA) via Steglich esterification, or after treatment of graphene oxide in basic medium with tetrabutylammonium hydroxide (TBAH). The CMGs showed very limited functionalization and the main occurrence was a deoxygenation of the graphene derivatives. Still, the CMGs were dispersible in the solvent used for the preparation of the light-absorbing layer, 1,2-dichlorobenzene. The synthesized materials were applied in polymer cells based on the polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C71-butyl methyl ester (PC71BM) and the resulting photovoltaic parameters were obtained. The photovoltaic conversion efficiencies for cells containing CMGs were potentially limited by the deoxygenation process / Mestrado / Quimica Organica / Mestre em Química
|
654 |
Fonctionnalisation chimique du graphène, : vers des matériaux bidimentionnels photo actifs pour la reconnaissance et l'électronique moléculaire / Chemical functionalization of grapheneBares, Hugo 01 December 2015 (has links)
Depuis la découverte des propriétés physiques et électroniques du graphène, un très grand nombre de méthodes visant à produire et modifier chimiquement le graphène ont été développées afin d'étendre et améliorer ses capacités en vue de futures applications. Les travaux réalisés au cours de cette thèse ont portés sur une méthode exfoliation du graphite en phase liquide assistée d'une réaction de cycloaddition réversible. Cette approche repose sur la réaction de Diels-Alder entre le graphite et un diène masqué très réactif, et se révèle être très efficace dans des solvants organiques volatils qui ne permettent pas l'exfoliation directe du graphite. L'introduction de groupements fonctionnels sur le diène a permis de moduler les propriétés de surface de films de graphène, ainsi que de post-fonctionnaliser les feuillets de graphène afin d'apporter une plus-value au matériau. / Since the discovery of the exciting properties of graphene, many techniques to produce and chemically modify graphene have been developed in order to expand and improve its properties in view of future applications. The study presented in this thesis focus on a process for the chemically-assisted exfoliation of graphite based on a reversible cycloaddition reaction. It relies on the Diels-Alder reaction between graphite and highly reactive masked diene, and it is effective even in solvents that are otherwise ineffective for exfoliation of graphite. Furthermore, it is possible to introduce functional groups on the diene, thereby enabling the tuning of the surface properties of graphene, as well as the post-functionalization of graphene sheets.
|
655 |
Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-Graphene Nano-ArchitecturesNiu, Jianbing 12 1900 (has links)
Junctions are the key component for 3D carbon nanotube (CNT)-graphene seamless hybrid nanostructures. Growth mechanism of junctions of vertical CNTs growing from graphene in the presence of iron catalysts was simulated via quantum mechanical molecular dynamics (QM/MD) methods. CNTs growth from graphene with iron catalysts is based on a ‘‘base-growth’’ mechanism, and the junctions were the mixture of C-C and Fe-C covalent bonds. Pure C-C bonded junctions could be obtained by moving the catalyst during CNT growth or etching and annealing after growth. The growth process of 3D CNT-graphene junctions on copper templates with nanoholes was simulated with molecular dynamic (MD) simulation. There are two mechanisms of junction formation: (i) CNT growth over the holes that are smaller than 3 nm, and (ii) CNT growth inside the holes that are larger than 3 nm. The growth process of multi-layer filleted CNT-graphene junctions on the Al2O3 template was also simulated with MD simulation. A simple analytical model is developed to explain that the fillet takes the particular angle (135°). MD calculations show that 135° filleted junction has the largest fracture strength and thermal conductivity at room temperature compared to junctions with 90°,120°, 150°, and 180° fillets. The tensile strengths of the as-grown C–C junctions, as well as the junctions embedded with metal nanoparticles (catalysts), were determined by a QM/MD method. Metal catalysts remaining in the junctions significantly reduce the fracture strength and fracture energy. Moreover, the thermal conductivities of the junctions were also calculated by MD method. Metal catalysts remaining in the junctions considerably lower the thermal conductivity of the 3D junctions.
|
656 |
Vodíkem modifikované grafenové struktury pro polem řízené tranzistory / The hydrogen modification of the graphene structures for field effect transistorsKurfürstová, Markéta January 2016 (has links)
This master’s thesis is focused on the subject of graphene modified with atomic hydrogen and its electronic transport properties. Structural and electronic properties of graphene and hydrogenated graphene are compared in the theoretical part of the thesis. The Raman spectroscopy technique is described, including characterization of typical Raman spectra of both unmodified and modified graphene. Samples used during experimental part of the thesis are prepared via laser and electron lithography, and are set to be measured in a vacuum chamber. Subsequently, electronic transport properties are measured before and after hydrogen modification of graphene. Finally, hydrogenated graphene is irradiated using electron beam and changes in its structure are analyzed with Raman spectroscopy techniques.
|
657 |
Synthesis and characterization of graphene and carbon nanotubes for removal of heavy metals from waterThema, Force Tefo 06 1900 (has links)
M-Tech. (Department of Chemistry, Faculty of Applied and Computer Science), Vaal University of Technology. / The commercial flake graphite was prepared into functionalized graphite oxide (GO) by adopted chemical treatment. After the exfoliation and intercalation of graphite into functionalized graphene oxide that formed stable colloidal dispersion in polar aprotic solvent, the reduction process was undertaken by continuous stirring with hydrazine hydrate in a microwave at 35 oC for two hours. The reduced material was characterized by X-ray diffraction (XRD), attenuated total reflectance (ATR) FT-IR, Ultra-violet visible (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman microscopy and magnified optical microscopy that confirm the oxidation of graphite and reduction of graphene oxide into graphene sheets.
Carbon nanomaterials were synthesized from Co-Sn, Co-Sr and Co-Zn as catalysts supported on Al2O3, CaCO3 and MgO. The as-prepared nanomaterials were characterized by thermogravimetric and derivative thermogravimetric analysis (TGA & DTA), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) and the transmission electron microscopy. The intensity ratios (ID/IG) of the D- and G- bands were found to be the same that is averagely at 0.83. The TGA & DTA curves have shown Co-Sn/Al had significant weight loss, Co-Sr/Mg weight loss and decomposition, Co-Sr/Al decomposition and Co-Zn/Mg weight loss. However these weight losses were not significant. The EDS analysis showed all elements which took part in the reaction confirming the success of each synthesis. The SEM images show carbon nanotubes only on samples that have been synthesized on MgO as confirmed by TEM images. Finally the XRD showed some characteristic peaks at desired peaks except that they were other peaks attributed to impurities and armophous carbon. It was also observed that Co-Sn/Ca and Co-Sn/Mg XRD curves showed broad peaks at theta = 24.3o & 42.6o and theta = 23.9o & 43.1o respectively which are lattice structure characteristic peaks.
|
658 |
Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in OxidesAdewole, Murthada Oladele 12 1900 (has links)
Understanding the fundamental physics in light absorption and perfect light absorption is vital for device applications in detector, sensor, solar energy harvesting and imaging. In this research study, a large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processable hydrophilic mono-layer graphene oxide. In contrast to the optical properties of noble metals, which cannot be tuned or changed, the permittivity of transparent metal oxides, such as Al-doped ZnO and indium tin oxide, are tunable. Their optical properties can be adjusted via doping or tuned electrically through carrier accumulation and depletion, providing great advantages for designing tunable photonic devices or realizing perfect absorption. A significant shift of Raman frequency up to 360 cm-1 was observed from graphene in the fabricated device reported in this work. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The reflection change was explained by the Fermi level change in graphene. The sustainability of tuned optical property in graphene can lead to a design of device with less power consumption.
|
659 |
Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat RemovalAlmahmoud, Khaled Hasan Musa 12 1900 (has links)
Pillared-graphene structure (PGS) is a novel three-dimensional structure consists of parallel graphene sheets that are separated by carbon nanotube (CNT) pillars that is proposed for efficient thermal management of electronics. For microscale simulations, finite element analyses were carried out by imposing a heat flux on several PGS configurations using a Gaussian pulse. The temperature gradient and distribution in the structures was evaluated to determine the optimum design for heat transfer. The microscale simulations also included conducting a mesh-independent study to determine the optimal mesh element size and shape. For nanoscale simulations, Scienomics MAPS software (Materials And Processes Simulator) along with LAMMPS (Large-scale Atomic/ Molecular Massively Parallel Simulator) were used to calculate the thermal conductivity of different configurations and sizes of PGS. The first part of this research included investigating PGS when purely made of carbon atoms using non-equilibrium molecular dynamics (NEMD). The second part included investigating the structure when supported by a copper foil (or substrate); mimicking production of PGS on copper. The micro- and nano-scale simulations show that PGS has a great potential to manage heat in micro and nanoelectronics. The fact that PGS is highly tunable makes it a great candidate for thermal management applications. The simulations were successfully conducted and the thermal behavior of PGS at the nanoscale was characterized while accounting for phonon scattering the graphene/CNT junction as well as when PGS is supported by a copper substrate.
|
660 |
Evaporative Vapor Deposition for Depositing 2D MaterialsGleason, Kevin 01 January 2015 (has links)
The development of a new deposition technique called evaporative vapor deposition (EVD) is reported, allowing deposition and formation of atomically-thin, large area materials on arbitrary substrates. This work focuses on the highly popular monolayer material – graphene oxide (GO). A droplet of a GO solution is formed on a heated polymer substrate, and maintained at steady-state evaporation (all droplet parameters are held constant over time). The polymer substrate is laser patterned to control the droplet's contact line dynamics and the droplet's contact angle is maintained using a computer controlled syringe pump. A room temperature silicon wafer is translated through the vapor field of the evaporating GO droplet using a computer controlled translation stage. Dropwise condensation formed on the silicon wafer is monitored using both optical and infrared cameras. The condensation rate is measured to be ~50pL/mm2?s – 500 pL/mm2?s and dependent on the substrate translation speed and height difference between the droplet's apex and substrate surface. Nano-sized GO flakes carried through the vapor phase are captured in the condensate, depositing on the translating wafer. Deposition rate is dependent on the stability of the solution and droplet condensate size. Characterization with Raman spectroscopy show expected shifts for graphene/graphite. The presented EVD technique is promising toward formation of large scale 2D materials with applications to developing new technologies.
|
Page generated in 0.0797 seconds