Spelling suggestions: "subject:"highspeed"" "subject:"highspeed""
241 |
Phase equilibria and thermodynamic properties of high-alloy tool steels : theoretical and experimental approachBratberg, Johan January 2005 (has links)
The recent development of tool steels and high-speed steels has led to a significant increase in alloy additions, such as Co, Cr, Mo, N, V, and W. Knowledge about the phase relations in these multicomponent alloys, that is, the relative stability between different carbides or the solubility of different elements in the carbides and in the matrix phase, is essential for understanding the behaviour of these alloys in heat treatments. This information is also the basis for improving the properties or designing new alloys by controlling the amount of alloying elements. Thermodynamic calculations together with a thermodynamic database is a very powerful and important tool for alloy development of new tool steels and high-speed steels. By thermodynamic calculations one can easily predict how different amounts of alloying elements influence on the stability of different phases. Phase fractions of the individual phases and the solubility of different elements in the phases can be predicted quickly. Thermodynamic calculations can also be used to find optimised processing temperatures, e.g. for different heat treatments. Combining thermodynamic calculations with kinetic modelling one can also predict the microstructure evolution in different processes such as solidification, dissolution heat treatments, carbide coarsening, and the important tempering step producing secondary carbides. The quality of predictions based on thermodynamic calculations directly depends on the accuracy of the thermodynamic database used. In the present work new experimental phase equilibria information, both in model alloys containing few elements and in commercial alloys, has been determined and was used to evaluate and improve the thermodynamic description. This new experimental investigation was necessary because important information concerning the different carbide systems in tool steels and high-speed steels were lacking. A new thermodynamic database for tool steels and high-speed steels, TOOL05, has been developed within this thesis. With the new database it is possible to calculate thermodynamic properties and phase equilibria with high accuracy and good reliability. Compared with the previous thermodynamic description the improvements are significant. In addition the composition range of different alloying elements, where reliable results are obtained with the new thermodynamic database, have been widened significantly. As the available kinetic data did not always predict results in agreement with new experiments the database was modified in the present work. By coupling the new thermodynamic description with the new kinetic description accurate diffusion simulations can be performed for carbide coarsening, carbide dissolution and micro segregation during solidification. / QC 20100929
|
242 |
Modelling of energy requirements by a narrow tillage toolAshrafi Zadeh, Seyed Reza 04 July 2006
The amount of energy consumed during a tillage operation depends on three categories of parameters: (1) soil parameters (2) tool parameters and (3) operating parameters. Although many research works have been reported on the effects of those parameters on tillage energy, the exact number of affecting parameters and the contribution of each parameter in total energy requirement have not been specified. A study with the objectives of specifying energy consuming components and determining the amount of each component for a vertical narrow tool, particularly at high speeds of operation, was conducted in the soil bin facilities of the Department of Agricultural and Bioresource Engineering, University of Saskatchewan. <p>Based on studies by Blumel (1986) and Kushwaha and Linke (1996), four main energy consuming components were assumed: <p>(1) energy requirements associated with soil-tool interactions;<p>(2) energy requirements associated with interactions between tilled and fixed soil masses;<p>(3) energy requirements associated with soil deformation; and <p>(4) energy requirements associated with the acceleration of the tilled soil. <p> Energy requirement of a vertical narrow tool was calculated based on the draft requirement of the tool measured in the soil bin. The effects of three variables, moisture content, operating depth and forward speed, were studied at different levels: (1) moisture content at 14% and 20%; (2) depth at 40, 80, 120 and 160 mm; and (3) speed at 1, 8, 16 and 24 km h-1. Total energy requirement was divided into these four components based upon the procedure developed in the research. <p>Regression equations for different energy components were developed based on experimental data of two replicates and then validated by extra soil bin experiments conducted at same soil and tool but different operational conditions. The set up of energy components data in the model development showed good correlation with the available experimental data for all four components. Coefficients of all regression equations showed a first order energy-moisture content relationship best applicable to those equations of energy components. For the acceleration component, energy-depth relationship at all speed levels resulted in an equation which included first and second orders of depth. In contrast, if only two higher levels of speed were used in the regression model, the relationship between acceleration energy and depth resulted in the second order of depth. When experimental data of acceleration energy at 8, 16, and 24 km h-1 speeds were used in the regression equation, the acceleration energy-speed relationship resulted in both linear and quadratic relationships. It was concluded that for the tool and soil conditions used in the experiments, 8 km h-1 speed resulted in only linear relationship. On the other hand, 16 and 24 km h-1 speeds resulted in a quadratic relationship. Therefore, for all 3 speeds used in experiments, both linear and quadratic relationships were obtained. Considering that the tool was operating at high speeds, this research is expected to contribute valuable experimental data to the researchers working in the field of soil dynamics.
|
243 |
A Spin-torque Transfer MRAM in 90nm CMOSSong, Hui William 25 August 2011 (has links)
This thesis presents the design and implementation of a high-speed read-access STT MRAM. The proposed design includes a 2T1MTJ cell topology, along with two different read schemes: current-based and voltage-based. Compared to the conventional read scheme with 1T1MTJ cells, the proposed design is capable of reducing the loading on the read circuit to minimize the read access time. A complete STT MRAM test chip including the proposed and the conventional schemes was fabricated in 90nm CMOS technology. The 16kb test chip's measurement results confirm a read access time of 6ns and a write access time of 10ns. The read time is 25% faster than other works of similar array size published thus far, while the write time is able to match the fastest result.
|
244 |
A Spin-torque Transfer MRAM in 90nm CMOSSong, Hui William 25 August 2011 (has links)
This thesis presents the design and implementation of a high-speed read-access STT MRAM. The proposed design includes a 2T1MTJ cell topology, along with two different read schemes: current-based and voltage-based. Compared to the conventional read scheme with 1T1MTJ cells, the proposed design is capable of reducing the loading on the read circuit to minimize the read access time. A complete STT MRAM test chip including the proposed and the conventional schemes was fabricated in 90nm CMOS technology. The 16kb test chip's measurement results confirm a read access time of 6ns and a write access time of 10ns. The read time is 25% faster than other works of similar array size published thus far, while the write time is able to match the fastest result.
|
245 |
High-speed coordination in groupwareBarjawi, Mutasem 18 November 2009
Coordination is important in groupware because it helps users collaborate efficiently. However, groupware systems in which activities occur at a faster pace need faster coordination in order to keep up with the speed of the activity. Faster coordination is especially needed when actions are dependent on one another (i.e., they are tightly-coupled) and when each user can see and interact with other users actions as they occur (i.e., real time). There is little information available about this type of fast coordination (also named high-speed coordination or HSC) in groupware. In this thesis, I addressed this problem by providing a body of principles and information about high-speed coordination. This solution was achieved by creating a groupware game called RTChess and then conducting an exploratory evaluation in which high-speed coordination was investigated. The results of this evaluation show that there were small amounts of high-speed coordination in the game and that high-speed coordination was difficult to achieve. In addition, HSC was affected by five main characteristics of the groupware environment: user experience, level of awareness of the partners interactions, communication between partners, number of dependencies that affect the users interactions, and pace of activities in the system.
|
246 |
Design of a Low Power Cyclic/Algorithmic Analog-to-Digital Converter in a 130nm CMOS ProcessPuppala, Ajith kumar January 2012 (has links)
Analog-to-digital converters are inevitable in the modern communication systems and there is always a need for the design of low-power converters. There are different A/D architectures to achieve medium resolution at medium speeds and among all those Cyclic/Algorithmic structure stands out due to its low hardware complexity and less die area costs. This thesis aims at discussing the ongoing trend in Cyclic/Algorithmic ADCs and their functionality. Some design techniques are studied on how to implement low power high resolution A/D converters. Also, non-ideal effects of SC implementation for Cyclic A/D converters are explored. Two kinds of Cyclic A/D architectures are compared. One is the conventional Cyclic ADC with RSD technique and the other is Cyclic ADC with Correlated Level Shift (CLS) technique. This ADC is a part of IMST Design + Systems International GmbH project work and was designed and simulated at IMST GmbH. This thesis presents the design of a 12-bit, 1 Msps, Cyclic/Algorithmic Analog-to-Digital Converter (ADC) using the “Redundant Signed Digit (RSD)” algorithm or 1.5-bit/stage architecture with switched-capacitor (SC) implementation. The design was carried out in 130nm CMOS process with a 1.5 V power supply. This ADC dissipates a power of 1.6 mW when run at full speed and works for full-scale input dynamic range. The op-amp used in the Cyclic ADC is a two-stage folded cascode structure with Class A output stage. This op-amp in typical corner dissipates 631 uW power at 1.5 V power supply and achieves a gain of 77 dB with a phase margin of 64° and a GBW of 54 MHz at 2 pF load.
|
247 |
Introduction to Robust, Reliable, and High-Speed Power-Line Communication SystemsKatayama, Masaaki 12 1900 (has links)
No description available.
|
248 |
Design and Implementation of a High Speed Cable-Based Planar Parallel ManipulatorChan, Edmon January 2005 (has links)
Robotic automation has been the major driving force in modern industrial developments. High speed pick-and-place operations find their place in many manufacturing applications. The goal of this project is to develop a class of high speed robots that has a planar workspace. The presented robots are intended for pick-and-place applications that have a relatively large workspace. In order to achieve this goal, the robots must be both stiff and light. The design strategies adapted in this study were expanded from the research work by Prof Khajepour and Dr. Behzadipour. The fundamental principles are to utilize a parallel mechanism to enhance robot stiffness and cable construction to reduce moving inertia. A required condition for using cable construction is the ability to hold all cables under tension. This can only be achieved under certain conditions. The design phase of the study includes a static analysis on the robot manipulator that ensures certain mechanical components are always held under tension. This idea is extended to address dynamic situations where the manipulator velocity and acceleration are bounded. Two concept robot configurations, 2D-Deltabot, and 2D-Betabot are presented. Through a series of analyses from the robot inverse kinematic model, the dynamic properties of a robot can be computed in an effective manner. It was determined that the presented robots can achieve 4g acceleration and 4m/s maximum speed within their 700mm by 100mm workspace with a pair of 890W rotary actuators controlling two degrees of freedom. The 2D-Deltabot was chosen for prototype development. A kinematics calibration algorithm was developed to enhance the robot accuracy. Experimental test results had shown that the 2D-Deltabot was capable of running at 81 cycles per minute on a 730mm long pick-and-place path. Further experiments showed that the robot had a position accuracy of 0. 62mm and a position repeatability of 0. 15mm, despite a few manufacturing errors from the prototype fabrication.
|
249 |
High-Speed Clocking Deskewing ArchitectureLi, David January 2007 (has links)
As the CMOS technology continues to scale into the deep sub-micron regime, the demand
for higher frequencies and higher levels of integration poses a significant challenge for the clock generation and distribution design of microprocessors. Hence, skew optimization schemes are necessary to limit clock inaccuracies to a small fraction of the clock period. In this thesis, a crude deskew buffer (CDB) is designed to facilitate an adaptive deskewing scheme that reduces the clock skew in an ASIC clock network under manufacturing process,
supply voltage, and temperature (PVT)variations. The crude deskew buffer adopts a DLL structure and functions on a 1GHz nominal clock frequency with an operating frequency range of 800MHz to 1.2GHz. An approximate 91.6ps phase resolution is achieved for all simulation conditions including various process corners and temperature variation. When the crude deskew buffer is applied to seven ASIC clock networks with each under various
PVT variations, a maximum of 67.1% reduction in absolute maximum clock skew has been achieved. Furthermore, the maximum phase difference between all the clock signals in the seven networks have been reduced from 957.1ps to 311.9ps, a reduction of 67.4%. Overall, the CDB serves two important purposes in the proposed deskewing methodology: reducing the absolute maximum clock skew and synchronizes all the clock signals to a certain limit for the fine deskewing scheme. By generating various clock phases, the CDB can also be potentially useful in high speed debugging and testing where the clock duty cycle can be adjusted accordingly. Various positive and negative duty cycle values can be generated based on the phase resolution and the number of clock phases being “hot swapped”. For a
500ps duty cycle, the following values can be achieved for both the positive and negative duty cycle: 224ps, 316ps, 408ps, 592ps, 684ps, and 776ps.
|
250 |
Inventering av internationella bullerskyddsåtgärder för höghastighetståg / Inventory of international noise preventive measures for high-speed trainsAndersson, Jonas January 2009 (has links)
Utvecklingen inom järnvägssektorn går mot snabbare och mer effektiva transporter, dock begränsas utvecklingen av att det krävs nya och mer utvecklade spår och tåg för att uppnå det. Med dagens infrastruktur och tågmodeller är hastigheter på 200 km/h det maximala. Behovet att öka kapaciteten och införa höghastighetstrafik i Sverige utreds i nuläget. Med höghastighetstrafik avses hastigheter på minst 250 km/h. Banverket har som förvaltare av järnvägen ett sektorsansvar för miljön och således även buller. I och med ökade hastigheter ökar även bullret från tågen. Dessutom uppkommer nya former av buller vid hastigheter över 300 km/h. Det buller som uppstår vid dessa höga hastigheter är så kallat aerodynamiskt buller som kommer av turbulenta luftflöden runt tåget. Syftet med examensarbetet har varit att samla in kunskap som finns internationellt angående bulleremissioner och åtgärder mot dessa. Information har samlats in genom en litteraturstudie samt genom personlig kontakt med personer inom den internationella järnvägssektorn. Utifrån kunskapsläget internationellt har en modell skapats med de åtgärder som bedömts viktigast. Tanken med modellen är att ge en bild av de åtgärder mot och källor till bullret som främst kommer av höghastighetstrafik. Men även för att ge Banverket en kompetensgrund att stå på inför en framtida implementering av höghastighetstrafik. Bullerskyddsåtgärder som prioriteras internationellt är planeringen om var banan ska dras. Denna åtgärd utreds under planerandefasen vid nybyggnation av bana. I denna fas kan problem likväl skapas som elimineras och det är här som grunden läggs för framtiden. Utvecklingen av tågen och tekniska lösningar som räldämpare, bullerskärmar och optimal design av banunderbyggnaden är även det prioriterade områden inom höghastighetstrafiken internationellt. Då är det främst utveckling av tekniska lösningar för att minimera det aerodynamiska buller som uppkommer samt buller från kontakten mellan hjul och räl. Den generella arbetsgången är att fokus ligger på åtgärder mot källbullret. Därefter prioriteras åtgärder som ligger längs ljudutbredningsvägen och sist kommer de åtgärder som tillämpas vid mottagaren av bullret. / The development within the railway sector is heading towards faster and more effective transports. The limitations are that new developments must be applied on the trains as well as the tracks. With the infrastructure and train models that we have today, speeds up to 200 km/h is the maximum speed. The needs to raise the capacity and implement high-speed trains in Sweden are under investigation. The speed of the trains must exceed 250 km/h to be labeled as high-speed trains. Banverket as the infrastructure manager has a responsibility for the environment and the noise pollution created by train traffic. As the speed increases so does the noise as well, but it is also new forms of noise that appear with speeds over 300 km/h. The noise that appears around these velocities is called aerodynamic noise and it is coming from the turbulence in the air around the train. The aim of the thesis has been to gather knowledge internationally on the issues concerning noise emissions and measures to prevent them. The information has been gathered thorough a literature survey and by interviews with people within the international railway sector. By the inventory of the knowledge a model has been developed with the issues that are judged to be the most important. The idea with the model is to give a picture of the measures to prevent the noise and sources of the noise that are coming from high-speed traffic. It is also made for Banverket to get the competence to deal with a future implementation of high-speed traffic. A noise preventive measures that is prioritized internationally is planning the localization of the track. This measure is treated during the land use planning when a new line should be built. In this phase problems can either be created or eliminated and it is here the foundation is built for the future. The development of the trains and technical solutions such as rail dampers, noise screens and optimal track design are also measures that have high priority internationally. It is mainly the development and the technical solutions to minimize the aerodynamic noise that occurs and also the noise that are emitted from the contact between the wheels and the rail. The general working process is that the focus is on reducing the noise from the source. After that the priority is to minimize the noise along the propagation path and at last measures at the recipient.
|
Page generated in 0.0454 seconds