Spelling suggestions: "subject:"formule dde trace"" "subject:"formule dee trace""
1 |
Le lemme fondamental métaplectique de Jacquet et Mao.Do, Viet Cuong 10 May 2012 (has links) (PDF)
On démontre dans le cas de caractéristique positive un lemme fondamental conjecturé par Jacquet et Mao pour le groupe métaplectique. On utilise les arguments de B.C. Ngo pour le lemme fondamental de Jacquet-Ye (B.C. Ngo, 1999) [[6]] et une étude géométrique de lʼextension métaplectique.
|
2 |
Distributions spectrales pour des operateurs perturbesBouclet, Jean-Marc 22 December 2000 (has links) (PDF)
On decrit un procede de regularisation de la theorie de Birman-Krein pour des perturbations a longue portee du Laplacien. Si les coefficients de la perturbation ne sont plus integrables, en particulier L^2, on etend un resultat du a Koplienko qui prouve l'existence d'une phase de diffusion qui regularise la phase de diffusion usuelle de Birman-Krein. On donnne diverses asymptotiques semi-classiques de cette phase regularisees ainsi que des liens avec les matrices de diffusions et des determinants de Fredholm. Puis, on applique ces resultats a la demonstration d'une formule de trace du type "formule de Levinson".
|
3 |
Contribution d'orbites périodiques diffractives à la formule de traceHILLAIRET, Luc 24 June 2002 (has links) (PDF)
La formule de trace est un outil privilégié pour l'étude du problème spectral inverse puisqu'elle établit, sur une variété riemannienne compacte, une relation entre le spectre du laplacien et les longueurs des géodésiques périodiques. Cette thèse étend ce type de formule dans deux situations présentant des singularités ponctuelles. Dans ces deux cas, on commence par étudier l'équation des ondes et par établir la propagation des singularités associée. Sur une variété $M$ de dimension $3$, on place un potentiel Dirac en un point $p$. Cela revient à considérer une extension autoadjointe du laplacien, défini sur ${\cal C}^\infty( M\backslash \{p\} )$, différente du laplacien riemannien de $M.$ Le propagateur de l'équation des ondes associée est construit en faisant apparaître des diffractions successives au point $p$, ce qui donne alors la propagation des singularités. La formule de trace en découle~; on montre notamment que les courbes obtenues en suivant successivement un ou plusieurs lacets géodésiques joignant $p$ à $p$ donnent une contribution dont on calcule la partie principale. Sur une surface euclidienne à singularités coniques, il faut commencer par étendre la notion de géodésique en admettant le passage par les points coniques. Au voisinage d'une géodésique $g$, la géométrie locale de l'ensemble des géodésiques (éventuellement) diffractives dépend d'un nombre (appelé {\it complexité classique\/}) que l'on relie à la suite des angles de diffractions le long de $g.$ On montre alors que la propagation des singularités se fait en suivant ces géodésiques généralisées. La trace fait alors apparaître la contribution de géodésiques périodiques diffractives dont on calcule la partie principale sous certaines hypothèses.
|
4 |
Surfaces de Riemann compactes et formule de trace d'EichlerDe Benedictis, Sonia 01 1900 (has links)
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes. / In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces.
Two principal subjects will be treated.
First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism.
Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials.
We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem.
Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
|
5 |
Surfaces de Riemann compactes et formule de trace d'EichlerDe Benedictis, Sonia 01 1900 (has links)
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes. / In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces.
Two principal subjects will be treated.
First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism.
Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials.
We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem.
Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
|
6 |
Escape rate theory for noisy dynamical systems / Taux d'échappement dans les systèmes dynamiques bruitésDemaeyer, Jonathan 23 August 2013 (has links)
The escape of trajectories is a ubiquitous phenomenon in open dynamical systems and stochastic processes. If escape occurs repetitively for a statistical ensemble of trajectories, the population of remaining trajectories often undergoes an exponential decay characterised by the so-called escape rate. Its inverse defines the lifetime of the decaying state, which represents an intrinsic property of the system. This paradigm is fundamental to nucleation theory and reaction-rate theory in chemistry, physics, and biology.<p><p>In many circumstances, escape is activated by the presence of noise, which may be of internal or external origin. This is the case for thermally activated escape over a potential energy barrier and, more generally, for noise-induced escape in continuous-time or discrete-time dynamics. <p><p>In the weak-noise limit, the escape rate is often observed to decrease exponentially with the inverse of the noise amplitude, a behaviour which is given by the van't Hoff-Arrhenius law of chemical kinetics. In particular, the two important quantities to determine in this case are the exponential dependence (the ``activation energy') and its prefactor.<p><p>The purpose of the present thesis is to develop an analytical method to determine these two quantities. We consider in particular one-dimensional continuous and discrete-time systems perturbed by Gaussian white noise and we focus on the escape from the basin of attraction of an attracting fixed point.<p><p>In both classes of systems, using path-integral methods, a formula is deduced for the noise-induced escape rate from the attracting fixed point across an unstable fixed point, which forms the boundary of the basin of attraction. The calculation starts from the trace formula for the eigenvalues of the operator ruling the time evolution of the probability density in noisy maps. The escape rate is determined by the loop formed by two heteroclinic orbits connecting back and forth the two fixed points in a two-dimensional auxiliary deterministic dynamical system. The escape rate is obtained, including the expression of the prefactor to van't Hoff-Arrhenius exponential factor./L'échappement des trajectoires est un phénomène omniprésent dans les systèmes dynamiques ouverts et les processus stochastiques. Si l'échappement se produit de façon répétitive pour un ensemble statistique de trajectoires, la population des trajectoires restantes subit souvent une décroissance exponentielle caractérisée par le taux d'échappement. L'inverse du taux d'échappement définit alors la durée de vie de l'état transitoire associé, ce qui représente une propriété intrinsèque du système. Ce paradigme est fondamental pour la théorie de la nucléation et, de manière générale, pour la théorie des taux de transitions en chimie, en physique et en biologie.<p><p>Dans de nombreux cas, l'échappement est induit par la présence de bruit, qui peut être d'origine interne ou externe. Ceci concerne en particulier l'échappement activé thermiquement à travers une barrière d'énergie potentielle, et plus généralement, l'échappement dû au bruit dans les systèmes dynamiques à temps continu ou à temps discret.<p><p>Dans la limite de faible bruit, on observe souvent une décroissance exponentielle du taux d'échappement en fonction de l'inverse de l'amplitude du bruit, un comportement qui est régi par la loi de van't Hoff-Arrhenius de la cinétique chimique. En particulier, les deux quantités importantes de cette loi sont le coefficient de la dépendance exponentielle (c'est-à-dire ``l'énergie d'activation') et son préfacteur.<p><p>L'objectif de cette thèse est de développer une théorie analytique pour déterminer ces deux quantités. La théorie que nous présentons concerne les systèmes unidimensionnels à temps continu ou discret perturbés par un bruit blanc gaussien et nous considérons le problème de l'échappement du bassin d'attraction d'un point fixe attractif. Pour s'échapper, les trajectoires du système bruité initialement contenues dans ce bassin d'attraction doivent alors traverser un point fixe instable qui forme la limite du bassin.<p><p>Dans le présent travail, et pour les deux types de systèmes, une formule est dérivée pour le taux d'échappement du point fixe attractif en utilisant des méthodes d'intégrales de chemin. Le calcul utilise la formule de trace pour les valeurs propres de l'opérateur gouvernant l'évolution temporelle de la densité de probabilité dans le système bruité. Le taux d'échappement est déterminé en considérant la boucle formée par deux orbites hétéroclines liant dans les deux sens les deux points fixes dans un système dynamique auxiliaire symplectique et bidimensionnel. On obtient alors le taux d'échappement, comprenant l'expression du préfacteur de l'exponentielle de la loi de van't Hoff-Arrhenius. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0805 seconds