• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 23
  • 6
  • 2
  • 1
  • Tagged with
  • 77
  • 77
  • 43
  • 39
  • 29
  • 25
  • 21
  • 21
  • 21
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Spin-related transport phenomena in HgTe-based quantum well structures / Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen

König, Markus January 2007 (has links) (PDF)
Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. / Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten.
52

Real-space renormalization group approach to the integer quantum Hall effect: Ortsraum-Renormierungsgruppenansatz für den ganzzahligen Quanten-Hall-Effekt

Cain, Philipp 14 July 2004 (has links)
Gegenstand dieser Dissertation ist die numerische Untersuchung des ganzzahligen Quanten-Hall-Effekts (QHE). Im Mittelpunkt steht dabei der Übergang zwischen den charakteristischen Plateaus des Hall-Leitwertes. Die Beschreibung des Übergangs erfolgt im Rahmen des Chalker-Coddington-Netzwerkmodells, wobei zusätzlich ein Ortsraum-Renormierungsgruppenansatz (RG) angewendet wird um hohe Systemgrößen zu erreichen. Diese Vorgehensweise erlaubt eine einfache, aber statistisch sehr gute Beschreibung der starken charakteristischen Fluktuationen am Übergang im Rahmen von Verteilungsfunktionen. Die RG Resultate werden zunächst mit Ergebnissen anderer Methoden verglichen. Es werden die kritische Verteilungsfunktion des Leitwertes am QHE Übergang und deren Momente ermittelt. Aus dem Verhalten in der Nähe des Übergangs läßt sich der Wert des kritischen Exponenten der Lokalisierungslänge ableiten. Diese Ergebnisse stimmen sehr gut mit exakten numerischen Simulationen überein. Die RG Methode wird daraufhin zur Berechnung der Energieniveaustatistik (ENS) erweitert. Die kritische ENS der normierten Abstände von benachbarten Energieniveaus und der kritische Exponent werden bestimmt. Danach wird der Einfluß von makroskopischen Inhomogenitäten in Form von langreichweitiger korrelierter Unordnung auf die kritischen Eigenschaften des QHE Übergangs untersucht. Hierbei zeigt sich ein Anwachsen des Exponenten mit zunehmender Reichweite und Stärke der Unordnung. Abschließend wird die RG zur Berechnung des Hall-Widerstandes eingesetzt. Die kritische Verteilung des Hall-Widerstandes läßt auf sehr starke Fluktuationen am Übergang schließen. Abseits des Übergangs in Richtung Isolator wird divergentes Verhalten des Hall-Widerstandes gefunden. Zusammenfassend demonstrieren alle Ergebnisse die Robustheit universeller Eigenschaften am QHE Übergang.
53

Direct growth and characterization of graphene layers on insulating substrates

Schumann, Timo 13 October 2014 (has links)
In dieser Arbeit wird das direkte Wachstum von Graphen auf isolierenden Substraten untersucht. Die hergestellten Schichten werden mittels verschiedener Methoden untersucht, unter anderem Rasterkraftmikroskopie, Ramanspektroskopie und Synchrotron-Röontgendiffraktometrie. Zwei verschiedene Synthetisierungsmethoden kommen hierbei zur Anwendung. Zuerst wird das Wachstum von epitaktischem Graphen mittels thermischer Zersetzung von hexagonalen Siliciumcarbid-Oberflächen vorgestellt. Ein Fokus der Untersuchungen liegt hierbei auf den Stufen, welche auf der Substratoberfläche vorhanden sind. Wir zeigen, dass die initiale Oberflächenkonfiguration keinen unmittelbaren Einfluss auf den Wachstumsprozess und die entstehenden Graphenschichten besitzt. Die Stufen beeinflussen jedoch die elektrischen Transporteigenschaften im Quanten-Hall-Regime. Dieses Phänomen wird genauer untersucht und durch ein schematisches Modell erklärt. Die Struktur der epitaktischen Graphenschichten wird analysiert, inklusive präzieser Messungen der Gitterkonstanten. Anschließend werden Untersuchungen über das Wachstum von EG auf Kohlenstoff-terminierten SiC-Oberflächen vorgestellt und diskutiert. Als zweite Herstellungsmethode wird Molekularstrahlepitaxie verwendet. Wir demonstrieren Wachstum von Graphen auf zwei verschiedenen Substraten. Die Abhängigkeit der Morphologie und der strukturellen Qualität der Proben von den Wachstumsbedingungen wird untersucht. Wir zeigen, dass die Graphenschichten aus nanokristallinen Domänen bestehen, deren laterale Abmessungen 30 nm überschreiten. Die strukturelle Qualität der Graphenschichten nimmt mit zunehmender Substrattemperatur zu. Schließlich wird gezeigt, dass die Graphendomänen eine epitaktische Beziehung zu ihrem jeweiligen Substrat besitzen und dass eine beobachtete Reduzierung der Gitterparameter durch die Existenz von Punktdefekten zu erklären ist. / This thesis presents an investigation of graphene growth directly on insulating substrates. The graphene films are characterized using different techniques, including atomic force microscopy, Raman spectroscopy, and grazing-incidence X-ray diffraction. These allowed insight into the morphological, structural, and electrical properties of the graphene layers. Two different preparation methods were employed. The growth of epitaxial graphene on SiC(0001) by surface Si depletion is presented first. An important parameter in this type of growth is the surface steps present on the SiC substrate. We show that the initial SiC surface step configuration has little influence on the growth process, and the resulting graphene layers. The surface steps do impact the magneto-transport properties of graphene on SiC, which is investigated closely and can be explained by a schematic model. The structure of the epitaxial graphene layers is also analyzed, including precise measurements of the lattice constants. Additionally, the growth of graphene on the C-face of SiC is investigated. Graphene films were also synthesized directly on insulating substrates using molecular beam epitaxy. With the accurate deposition rates and sub-monolayer thickness control, MBE allows for fundamental studies of the growth process. We demonstrate graphene growth on two different substrates. The dependence of the morphology and structural quality of the graphene samples on the growth parameters is evaluated and discussed. We find that graphene films grown by MBE consist of nanocrystalline graphene domains with lateral dimensions exceeding 30 nm. The structural quality of the graphene layers improves with increasing substrate temperature during growth. Finally, we show that the nanocrystalline domains of the graphene films possess an epitaxial relation to either substrate, and attribute an observed contraction of the graphene lattice constant to the presence of point-defects within the film.
54

Elektronische Transporteigenschaften von amorphem und quasikristallinem Al-Cu-Fe

Madel, Caroline 25 June 2000 (has links) (PDF)
Quasikristallines Al-Cu-Fe (i-Phase) wurde ueber den Weg der amorphen (a-) Phase in Form duenner Schichten hergestellt und ein Vergleich elektronischer Transporteigenschaften der isotropen a-Phase in verschiedenen Anlassstufen mit der schliesslich entstehenden fast isotropen i-Phase durchgefuehrt (Leitfaehigkeit, Magnetoleitfaehigkeit, Hall-Effekt und Thermokraft). Die Auswirkungen einer Hume-Rothery-Stabilisierung auf den elektronischen Transport standen dabei im Vordergrund. Es wurden in der i-Phase auch die Auswirkungen einer systematischen Aenderung des Fe-Gehalts untersucht. Die a-Phase und die i-Phase sind in vielen wichtigen Trends miteinander verwandt, z.B. ist die inverse Matthiesen-Regel sowohl in der a- als auch in der i-Phase gueltig. Thermokraft und Hall-Effekt, die sehr empfindlich auf Aenderungen der Bandstruktur sind, zeigen drastischere Aenderungen beim Uebergang amorph-quasikristallin. Die Aenderungen der Eigenschaften in der i-Phase als Funktion der Temperatur und des Fe-Gehalts koennen in einem Zweibandmodell quantitativ erfasst werden. Mit dem Konzept der Spektralleitfaehigkeit, in das im Prinzip das Zweibandmodell uebergeht, koennen die Eigenschaften sowohl der i-Phase als auch der a-Phase quantitativ beschrieben werden. In der a-Phase fuehrt dieses Konzept auf eine sich von der frisch praeparierten a-Phase durch Tempern bis hin zur i-Phase kontinuierlich aendernde Spektralleitfaehigkeit, die schon unmittelbar nach dem Aufdampfen durch ein breites und ein, diesem ueberlagertes, schmales Minimum beschrieben werden kann. Beim Tempern wird das schmale Minimum immer tiefer. Im Ortsraum wird insgesamt ein Szenario vorgeschlagen, das von sphaerischer Ordnung ausgeht, zu der schon in der frisch praeparierten a-Phase eine Winkel- und Abstandsordnung hinzukommt. Diese verstaerkt sich beim Tempern bis hin zur perfekt geordneten Struktur in der i-Phase. Das Verschwinden magnetischer Effekte und die damit verbundenen Aenderungen der Tieftemperatur-Leitfaehigkeit beim Tempern deuten ebenfalls auf eine sich bereits in der a-Phase vollziehende kontinuierliche Aenderung der lokalen Umgebung der Fe-Atome, deren Anordnung hauptsaechlich die elektronischen Transporteigenschaften bestimmt.
55

Special states in quantum many-body spectra of low dimensional systems

Nagara Srinivasa Prasanna, Srivatsa 06 September 2021 (has links)
Strong quantum correlations between many particles in low dimensions lead to emergence of interesting phases of matter. These phases are often studied through the properties of the many-body eigenstates of an interacting quantum many-body system. The folklore example of topological order in the ground states is the fractional quantum Hall (FQH) effect. With the current developments in the field of ultracold atoms in optical lattices, realizing FQH physics on a lattice and being able to create and braid anyons is much awaited from the view point of fault tolerant quantum computing. This thesis contributes to the field of FQH effect and anyons in a lattice setting. Conformal field theory has been useful to build interesting lattice FQH models which are few-body and non-local. We provide a general scheme of truncation to arrive at tractable local models whose ground states have the desired topological properties. FQH models are known to host anyons, but, it is a hard task when it comes to braiding them on small sized lattices with edges. To get around this problem, we demonstrate that one can squeeze the anyons and braid them successfully within a smaller area by crawling them like snakes on modest sized open lattices. As a numerically cheap approach to detect topological quantum phase transitions, we again resort to anyons that are only well defined in a topological phase. We create defects and study a simple quantity such as the charge of the defect to test whether the phase supports anyons or not. On the other hand, with the advent of many-body localization (MBL) and quantum many-body scars, interesting eigenstate phases which were otherwise only known to occur in ground states have been identified even at finite energy densities in the many-body spectra of generic systems. This thesis also contributes to the field of non-equilibrium physics by portraying models that display interesting non-ergodic phases and also quantum many-body scars. For instance, we show that an emergent symmetry in a disordered model can be used as a tool to escape MBL in a single eigenstate while not preventing the rest of the states from localizing. This can lead to an interesting situation of weakly broken MBL phase where a non-MBL state lives in the spectrum of MBL like states. We also demonstrate the emergence of a non-ergodic, but also a non-mbl phase in a non-local model with SU(2) symmetry. We provide two constructions of rather different models with quantum many-body scars with chiral and non-chiral topological order.
56

Magneto-thermoelectric effects in magnetic metallic thin-films

Park, Gyuhyeon 30 August 2021 (has links)
It was the purpose of this thesis to evaluate two-dimensional (2D) magneto-thermoelectric (MTE) phenomena in thinner regime. Mostly this work was motivated by the recent discovery of MTE properties in transition metal dichalcogenides (TMD). In general, TMD thin films have attracted much attention due to their very good electrical, optical, and electrochemical properties. However the total amount of studies of the MTE in TMD is rather small compared to the other properties, such as electric, opto-electric, and catalyst. Hence, in this thesis, we aimed to evaluate the MTE properties in TMD materials. Before we started to measure TMDs, we established a measurement platform and studied MTE properties in ferromagnetic CoFeB, and Weyl semimetal Co2MnGa.:1. Introduction a. Physical background i. Seebeck Effect ii. Anomalous Hall Effect and Anomalous Nernst Effect iii. Mott relation 2. Sample Preparation and evaluation a. Physical vapor deposition b. Mechanical Exfoliation c. Patterning Process 3. Data Evaluation 4. State of the art in Transition Metal Dichalcogenids a. Introduction b. TMD in use c. Magneto-thermoelectric properties in TMD 5. Magneto-thermoelectrical properties in CoFeB thin film a. Introduction b. Results and Discussion c. Conclusion 6. Anomalous Nernst and Anomalous Hall effect in Co2MnGa thin film a. Introduction b. Results and Discussion c. Summary 7. Anomalous Hall effect in exfoliated VS2 flake a. Introduction b. Experiment c. Results and Discussion d. Summary 8. Summary Acknowledgement and References
57

Elektronische Transporteigenschaften von amorphem und quasikristallinem Al-Cu-Fe

Madel, Caroline 23 June 2000 (has links)
Quasikristallines Al-Cu-Fe (i-Phase) wurde ueber den Weg der amorphen (a-) Phase in Form duenner Schichten hergestellt und ein Vergleich elektronischer Transporteigenschaften der isotropen a-Phase in verschiedenen Anlassstufen mit der schliesslich entstehenden fast isotropen i-Phase durchgefuehrt (Leitfaehigkeit, Magnetoleitfaehigkeit, Hall-Effekt und Thermokraft). Die Auswirkungen einer Hume-Rothery-Stabilisierung auf den elektronischen Transport standen dabei im Vordergrund. Es wurden in der i-Phase auch die Auswirkungen einer systematischen Aenderung des Fe-Gehalts untersucht. Die a-Phase und die i-Phase sind in vielen wichtigen Trends miteinander verwandt, z.B. ist die inverse Matthiesen-Regel sowohl in der a- als auch in der i-Phase gueltig. Thermokraft und Hall-Effekt, die sehr empfindlich auf Aenderungen der Bandstruktur sind, zeigen drastischere Aenderungen beim Uebergang amorph-quasikristallin. Die Aenderungen der Eigenschaften in der i-Phase als Funktion der Temperatur und des Fe-Gehalts koennen in einem Zweibandmodell quantitativ erfasst werden. Mit dem Konzept der Spektralleitfaehigkeit, in das im Prinzip das Zweibandmodell uebergeht, koennen die Eigenschaften sowohl der i-Phase als auch der a-Phase quantitativ beschrieben werden. In der a-Phase fuehrt dieses Konzept auf eine sich von der frisch praeparierten a-Phase durch Tempern bis hin zur i-Phase kontinuierlich aendernde Spektralleitfaehigkeit, die schon unmittelbar nach dem Aufdampfen durch ein breites und ein, diesem ueberlagertes, schmales Minimum beschrieben werden kann. Beim Tempern wird das schmale Minimum immer tiefer. Im Ortsraum wird insgesamt ein Szenario vorgeschlagen, das von sphaerischer Ordnung ausgeht, zu der schon in der frisch praeparierten a-Phase eine Winkel- und Abstandsordnung hinzukommt. Diese verstaerkt sich beim Tempern bis hin zur perfekt geordneten Struktur in der i-Phase. Das Verschwinden magnetischer Effekte und die damit verbundenen Aenderungen der Tieftemperatur-Leitfaehigkeit beim Tempern deuten ebenfalls auf eine sich bereits in der a-Phase vollziehende kontinuierliche Aenderung der lokalen Umgebung der Fe-Atome, deren Anordnung hauptsaechlich die elektronischen Transporteigenschaften bestimmt.
58

Charge transport in two-dimensional materials and their electronic applications

Arora, Himani 01 March 2021 (has links)
Semiconducting two-dimensional (2D) materials have gained considerable attention in recent years owing to their potential in future electronics. On the one hand, the conventional 2D semiconductors, such as transition metal dichalcogenides (TMDCs (MoS2, WS2, etc.) are being exhaustively studied, on the other hand, search for novel 2D materials is at a rapid pace. In this thesis, we explore 2D materials beyond graphene and TMDCs in terms of their intrinsic electronic properties and underlying charge transport mechanisms. We introduce 2D semiconducting materials of indium selenide (InSe) and gallium selenide (GaSe), and a novel π-d conjugated Fe3(THT)2(NH4)3 metal-organic framework (MOF) as potential candidates for their use as active elements in (opto)electronic applications. Owing to the air-sensitivity of InSe and GaSe, their integration into active devices has been severely constrained. Here, we report a hexagonal boron nitride (hBN) based encapsulation, where 2D layers of InSe and GaSe are sandwiched between two layers of hBN; top hBN passivating the 2D layer from the environment and bottom hBN acting as a spacer and suppressing charge transfer to the 2D layer from the SiO2 substrate. To fabricate the devices from fully encapsulated InSe and GaSe layers, we employ the technique of lithography-free via-contacts, which are metal contacts embedded within hBN flakes. Based on our results, we find that full hBN encapsulation preserves InSe in its pristine form and suppresses its degradation with time. Consequently, the electronic properties of encapsulated InSe devices are significantly improved, leading to a mobility of 30–120 cm2 V−1 s−1 as compared to a mere ∼1 cm2 V−1 s−1 obtained for unencapsulated devices. In addition, encapsulated InSe devices are stable for a prolonged period of time, overcoming their limitation to be air-sensitive. On employing full hBN encapsulation to GaSe, a high photoresponsivity of 84.2 A W−1 at 405 nm is obtained. The full hBN encapsulation technique passivates the air-sensitive layers from various degrading factors and preserves their unaltered properties. In the future, this technique can be applied to other 2D materials that have been restricted so far in their fundamental study and applications due to their environmental sensitivity. MOFs are another emerging class of semiconducting 2D materials investigated in this thesis. They are hybrid materials that consist of metal ions connected with organic ligands via coordination bonds. In recent years, advances in synthetic approaches have led to the development of electrically conductive MOFs as a new generation of electronic materials. However, to date, poor mobilities and hopping-type charge transport dominant in these materials have prevented them from being considered for electronic applications. In this work, we investigate a newly developed π-d conjugated Fe3(THT)2(NH4)3 (THT: 2,3,6,7,10,11-hexathioltriphenylene) MOF. The MOF films are characterized with a direct bandgap lying in the infrared (IR) region. By employing Hall-effect measurements, we demonstrate band-like transport and a record-high mobility of 230 cm2 V−1 s−1 in Fe3(THT)2(NH4)3 MOF films. The temperature-dependent conductivity confirms a thermally activated charge carrier population in the samples induced by the small bandgap of the analyzed MOFs. Following these results, we demonstrate the feasibility of using this high-mobility semiconducting MOF as an active material in thin-film optoelectronic devices. The MOF photodetectors fabricated in this work are capable of detecting wavelengths from UV to NIR (400–1575 nm). The narrow IR bandgap of the active layer constrains the performance of the photodetector at room temperature by band-to-band thermal excitation of the charge carriers. At 77 K, the device performance is significantly improved; two orders of magnitude higher voltage responsivity, lower noise equivalent power, and higher specific detectivity of 7 × 10^8 cm Hz1/2 W−1 are achieved at 785 nm excitation, which is a direct consequence of suppressing the thermal generation of charge carriers across the bandgap. These figures of merit are retained over the analyzed spectral region (400–1575 nm) and are comparable to those obtained with the first demonstrations of graphene and black phosphorus based photodetectors, thus, revealing a promising application of MOFs in optoelectronics. / Zweidimensionale (2D) Halbleiter haben dank ihres Potenzials für elektronische Anwendungen in den letzten Jahren große Aufmerksamkeit erregt. Dabei werden einerseits konventionelle 2D-Materialien, wie die Übergangsmetall-Chalkogenide (TMDCs) (MoS2, WS2, usw.) intensiv erforscht. Andererseits schreitet auch die Suche nach neuen 2D-Materialien rasch voran. Diese Dissertation stellt Forschungsergebnisse zu elektrischen Eigenschaften und den zugrundeliegenden Ladungstransportmechanismen von 2D-Materialien jenseits von Graphen und TMDCs vor. Untersucht wurden die 2D-Halbleiter Indiumselenid (InSe) und Galliumselenid (GaSe), sowie eine neuartige π-d konjugierte Metallorganische Gerüstverbindung (Metal-Organic Framework, MOF) Fe3(THT)2(NH4)3. Diese Materialien sind vielversprechende Kandidaten für elektronische und optoelektronische Anwendungen. InSe und GaSe sind besonders luftempfindliche Materialien. Aus diesem Grund ist ihre Verwendung für aktive Bauteile trotz ihrer hervorragenden elektrischen Eigenschaften bis heute sehr begrenzt. In dieser Arbeit wird ein effektives Verkapselungsverfahren vorstellt, bei dem InSe- oder GaSe-2D-Schichten zwischen zwei Schichten aus hexagonalem Bornitrid (hBN) eingebettet werden. Die untere Schicht hBN isoliert das Material vom Substrat Siliziumdioxid (SiO2), während die obere Schicht das 2D-Material luftdicht isoliert. Um Bauteile aus komplett eingekapseltem InSe oder GaSe herzustellen, wurden lithographiefreie, sogenannte via-Kontakte hergestellt. Dies sind Metallkontakte, die bereits vor der Verkapselung in die hBN-Schichten integriert werden. Die hBN-Verkapselung erhält InSe in seiner ursprünglichen Form. Die hier vorgestellten Ergebnisse zeigen, dass sich die elektronischen Eigenschaften von InSe durch Verkapselung signifikant verbessern, was zu elektrischen Mobilitäten von 30–120 cm2 V−1 s−1 gegenüber nur rund ∼1 cm2 V−1 s−1 in unverkapselten Bauteilen führt. Darüber hinaus bleiben die Eigenschaften der verkapselten InSe-Bauteile über einen langen Zeitraum erhalten und degradieren nicht mehr bei Kontakt mit Luft. Die Verkapselung von GaSe ermöglicht den Einsatz in Fotodetektoren, bei einer Wellenlänge von 405 nm wird eine Fotoempfindlichkeit von 84.2 A W−1 gemessen; auch hier bewahrt die Verkapselung die empfindlichen Schichten vor schädlichen Einflüssen und konserviert so ihre unveränderten Eigenschaften. In der Zukunft kann diese Technik auch für andere 2D-Materialien eingesetzt werden, insbesondere für solche, deren Erforschung und Anwendung durch die große Empfindlichkeit bis heute eingeschränkt ist. Darüber hinaus untersucht diese Dissertation mit Metallorganischen Gerüstverbindungen (MOFs) eine zweite Klasse halbleitender 2D-Materialien. MOFs sind hybride Materialien aus Metallionen, die mit organischen Molekülen als Verbindungselementen eine meist kristalline Struktur bilden. In den letzten Jahren haben Fortschritte in der synthetischen Herstellung zur Entwicklung von elektronisch leitfähigen MOFs geführt. Die niedrige Mobilität und der sogenannte hopping-Ladungstransport der gängigsten MOFs haben jedoch verhindert, dass diese für Anwendungen betrachtet wurden. In dieser Arbeit wird eine kürzlich neu entwickelte, π-d-konjugierte Fe3(THT)2(NH4)3 (THT: 2,3,6,7,10,11-hexathioltriphenylene) MOF vorgestellt. Der MOF Film hat eine direkte Bandlücke im Infrarot(IR)-Bereich liegend. Mithilfe von Hall-Effekt-Messungen wurde gezeigt, dass der Transport in den Fe3(THT)2(NH4)3 MOF Filmen mit dem Drude-Modell konsistent ist. Darüber hinaus wird eine bis jetzt nicht übertroffene Mobilität von 230 cm2 V−1 s−1 gemessen. Die Temperaturabhängigkeit der Leitfähigkeit bestätigt, dass die kleine Bandlücke zu thermisch aktivierten Ladungstragerdichten in den Proben führt. Auf Grundlage dieser Ergebnisse wird die Machbarkeit von hochmobilen halbleitenden Fe3(THT)2(NH4)3 MOFs als aktives Material in dünnen optoelektronischen Bauteilen gezeigt. Die hier vorgestellten MOF Fotodetektoren reagieren auf Wellenlängen im UV bis Nahinfrarotspektrum (400–1575 nm). Die schmale Bandlücke schränkt die Leistung des Fotodetektors bei Raumtemperatur durch thermische Band-zu-Band-Anregung der Ladungsträger ein. Bei einer Temperatur von 77 K verbessert sich die Leistung des Detektors signifikant: Bei 785 nm wird eine um zwei Größenordnungen erhöhte Spannungsempfindlichkeit, eine niedrigere äquivalente Rauschleistung sowie eine höhere spezifische Empfindlichkeit von 7 × 10^8 cm Hz1/2 W−1 erhalten. Dies ist eine direkte Konsequenz der Unterdrückung thermischer Anregung von Ladungsträgern über die Bandlücke. Diese Leistungszahlen sind über das analysierte Spektrum (400–1575 nm) gültig und vergleichbar mit den ersten Fotodetektoren auf Grundlage von Graphen und Schwarzem Phosphor. Die Ergebnisse zeigen deutlich das Potenzial von MOFs für optoelektronische Anwendungen.
59

Probing Hund’s-Metal Physics through the Hall Effect in Microstructured Sr₂RuO₄ under Uniaxial Stress

Yang, Po-Ya 01 April 2022 (has links)
Uniaxial stress is a powerful technique to tune the electronic structure of very pure materials. The novel piezoelectric-based techniques developed by our group, which allow application of large and homogeneous uniaxial pressure in a continuously-tunable manner, make uniaxial pressure an independent axis in the parameter space for the study of quantum materials. Many exciting experiments have been performed that combine different measurement methods with this uniaxial stress technique in the past few years. In this thesis, I demonstrate the first electrical transport measurement under uniaxial pressure of a free-standing microstructure single-crystalline sample patterned by focused ion beam (FIB) milling. With the microstructuring technique that I developed, the transport properties transverse to the force direction can be more accurately probed. The ability to resolve the anisotropy introduced by the uniaxial pressure lets us have a better understanding of how the electronic structure of Sr₂RuO₄ changes under uniaxial stress. Moreover, the microstructure technique opens new roads for smaller crystals (∼ 100 µm) to be studied under uniaxial pressure. In addition, higher stresses and better sample homogeneity could be achieved by working with smaller samples. For Sr₂RuO₄, one of the three Fermi-surface sheets can be driven through a Lifshitz transition by applying uniaxial stress along the [100] direction. Superconductivity and resistivity have been observed to be strongly enhanced at the singularity. In addition, a spin-density wave (SDW) has been observed at stresses beyond the Lifshitz transition. Measurement of the Hall effect under uniaxial stress allows us to probe Hund’s metal physics in Sr₂RuO₄. The Hall coefficient of unstressed Sr₂RuO₄ goes through two sign reversals, at 30 K and 120 K. Under the Hund’s metal scenario, this temperature dependence has been proposed to result from orbital differentiation of the inelastic scattering rate, which is a key property expected of Hund’s metals. In the present study, it is shown that at a temperature where electron-electron scattering dominates (≳ 5 K), the Hall coefficient becomes less electron-like while approaching the VHS, which is consistent with increased scattering in the d_xy band. Beyond the transition, the Hall coefficient becomes much more electron-like, which is opposite to expectations from the change in Fermi surface topology, but can be explained by a combination of Hund’s metal physics and strong suppression in the d_xy scattering rate. At very low temperature (0.5 K), the Hall coefficient is essentially unchanged across the Lifshitz transition, despite the change in the Fermi-surface topology. In contrast to the longitudinal resistivity that has a strong peak at the VHS but does not respond to the SDW, the resistance transverse to the force direction shows a strong response to the SDW, but only a small response at the VHS. In addition, I obtain ρ(T) at the Lifshitz transition below Tc by subtracting off the magnetoresistance and find that T² ln(1/T) fits better than T^3/2, which suggests a saddle point rather than an extended saddle point at the VHS.:1. Introduction to Sr2RuO4 1.1. Normal-State Properties Van Hove Singularity and Lifshitz Transition in Sr2RuO4 1.2. Hall Effect in Sr2RuO4 Weak-field Hall Coefficient Experimental Hall Coefficient in Sr2RuO4 and Related Systems 1.3. Hund’s Metal Scenario Dynamical Mean-Field Theory Experimental Evidence for Orbital Differentiation in Sr2RuO4 Hall Coefficient of Sr2RuO4 within Hund’s Metal Scenario 1.4 Uniaxial-Pressure Projects on Sr2RuO4 2. Experimental Setup 2.1. Stress and Strain 2.2. Uniaxial Stress Technique Uniaxial-Stress Cell Sample Carrier 2.3. Imperfections of the Stress Cells 2.4. Sample Preparation Needle Sample Preparation Microstructure Sample Preparation Comparison of the Two Samples 2.5. Measurement Setup 3He Cryostat Transport Measurement Setup 3. Hall Coefficient and Resistivity Measurements 3.1. Basics of Resistivity Measurement Stress Ramps 3.2. Basics of Hall Measurement Setup Field Dependence of Hall Resistivity Temperature Dependence of Hall Coefficient 3.3. Stress Ramps under Constant Magnetic Field 3.4. Stress Dependence of Hall Coefficient and Resistivity 3.5. Resistivity Measurements below Tc 3.6. Field Sweeps within the Magnetic Phase 3.7. Summary 4. Measurements Transverse to the Stress Axis 4.1. Setup for Transport Measurements Transverse to the Uniaxial Stress 4.2. Simulations Based on Finite Element Method 4.3. Resistance Measurements Transverse to Applied Stress 4.4. Summary 5. Data Analysis and Discussion 5.1. A Tight-Binding Model under Uniaxial Pressure 5.2. Analysis of Hall Coefficient across the Lifshitz Transition Hall Coefficient Analysis under the Isotropic-l or Isotropic-τ Approximations Hall Coefficient Analysis under Hund’s Metal Scenario 5.3. Magnetoresistance Subtraction in Temperature Ramps 5.4. Transport Properties at 5 K 5.5. Summary 6. Conclusions and Outlook Appendices A. Si-Gap-Platform Microstructure Project A.1. Si-Gap Platform A.2. Sample Preparation with PFIB-Microstructuring A.3. Microstructure Stress Cells B. Other results B.1. Hall Effect from the Hall Pair 2 B.2. Magnetoresistance in Longitudinal and Transverse Configurations B.3. Toward -1.5 GPa B.4. Comparison of RH(T) in Sr2RuO4 Compressed along [100] Direction and YBa2Cu3O6.67 Compressed along the b-axis Bibliography
60

Magnetic Properties and Domains in the Uniaxial Ferromagnet Mn1.4PtSn and the Non-collinear Antiferromagnet Mn3Pt under Strain

Zuniga Cespedes, Belen Elizabeth 01 April 2022 (has links)
Magnetic materials are of great research interest because of their potential applications. Most Mn-based compounds exhibit magnetic ordering, being antiferromagnetic or ferromagnetic depending on their crystal structure. Many of these compounds have complex non-collinear magnetic structures that can give rise to exotic and robust phenomena. The scope of this thesis encompasses two independent projects on exploring single-crystalline Mn-based compounds with magnetic properties: (i) the study of the thickness-dependent magnetic textures in ferromagnetic Mn1.4PtSn by means of Focused Ion Beam (FIB) for sample shaping and Magnetic Force Microscopy (MFM) for imaging, and (ii) the experimental demonstration of an anomalous Hall effect in non-collinear antiferromagnetic Mn3Pt, revealed with the aid of uniaxial pressure tuned in-situ. The first chapter motivates the study of magnetic materials and introduces the theoretical framework on which they are understood. In particular, refers to the energy contributions of magnetic origin and gives an overview of the Hall effect and how it is used to probe magnetic properties, from ferromagnetism to non-collinear antiferromagnetism and non-coplanar spin textures (such as the so-called skyrmions). The second chapter is dedicated to the ferromagnetic compound Mn1.4PtSn. It starts by introducing concepts important in the context of magnetic domains. A variety of magnetic textures are discussed, in particular antiskyrmions which differ from regular skyrmions by their internal structure. A material-specific introduction is given, starting by its discovery as the first antiskyrmion-hosting compound (when in thin-plate shape) and including recent literature showing by means of neutron scattering how magnetic domains in bulk single crystals are best described as anisotropic fractals. This study complements our first observations in real-space MFM images of the magnetic texture in this material. The detailed study of the dependence of the magnetic domains as a function of sample thickness is presented and analyzed. The third and final chapter focuses on antiferromagnetic Mn3Pt. To motivate the experiment, the theoretical study that predicts the presence of an intrinsic zero-field anomalous contribution to the Hall effect for this material is introduced. Next, the experimental investigation of single crystals of Mn3Pt is presented, where a Hall effect dominated by the ordinary contribution in the temperature range from 10 to 300 K is found. Thereafter, the response of the Hall effect to uniaxial pressure tuned in-situ is explored. When the sample is compressed, a hysteresis is observed to open up. The magnitude of this anomalous Hall conductivity (when compressing the sample by ∼0.2 GPa) is estimated to be at least ∼ 10 Ω-1cm-1 at room temperature and ∼ 40 Ω-1cm-1 at 100 K, and it is demonstrated that the measured value originates in the antiferromagnetic structure, rather than in a stress-induced ferromagnetism.:1 Introduction 1 1.1 Overview of elemental properties . . . . . . . . . . . . . . . . 1 1.1.1 Notes on Mn . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Notes on Pt . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Notes on Sn . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Magnetic Interactions . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Zeeman interaction . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Magnetostatic energy . . . . . . . . . . . . . . . . . . . 5 1.2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . 6 1.2.4 Magnetoelastic coupling . . . . . . . . . . . . . . . . . 7 1.2.5 Exchange interaction . . . . . . . . . . . . . . . . . . . 8 1.2.6 Antisymmetric exchange . . . . . . . . . . . . . . . . . 10 1.3 Antiferro-, ferri- and helimagnets . . . . . . . . . . . . . . . . 11 1.4 Hall effect in magnetism . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Geometrical phase in quantum mechanics . . . . . . . 14 In the context of the anomalous Hall effect . . . . . . 16 1.4.2 Complementary anomalous Hall theories . . . . . . . . 18 Skew scattering . . . . . . . . . . . . . . . . . . . . . . 18 Inelastic scattering . . . . . . . . . . . . . . . . . . . . 18 Side jump . . . . . . . . . . . . . . . . . . . . . . . . . 18 Spin chirality mechanism . . . . . . . . . . . . . . . . 19 I The uniaxial ferromagnet Mn1.4PtSn 21 2 Mn1.4PtSn 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Topology in magnetism . . . . . . . . . . . . . . . . . 27 2.2.2 Domain theory . . . . . . . . . . . . . . . . . . . . . . 29 Domain refinement . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Literature overview . . . . . . . . . . . . . . . . . . . . 32 SANS studies on bulk Mn1.4PtSn . . . . . . . . . . . . 34 2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Lamellae fabrication . . . . . . . . . . . . . . . . . . . 37 2.3.3 Magnetic Force Microscopy . . . . . . . . . . . . . . . 38 History . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Operating principle . . . . . . . . . . . . . . . . . . . . 39 Specifications for our experiments . . . . . . . . . . . . 40 2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 Bulk samples characterization . . . . . . . . . . . . . . 40 Mn1.4Pt0.9Pd0.1Sn polycrystal . . . . . . . . . . . . . . 40 Mn1.4PtSn single crystal . . . . . . . . . . . . . . . . . 43 Mn1.4PtSn single crystal in applied field . . . . . . . . 45 Mn1.4PtSn single crystal below TSR . . . . . . . . . . . 46 2.4.2 Lamellae characterization . . . . . . . . . . . . . . . . 48 Thickness dependence . . . . . . . . . . . . . . . . . . 48 Temperature dependence . . . . . . . . . . . . . . . . 54 Magnetic field dependence . . . . . . . . . . . . . . . . 56 2.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 63 II The non-collinear antiferromagnet Mn3Pt under strain 65 3 Mn3Pt 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.1 Thin film study of Mn3Pt . . . . . . . . . . . . . . . . 71 3.2.2 Our contribution . . . . . . . . . . . . . . . . . . . . . 73 3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 75 3.4.1 Characterization of unstrained crystals . . . . . . . . . 75 3.4.2 Elastic response of Mn3Pt single crystals . . . . . . . . 79 Electrical transport response to strain . . . . . . . . . 81 3.4.3 Onset of AHE in single crystals under uniaxial pressure 84 Sample III4 . . . . . . . . . . . . . . . . . . . . . . . . 84 Sample IV1 . . . . . . . . . . . . . . . . . . . . . . . . 89 Sample IV2 . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.4 Temperature dependence of the AHE . . . . . . . . . . 94 3.4.5 Elastic limit of Mn3Pt . . . . . . . . . . . . . . . . . . 98 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A On Mn3Pt resistivity 101 B On Mn3Pt sample mounting 103

Page generated in 0.0654 seconds