11 |
Atmospheric Response to Orbital Forcing and 20th Century Sea Surface TemperaturesMantsis, Damianos F 24 June 2011 (has links)
This study investigates modes of atmospheric variability in response to changes in Earth's orbit and changes in 20th century sea surface temperatures (SST). The orbital forcing is manifested by a change in obliquity and precession, and changes the distribution of the top-of-atmosphere insolation. A smaller obliquity reduces the the annual insolation that the poles receive and increases the annual insolation in the tropics. As the meridional insolation gradient increases, the zonal mean atmospheric-ocean circulation increases. The resulting climate also has a reduced global mean temperature due to the effect of climate feedbacks. This cooling can be attributed to a reduced lapse rate, increased cloud fraction. reduced water vapor in the atmosphere, and an increase in the surface albedo. A change in the precession, as the perihelion shifts from the winter to the summer solstice, causes a strengthening as well as an expansion of the N. Pacific summer subtropical anticyclone. This anticyclonic anomaly can be attributed to the weakening of the baroclinic activity, but also represents the circulation response to remote and local diabatic heating. The remote diabatic heating is associated with monsoonal activity in the SE Asia and North Africa. Regarding the 20th century SST forcing, it is represented by a multidecadal variability in the inter-hemispheric SST difference. This change in the SST causes a latitudinal shift in the ascending branch of the Hadley cell and precipitation in the tropics, as well as an increase in the atmospheric meridional heat transport from the warmer to the colder hemisphere.
|
12 |
Single Electron Probes of Fractional Quantum Hall StatesVenkatachalam, Vivek 10 August 2012 (has links)
When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta \((\nu)\) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an electrometer, we measure the local charge of the \(\nu = 5/2\) FQH state. An immediate consequence of measuring fractionally quantized conductance plateaus is that the charge of local excitations should be a fraction of \(e\), the charge of an electron. The simplest charge that would be expected at \(\nu = 5/2\) would \(e/2\). However, if the charged particles that condense into the \(\nu = 5/2\) FQH state are paired, the expected local charge becomes \(e/4\). By watching these local charges being added to compressible puddles at \(\nu = 5/2\) and \(\nu = 5/7\), we find that the local charge at \(\nu = 5/2\) is indeed \(e/4\), indicating that objects of charge \(e\) are pairing to form the ground state of the system. This has implications for the future possibility of detecting non-Abelian braiding statistics in this state, and is described in detail in Chapter 2. By further monitoring how eagerly these \(e/4\) particles enter puddles as we increase the temperature, we can attempt to identify the presence of some excess entropy related to an unconventional degeneracy of their ground state. Such an entropy would be expected if the \(\nu = 5/2\) state exhibited non-Abelian braiding statistics. Progress on these experiments and prospects for building a quantum computer are presented in Chapter 3. Next, by operating the SET as a thermometer, we monitor heat flow along the compressible edge and through the bulk of IQH and FQH states. As an edge is heated and charge on that edge is swept downstream by the external magnetic field, we expect that charge to carry the injected energy in the same downstream direction. However, for certain FQH states, this is not the case. By heating an edge with a quantum point contact (QPC) and monitoring the heat transported upstream and downstream, we find that heat can be transported upstream when the edge contains structure related to \(\nu = 2/3\) FQH physics. Surprisingly, this can be present even when the bulk is in a conventional insulating (IQH) state. Additionally, we unexpectedly find that the \(\nu = 1\) bulk is capable of transporting heat, while the \(\nu = 2\) and \(\nu = 3\) bulk are not. These experiments are presented in Chapter 4. Finally, in Chapter 5, we describe preliminary work on a very different type of topological material, the quantum spin Hall (QSH) insulator. Here, the spin of electrons takes the place of the external magnetic field, creating edge states that propagate in both directions. Each of these edges behaves as an ideal one-dimensional mode, with predicted resistance \(h/e^2\). By creating well-defined regions where these modes can exist, we identify and characterize the conductance associated with topological edges. / Physics
|
13 |
The Macroscopic transport equations of phonons in solidsFryer, Michael 17 January 2013 (has links)
There has been an increasing focus on using nanoscale devices for various applications ranging from computer components to biomechanical sensors. In order to effectively design devices of this size, it is important to understand the properties of materials at this length scale and their relevant transport equations. At everyday length scales, heat transport is governed by Fourier’s law, but at the nanoscale, it becomes increasingly inaccurate. Phonon kinetic theory can be used to develop more accurate governing equations. We present the moment method, which takes integral moments of the phonon Boltzmann kinetic equation to develop a set of equations based on macroscopic properties such as energy and heat flux. The advantage of using this method is that transport properties in nanodevices can be approximated analytically and efficiently. A number of simplifying assumptions are used in order to linearize the equations. Boundary conditions for the moment method are derived based on a microscopic model of phonons interacting with a surface by scattering, reflection or thermalization. Several simple, one dimensional problems are solved using the moment method equation. The results show the effects of phonon surface interactions and how they affect overal properties of a nanoscale device. Some of these effects were observed in a recent experiment and are replicated by other modeling techniques. Although the moment method has described some effects of nanoscale heat transfer, the model is limited by some of its simplifying assumptions. Several of these simplifying assumptions could be removed for greater accuracy, but it would introduce non-linearity into the moment method. / Graduate
|
14 |
Simulation of Heat Transfer with Gas-liquid Coexistence Using Dissipative Particle DynammicsJia, Wenhan, Jia January 2016 (has links)
No description available.
|
15 |
Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat RemovalAlmahmoud, Khaled Hasan Musa 12 1900 (has links)
Pillared-graphene structure (PGS) is a novel three-dimensional structure consists of parallel graphene sheets that are separated by carbon nanotube (CNT) pillars that is proposed for efficient thermal management of electronics. For microscale simulations, finite element analyses were carried out by imposing a heat flux on several PGS configurations using a Gaussian pulse. The temperature gradient and distribution in the structures was evaluated to determine the optimum design for heat transfer. The microscale simulations also included conducting a mesh-independent study to determine the optimal mesh element size and shape. For nanoscale simulations, Scienomics MAPS software (Materials And Processes Simulator) along with LAMMPS (Large-scale Atomic/ Molecular Massively Parallel Simulator) were used to calculate the thermal conductivity of different configurations and sizes of PGS. The first part of this research included investigating PGS when purely made of carbon atoms using non-equilibrium molecular dynamics (NEMD). The second part included investigating the structure when supported by a copper foil (or substrate); mimicking production of PGS on copper. The micro- and nano-scale simulations show that PGS has a great potential to manage heat in micro and nanoelectronics. The fact that PGS is highly tunable makes it a great candidate for thermal management applications. The simulations were successfully conducted and the thermal behavior of PGS at the nanoscale was characterized while accounting for phonon scattering the graphene/CNT junction as well as when PGS is supported by a copper substrate.
|
16 |
Heat transport and tracing within the hyporheic zone of a pool-riffle-pool sequenceSwanson, Travis Eric 26 October 2010 (has links)
Hyporheic water is thought to infiltrate at the head of a riffle which in turn is complemented by upwelling back to the stream at the tail of the riffle in a pool-riffle-pool (PRP) sequence. Heat tracing is a potentially useful method to characterize these hyporheic flow paths and quantify associated fluxes. Temperature was monitored within a PRP sequence for several days. Temperature in the hyporheic zone reflected the diel temperature change in the river but not uniformly. The observed thermal pattern exhibited deeper penetration of thermal oscillations below the head pool and shallower penetration below the tail pool. This pattern is consistent with the conceptual model of hyporheic exchange over a PRP sequence. One-dimensional analytical heat transport models were used at different points below the PRP sequence to estimate distributed vertical fluid fluxes. The calculated fluxes exhibit a trend that follows the expected distribution for a PRP sequence but modified for a losing stream. Deviation of both magnitude and distribution of fluxes from the conceptual ‘downwelling-to-upwelling’ model is partly due to the dominantly losing conditions at the study site but the trends are consistent with a losing stream undergoing hyporheic exchange. Violation of the assumptions in the analytical models most likely adds error to flux estimates. For this study, flux estimation methods using a temperature time series amplitude analysis more closely matched field measurements than phase methods. / text
|
17 |
Modeling Compact High Power Fiber Lasers and VECSELsLi, Hongbo January 2011 (has links)
Compact high power fiber lasers and the vertical-external-cavity surface-emitting lasers (VECSELs) are promising candidates for high power laser sources with diffraction-limited beam quality and are currently the subject of intensive research and development. Here three large mode area fiber lasers, namely, the photonic crystal fiber (PCF) laser, the multicore fiber (MCF) laser, and the multimode interference (MMI) fiber laser, as well as the VECSEL are modeled and designed.For the PCF laser, the effective refractive index and the effective core radius of the PCF are investigated using vectorial approaches and reformulated. Then, the classical step-index fiber theory is extended to PCFs, resulting in a highly efficient vectorial effective-index method for the design and analysis of PCFs. The new approach is employed to analyze the modal properties of the PCF lasers with depressed-index cores and to effectively estimate the number of guided modes for PCFs.The MCF laser, consisting of an active MCF and a passive coreless fiber, is modeled using the vectorial mode expansion method developed in this work. The results illustrate that the mode selection in the MCF laser by the coreless fiber section is determined by the MMI effect, not the Talbot effect. Based on the MMI and self-imaging in multimode fibers, the vectorial mode expansion approach is employed to design the first MMI fiber laser demonstrated experimentally.For the design and modeling of VECSELs, the optical, thermal, and structural properties of common material systems are investigated and the most reliable material models are summarized. The nanoscale heat transport theory is applied for the first time, to the best of my knowledge, to design and model VECSELs. In addition, the most accurate strain compensation approach is selected for VECSELs incorporating strained quantum wells to maintain structural stability. The design principles for the VECSEL subcavity are elaborated and applied to design a 1040nm VECSEL subcavity that has been demonstrated for high power operation of VECSELs where near diffraction-limited output over 20 W is obtained. Physical modeling of the VECSEL is also discussed and used to compare VECSEL subcavity designs on the laser level.
|
18 |
Non-Thermal Modeling Of Energy Propagation Carried By Phonons and MagnonsDahlgren, David, Mehic, Amela January 2019 (has links)
Heat transport by phonons and magnons in crystals due to a local perturbation in temperature is described by the Boltzmann transport equation. In this project a one phonon one magnon system was studied in a one dimensional rod with reflective boundaries. Using the splitting algorithm the problem was reduced to a transport and collision term. The resulting stabilization time for a initial phonon and magnon distribution and the respective temperatures at equilibrium was calculated. This study shows how energy propagates in crysials and gives further understanding of how the coupling of phonons and magnons affect heat transport.
|
19 |
Secagem de papel produzido a partir do pseudocaule de bananeira. / Drying process for paper sheet produced from the bananas tree\'s pseudostalk.Chertman, Marcio 19 July 2007 (has links)
O descarte do pseudocaule da bananeira após a retirada do fruto é uma prática constante que tem como objetivo evitar a propagação da Cosmopolites Sordidus (popularmente conhecido como broca), que é um inseto que se prolifera em regiões com abundância deste tipo de cultivo. O Brasil, terceiro maior produtor mundial de bananas, é responsável pelo descarte de milhões de toneladas por ano de pseudocaules. Dentre as várias possibilidades de utilização deste material de descarte, algumas comunidades como a da Região de Itariri, litoral sul de São Paulo, estão aproveitando o pseudocaule para a fabricação artesanal de papeis especiais. No entanto as limitações inerentes às comunidades carentes, a escassez de recursos energéticos e as restrições ambientais são obstáculos às possibilidades de crescimento de suas produções. O conhecimento dos processos utilizados pelas grandes indústrias de papel e celulose, associado ao estudo das condições específicas da fábrica artesanal de Itariri pode fornecer subsídios e alternativas aplicáveis aos processos artesanais. Um estudo dos processos de transferência de calor e massa para os casos aqui propostos fornece uma estimativa para o desempenho da produtividade da fábrica artesanal estudada, mais precisamente o desempenho da secagem, que é o ponto crítico (gargalo) do processo de fabricação artesanal. No processo atual, os fabricantes locais dependem das condições climáticas, principalmente da irradiação solar, para a secagem. Ao final do trabalho é proposto um processo alternativo de secagem do papel empregando os cálculos aqui desenvolvidos, que visa minimizar o consumo energético e a diminuição da dependência das condições climáticas. / The discharging of the banana tree´s pseudostalk after the withdrawal of the fruit is one practical mesure that has as the main objective of preventing the propagation of the Cosmopolites Sordidus (popularly known as broca, wich means drill), wich is an insect that proliferates in regions with abundance of this type of plantation. Brazil, third world-wide producer of bananas, is responsible for the discharging of millions of metric tons per year of pseudostalk. Among several possibilities for using the discharging material, some communities, as the one from Itariri´s area, São Paulo´s southern coast, are using the pseudostalk for special paper sheets. However the inherent limitations of the needy communities, as the local shortage of energy resources and restrictive environment rules are the main hurdles to the possibilities of local paper productions growth. The knowledge of processes used by the pulp and paper industries, associated with the study of specific conditions of the small artisan production of Itariri, can provide subsidies and results in alternatives to the artisan processes. A fundamental study of heat and mass transport for the cases considered here can provide an estimative of the performance of the productivity of the studied case. The work is focused on the papersheets drying process performance, which is the critical stage in the process of artisan manufacture. In the current process, the local manufacturers depend on the climatic conditions for the drying, mainly the solar irradiation. In the end of this work, an alternative process for the paper drying is proposed using the calculation procedure here developed, having the aim at reducing the energy consumption and eliminating the climatic conditions dependence.
|
20 |
Investigation on heat transport in hyporheic zone using flume simulation and modelingChan, Wai Sum, 1984- 15 November 2011 (has links)
Recent research has shown that groundwater flow in hyporheic zone is critical in major hydrologic, ecological, and biogeochemical processes. Quantitative analyses from the literature show that there is a strong correlation between the diel cycles in pH, water temperature, and other parameters such as trace metal concentrations. There is, however, no controlled experimental data to illustrate how water temperature influences the trace metal concentrations and other parameters. The research study presented here illustrates the mechanism of heat is transported from stream water to groundwater in the hyporheic zone on different bed form. The work will serve as the foundation of future research in understanding the relationship of heat and trace metal concentrations in the sediments. / text
|
Page generated in 0.0611 seconds