Spelling suggestions: "subject:"groupe métapoétique"" "subject:"groupe métaplasique""
1 |
Le lemme fondamental métaplectique de Jacquet et Mao / The metaplectic fundamental lemma of Jacquet and MaoDo, Viet Cuong 10 May 2012 (has links)
On démontre dans le cas de caractéristique positive un lemme fondamental conjecturé par Jacquet et Mao pour le groupe métaplectique. On utilise les arguments de Bao Châu Ngô pour le lemme fondamental de Jacquet-Ye (B.C. Ngo, 1999) et une étude géométrique de l'extension métaplectique / We prove in the case of positive characteristic a fundamental lemma conjectured by Jacquet and Mao for the metaplectic group. We use the arguments of Bao Châu Ngô for Jacquet-Mao?s fundamental lemma (B.C. Ngo, 1999) and a geometric study of the metaplectic group
|
2 |
Le lemme fondamental métaplectique de Jacquet et Mao.Do, Viet Cuong 10 May 2012 (has links) (PDF)
On démontre dans le cas de caractéristique positive un lemme fondamental conjecturé par Jacquet et Mao pour le groupe métaplectique. On utilise les arguments de B.C. Ngo pour le lemme fondamental de Jacquet-Ye (B.C. Ngo, 1999) [[6]] et une étude géométrique de lʼextension métaplectique.
|
3 |
Vers une formule des traces stable pour le groupe métaplectiqueLi, Wen-Wei 05 July 2011 (has links) (PDF)
Cette thèse se compose de deux parties, quatre chapitres. Dans le Chapitre I, on établit un formalisme d'endoscopie du groupe métaplectique Mp(2n). On prouve le transfert d'intégrales orbitales et le lemme fondamental. Dans le Chapitre II on énonce et prouve le lemme fondamental pondéré à la Arthur pour le groupe métaplectique sous l'hypothèse du lemme fondamental pondéré non standard. Dans le Chapitre III, on se propose d'étudier la formule des traces d'Arthur-Selberg pour une classe assez générale de revêtements des groupes réductifs connexes, y compris Mp(2n). On établit la formule des traces grossière et le développement fin géométrique pour ces revêtements. Dans le Chapitre IV, on aborde le côté spectral de la formule des traces en étudiant des résultats de l'analyse harmonique locale. En particulier, on établit la formule des traces locale invariante pour les revêtements.
|
4 |
Représentations l-modulaires des groupes p-adiques : décomposition en blocs de la catégorie des représentations lisses de GL(m,D), groupe métaplectique et représentation de Weil / l-modular representations of p-adic groups : block decomposition of the category of smooth representations of GL(m;D), metaplectic group and Weil representationChinello, Gianmarco 07 September 2015 (has links)
Cette thèse traite deux problèmes concernant la théorie des représentations `-modulairesd’un groupe p-adique. Soit F un corps local non archimédien de caractéristique résiduelle pdifférente de `. Dans la première partie, on étudie la décomposition en blocs de la catégoriedes représentations lisses `-modulaires de GL(n; F) et de ses formes intérieures. On veutramener la description d’un bloc de niveau positif à celle d’un bloc de niveau 0 (d’un autregroupe du même type) en cherchant des équivalences de catégories. En utilisant la théoriedes types de Bushnell-Kutzko dans le cas modulaire et un théorème de la théorie descatégories, on se ramene à trouver un isomorphisme entre deux algèbres d’entrelacement.La preuve de l’existence d’un tel isomorphisme n’est pas complète car elle repose sur uneconjecture qu’on énonce et qui est prouvée pour plusieurs cas. Dans une deuxième partieon généralise la construction du groupe métaplectique et de la représentation de Weil dansle cas des représentations sur un anneau intègre. On construit une extension centrale dugroupe symplectique sur F par le groupe multiplicatif d’un anneau intègre et on prouvequ’il satisfait les mêmes propriétés que dans le cas des représentations complexes. / This thesis focuses on two problems on `-modular representation theory of p-adic groups.Let F be a non-archimedean local field of residue characteristic p different from `. In thefirst part, we study block decomposition of the category of smooth modular representationsof GL(n; F) and its inner forms.We want to reduce the description of a positive-levelblock to the description of a 0-level block (of a similar group) seeking equivalences of categories.Using the type theory of Bushnell-Kutzko in the modular case and a theorem ofcategory theory, we reduce the problem to find an isomorphism between two intertwiningalgebras. The proof of the existence of such an isomorphism is not complete because itrelies on a conjecture that we state and we prove for several cases. In the second part wegeneralize the construction of metaplectic group and Weil representation in the case ofrepresentations over un integral domain. We define a central extension of the symplecticgroup over F by the multiplicative group of an integral domain. We prove that it satisfiesthe same properties as in the complex case.
|
5 |
Certains aspects du programme de Langlands géométriqueLysenko, Sergey 14 June 2006 (has links) (PDF)
Ce rapport présente mes travaux dans la direction du programme de Langlands géométrique. Ceux-ci abordent plusieurs aspects de ce thème: méthode de Rankin-Selberg locale et globale, les foncteurs de Whittaker et de Bessel pour GSp_4, catégorification et la version géométrique de la multiplicité un pour les models de Bessel, les faisceaux Théta et programme de Langlands géométrique pour le groupe métaplectique, correspondance de Howe géométrique.
|
Page generated in 0.0777 seconds