Spelling suggestions: "subject:"lla formule dess traces"" "subject:"lla formule deus traces""
1 |
Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg / The Newton stratification of Shimura varieties and the Arthur-Selberg trace formulaKret, Arno 10 December 2012 (has links)
Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien. / We study the Newton stratification of Shimura varieties of PEL type, at the places of good reduction. We consider the basic stratum of certain simple Shimura varieties of PEL type at a place of good reduction. Under simplifying hypotheses we prove a relation between the l-adic cohomology of this basic stratum and the cohomology of the complex Shimura variety. In particular we obtain explicit formulas for the number of points in the basic stratum over finite fields, in terms of automorphic representations. We obtain our results using the trace formula and truncation of the formula of Kottwitz for the number of points on a Shimura variety over a finite field. We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-type of type (A) is non-empty at a prime of good reduction. This result is already established by Viehmann-Wedhorn; we give a new proof of this theorem. We consider the basic stratum of Shimura varieties associated to certain unitary groups in cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke operators acting on the basic stratum. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain particular cuspidal automorphic representations on Gl_n. The Ramanujan conjecture turns out to be known for these automorphic representations, and therefore we obtain very sharp estimates on the rate of convergence. We prove that any connected reductive group G over a non-Archimedean local field has a cuspidal representation. Together with Erez Lapid we compute the Jacquet module of a Ladder representation at any standard parabolic subgroup of the general linear group over a non-Archimedean local field.
|
2 |
Vers une formule des traces stable pour le groupe métaplectiqueLi, Wen-Wei 05 July 2011 (has links) (PDF)
Cette thèse se compose de deux parties, quatre chapitres. Dans le Chapitre I, on établit un formalisme d'endoscopie du groupe métaplectique Mp(2n). On prouve le transfert d'intégrales orbitales et le lemme fondamental. Dans le Chapitre II on énonce et prouve le lemme fondamental pondéré à la Arthur pour le groupe métaplectique sous l'hypothèse du lemme fondamental pondéré non standard. Dans le Chapitre III, on se propose d'étudier la formule des traces d'Arthur-Selberg pour une classe assez générale de revêtements des groupes réductifs connexes, y compris Mp(2n). On établit la formule des traces grossière et le développement fin géométrique pour ces revêtements. Dans le Chapitre IV, on aborde le côté spectral de la formule des traces en étudiant des résultats de l'analyse harmonique locale. En particulier, on établit la formule des traces locale invariante pour les revêtements.
|
3 |
Stratification de Newton des variétés de Shimura et formule des traces d'Arthur-SelbergKret, Arno 10 December 2012 (has links) (PDF)
Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien.
|
4 |
Deux applications arithmétiques des travaux d'ArthurTaïbi, Olivier 19 September 2014 (has links) (PDF)
Nous proposons deux applications à l'arithmétique des travaux récents de James Arthur sur la classification endoscopique du spectre discret des groupes symplectiques et orthogonaux. La première consiste à ôter une hypothèse d'irréductibilité dans un résultat de Richard Taylor décrivant l'image des conjugaisons complexes par les représentations galoisiennes p-adiques associées aux représentations automorphes cuspidales algébriques régulières essentiellement autoduales pour le groupe GL_{2n+1} sur un corps totalement réel. Nous l'étendons également au cas de GL_{2n}, sous une hypothèse de parité du caractère multiplicatif. Nous utilisons un résultat de déformation p-adique. Plus précisément, nous montrons l'abondance de points correspondant à des représentations galoisiennes (quasi-)irréductibles sur les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classification d'Arthur est utilisée à la fois pour définir les représentations galoisiennes et pour transférer des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes linéaires aux groupes symplectiques et orthogonaux. La deuxième application concerne le calcul explicite de dimensions d'espaces de formes automorphes ou modulaires. Notre contribution principale est un algorithme calculant les intégrales orbitales aux éléments de torsion des groupes classiques p-adiques non ramifiés, pour l'unité de l'algèbre de Hecke non ramifiée. Cela permet le calcul du côté géométrique de la formule des traces d'Arthur, et donc celui de la caractéristique d'Euler du spectre discret en niveau un. La classification d'Arthur permet l'analyse fine de cette caractéristique d'Euler, jusqu'à en déduire les dimensions des espaces de formes automorphes. De là il n'est pas difficile d'apporter une réponse à un problème plus classique: déterminer les dimensions des espaces de formes modulaires de Siegel à valeurs vectorielles.
|
5 |
Sur la factorisation des fonctions zêta des hypersurfaces de DworkGoutet, Philippe 03 December 2009 (has links) (PDF)
Cette thèse s'intéresse à la factorisation des fonctions zêta des hypersurfaces de Dwork. Candelas, de la Ossa et Rodriguez-Villegas ont mis en évidence, dans le cas de la quintique, un facteur provenant de la symétrie miroir et deux facteurs provenant de courbes de type hypergéométrique. Wan a établit le lien avec la symétrie miroir dans le cas général, mais les facteurs complémentaires n'ont pas été étudiés avec le même niveau de détail que dans le cas de la quintique, et c'est sur eux que se concentre cette thèse. Après un premier chapitre de rappels sur les hypersurfaces de Dwork, on détermine, dans le chapitre 2, une factorisation explicite des fonctions zêta en terme de facteurs provenant d'hypersurfaces de type hypergéométrique. Dans le chapitre 3, on déduit une factorisation à partir d'une décomposition isotypique de la cohomologie des hypersurfaces de Dwork. Finalement, dans le chapitre 4, on relie les deux factorisations précédentes.
|
6 |
Laplacien hypoelliptique et formule des traces tordue / Hypoelliptic Laplacian and twisted trace formulaLiu, Bingxiao 15 June 2018 (has links)
Dans cette thèse, on donne une formule géométrique explicite pour les intégrales orbitales semisimples tordues du noyau de la chaleur sur un espace symétrique, en utilisant la méthode du laplacien hypoelliptique développée par Bismut. On montre que nos résultats sont compatibles avec les résultats classiques de la théorie de l'indice équivariant local sur les espaces localement symétriques compacts. On utilise notre formule explicite pour évaluer le terme dominant dans l'asymptotique quand d -> + ∞ de la torsion analytique équivariante de Ray-Singer associée à une famille de fibrés vectoriels plats Fd sur un espace localement symétrique compact. On montre que le terme dominant peut être calculé à l'aide de W-invariants au sens de Bismut-Ma-Zhang. / In this thesis, we give an explicit geometric formula for the twisted semisimple orbital integrals associated with the heat kernel on symmetric spaces. For that purpose, we use the method of the hypoelliptic Laplacian developed by Bismut. We show that our results are compatible with classical results in local equivariant index theory. We also use this formula to evaluate the leading term of the asymptotics as d -> + ∞ of the equivariant Ray-Singer analytic torsion associated with a sequence of flat vector bundles Fd on a compact locally symmetric space. We show that the leading term can be evaluated in terms of the W-invariants constructed by Bismut-Ma-Zhang.
|
7 |
Géométrisation du côté orbital de la formule des traces / Geometrisation of the orbital side of the Trace FormulaBouthier, Alexis 11 April 2014 (has links)
Ce travail de thèse a pour but de construire et d’étudier une fibration de Hitchin pour les groupes qui apparaît naturellement lorsque l’on essaie de géométriser la formule des traces. On commence par construire une telle fibration en utilisant le semi-groupe de Vinberg. Sur ce semi-groupe de Vinberg, on montre qu’il existe un certain morphisme « polynôme caractéristique » muni d’une section naturelle, de même que dans le cas des algèbres de Lie. On montre également que l’on peut construire un centralisateur régulier au-dessus de cette base des polynômes caractéristiques qui est un schéma en groupes commutatif et lisse.On s’intéresse alors à des variantes pour les groupes des fibres de Springer affines pour lesquelles on remarque que l’introduction du semi-groupe de Vinberg permet d’obtenir une condition d’intégralité analogue à celle de Kazhdan-Lusztig. Ces fibres de Springer affines sont des analogues locaux des fibres de Hitchin. On obtient alors une formule de dimension pour ces fibres.Dans un troisième temps, on s’intéresse à l’aspect global de cette fibration pour laquelle on donne une interprétation modulaire et sur laquelle on construit l’action d’un champ de Picard, issu du centralisateur régulier. L’espace total de cette fibration étant en général singulier, nous étudions son complexe d’intersection. Cet espace de Hitchin s’obtient naturellement comme l’intersection du champ de Hecke avec la diagonale du champ des G-torseurs et on démontre que sur un ouvert suffisamment gros de la base de Hitchin, le complexe d’intersection de l’espace de Hitchin s’obtient par restriction de celui du champ de Hecke corrrespondant.Enfin, dans la dernière partie de cette thèse, on établit un théorème du support dans le cas où l’espace total est singulier analogue à celui de Ngô et l’on démontre que, dans le cas de la fibration de Hitchin, les supports qui interviennent sont reliés aux strates endoscopiques. / This main goal of this work is to construct and study the properties of Hitchin fibration for groups which appears naturally when we try to geometrize the trace formula. We begin by constructing this fibration using the Vinberg’s semigroup. On this semigroup, we show that there exists a characteristic polynomial morphism equipped with a natural section, analog at the Kostant’s one in the case of Lie algebras. We also show that there exists on the base of characteristic polynomials a regular centralizer scheme, which is a smooth commutative group scheme.Then, we are interested in some variant of affine Springer fibers, for which we see that the Vinberg’s semigroup appears naturally to obtain an integrality condition analog to Kazhdan-Lusztig’s one. These affine Springer fibers are local incarnation of Hitchin fibers.In a third time, we go back to the global case and give a modular interpretation of this new Hitchin fibration on which we construct an action of a Picard stack, coming from the regular centralizer.The total space of this fibration, even on the generically regular semisimple locus will be singular and we want to understand his intersection complex. This space can be obtained as the intersection of the Hecke stack with the diagonal of the stack of G-bundles and we show that on a sufficiently big open subset of the Hitchin base, the intersection complex of the Hitchin’s space is the restriction of the corresponding intersection complex on the Hecke stack.Finally, in the last part of this work, we establish a support theorem in the case of a singular total space, generalizing Ngo’s theorem et we show that in the case of Hitchin fibration, the supports that appear are related to the endoscopic strata.
|
8 |
Points entiers et rationnels sur des courbes et variétés modulaires de dimension supérieure / Integral and rational points on modular curves and varietiesLe Fourn, Samuel 20 November 2015 (has links)
Cette thèse porte sur l'étude des points entiers et rationnels de certaines courbes et variétés modulaires. Après une brève introduction décrivant les motivations et le cadre de ce genre d'études ainsi que les résultats principaux de la thèse, le manuscrit se divise en trois parties. Le premier chapitre s'intéresse aux Q-courbes, et aux morphismes Gal(Q/Q) -> PGL2(Fp) qu'on peut leur associer pour tout p premier. Nous montrons que sous de bonnes hypothèses, pour p assez grand par rapport au discriminant du corps de définition de la Q-courbe, ce morphisme est surjectif, ce qui résout un cas particulier du problème d'uniformité de Serre (toujours ouvert en général). Les outils principaux du chapitre sont la méthode de Mazur (basée ici sur des résultats d'Ellenberg), la méthode de Runge et des théorèmes d'isogénie, suivant la structure de preuve de Bilu et Parent. Le second chapitre consiste en des estimations analytiques de sommes pondérées de valeurs de fonctions L de formes modulaires, dans l'esprit de techniques développées par Duke et Ellenberg. La motivation de départ d'un tel résultat est l'application de la méthode de Mazur dans le premier chapitre. Le troisième chapitre est consacré à la recherche de généralisations de la méthode de Runge pour des variétés de dimension supérieure. Nous y redémontrons un résultat de Levin inspiré de cette méthode, avant d'en prouver une forme assouplie dite "de Runge tubulaire", plus largement applicable. Dans l'optique de recherche de points entiers de variétés modulaires, nous en donnons enfin un exemple d'utilisation à la réduction d'une surface abélienne en produit de courbes elliptiques. / This thesis concerns the study of integral and rational points on some modular curves and varieties. After a brief introduction which describes the motivation and the setting of this topic as well as the main results of this thesis, the manuscript follows a threefold development. The first chapter focuses on Q-curves, and on the morphisms Gal(Q/Q) -> PGL2(Fp) that we can build with a Q-curve for every prime p. We prove that, under good hypotheses, for p large enough with respect to the discriminant of the definition field of the Q-curve, such a morphism is surjective, which solves a particular case of Serre's uniformity problem (still open in general). The main tools of the chapter are Mazur's method (based here on results of Ellenberg), Runge's method, and isogeny theorems, following the strategy of Bilu and Parent. The second chapter covers analytic estimates of weighted sums of L-function values of modular forms, in the fashion of techniques designed by Duke and Ellenberg. The initial goal of such a result is the application of Mazur's method in the first chapter. The third chapter is devoted to the search for generalisations of Runge's method for higherdimensional varieties. Here we prove anew a result of Levin inspired by this method, before proving an enhanced version called "tubular Runge", more generally applicable. In the perspective of studying integral points of modular varieties, we finally give an example of application of this theorem to the reduction of an abelian surface in a product of elliptic curves.
|
Page generated in 0.082 seconds