• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resultants and height bounds for zeros of homogeneous polynomial systems

Rauh, Nikolas Marcel 26 July 2013 (has links)
In 1955, Cassels proved a now celebrated theorem giving a search bound algorithm for determining whether a quadratic form has a nontrivial zero over the rationals. Since then, his work has been greatly generalized, but most of these newer techniques do not follow his original method of proof. In this thesis, we revisit his 1955 proof, modernize his tools and language, and use this machinery to prove more general theorems regarding height bounds for the common zeros of a system of polynomials in terms of the heights of those polynomials. We then use these theorems to give a short proof of a more general (albeit, known) version of Cassels' Theorem and give some weaker results concerning the rational points of a cubic or a pair of quadratics. / text
2

Zeros de polinômios e propriedades polinomiais em espaços de Banach / Zeros of polynomials and properties polynomials in Banach spaces

Tocha, Neusa Nogas 06 April 2006 (has links)
Neste trabalho temos por objetivo apresentar alguns resultados relacionados aos temas abordados por Aron, Choi e Llavona (1995), Aron e Dimant (2002) e Aron e Rueda (1997). Primeiramente, vamos estudar as propriedades polinomiais (P) e (RP) para os espaços de Banach e a propriedade ACL para as funções definidas entre as bolas unitárias fechadas do espaço. Vamos apresentar novos exemplos de espaços de Banach que possuem a propriedade (P) onde é possível exibir funções que satisfazem a propriedade ACL. Vamos ainda estudar o conjunto de continuidade seqüencial fraca de um polinômio N-homogêneo contínuo com valores vetoriais. Apresentamos as suas propriedades básicas e algumas conexões com o caso dos polinômios escalares. No espaço dual faremos uma breve análise dos polinômios com certo tipo de continuidade com relação à topologia fraca-estrela. Numa outra direção, estudamos os zeros de polinômios N-homogêneos em várias variáveis complexas, mais especificamente, dados n, N números naturais existe um número natural m tal que para cada polinômio N-homogêneo complexo P definido no espaço vetorial C^ existe um subespaço vetorial X_ contido no conjunto dos zeros do polinômio P de dimensão n. Aqui, o principal objetivo é melhorar as limitações para m encontradas por Aron e Rueda (1997) como também generalizar os seus resultados. / Our purpose here is to study some results regarding the articles of Aron, Choi and Llavona (1995), Aron and Dimant (2002) and Aron and Rueda (1997). Firstly, we study properties (P) and (RP) for the Banach spaces and the ACL property for the functions defined between the closed unit balls. We give new examples of Banach spaces which have (P) property and some functions defined in those spaces satisfying the ACL property. We also study the set of weak sequential continuity of a vector-valued continuous Nhomogeneous polynomial. In the dual space we study the N-homogeneous polynomials which are weak-star continuous on bounded sets. Finally, we study the zeros of complex N-homogeneous polynomials. This means, given positive integers n and N, there is a positive integer m such that an complex N-homogeneous polynomial P defined in C^ has an ndimensional subspace contained in its zero set. We discuss the problem of finding a good bound on m as a function of n and N. We improve the results given by Aron and Rueda (1997) as also generalize their results.
3

Zeros de polinômios e propriedades polinomiais em espaços de Banach / Zeros of polynomials and properties polynomials in Banach spaces

Neusa Nogas Tocha 06 April 2006 (has links)
Neste trabalho temos por objetivo apresentar alguns resultados relacionados aos temas abordados por Aron, Choi e Llavona (1995), Aron e Dimant (2002) e Aron e Rueda (1997). Primeiramente, vamos estudar as propriedades polinomiais (P) e (RP) para os espaços de Banach e a propriedade ACL para as funções definidas entre as bolas unitárias fechadas do espaço. Vamos apresentar novos exemplos de espaços de Banach que possuem a propriedade (P) onde é possível exibir funções que satisfazem a propriedade ACL. Vamos ainda estudar o conjunto de continuidade seqüencial fraca de um polinômio N-homogêneo contínuo com valores vetoriais. Apresentamos as suas propriedades básicas e algumas conexões com o caso dos polinômios escalares. No espaço dual faremos uma breve análise dos polinômios com certo tipo de continuidade com relação à topologia fraca-estrela. Numa outra direção, estudamos os zeros de polinômios N-homogêneos em várias variáveis complexas, mais especificamente, dados n, N números naturais existe um número natural m tal que para cada polinômio N-homogêneo complexo P definido no espaço vetorial C^ existe um subespaço vetorial X_ contido no conjunto dos zeros do polinômio P de dimensão n. Aqui, o principal objetivo é melhorar as limitações para m encontradas por Aron e Rueda (1997) como também generalizar os seus resultados. / Our purpose here is to study some results regarding the articles of Aron, Choi and Llavona (1995), Aron and Dimant (2002) and Aron and Rueda (1997). Firstly, we study properties (P) and (RP) for the Banach spaces and the ACL property for the functions defined between the closed unit balls. We give new examples of Banach spaces which have (P) property and some functions defined in those spaces satisfying the ACL property. We also study the set of weak sequential continuity of a vector-valued continuous Nhomogeneous polynomial. In the dual space we study the N-homogeneous polynomials which are weak-star continuous on bounded sets. Finally, we study the zeros of complex N-homogeneous polynomials. This means, given positive integers n and N, there is a positive integer m such that an complex N-homogeneous polynomial P defined in C^ has an ndimensional subspace contained in its zero set. We discuss the problem of finding a good bound on m as a function of n and N. We improve the results given by Aron and Rueda (1997) as also generalize their results.
4

Estudo de robustez em sistemas lineares por meio de relaxações em termos de desigualdades matriciais lineares / Robustness of linear systems by means of linear matrix inequalities relaxations

Oliveira, Ricardo Coração de Leão Fontoura de, 1978- 24 March 2006 (has links)
Orientador: Pedro Luis Dias Peres / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T10:51:24Z (GMT). No. of bitstreams: 1 Oliveira_RicardoCoracaodeLeaoFontourade_D.pdf: 881205 bytes, checksum: 053263f18afcf3085a0fc073e1594d2d (MD5) Previous issue date: 2006 / Resumo: A principal contribuição desta tese é a proposta de uma metodologia para solução de desigualdades matriciais lineares dependentes de parâmetros que freqüentemente aparecem em problemas de análise e controle robusto de sistema lineares com incertezas na forma politópica. O método consiste na parametrização das soluções em termos de polinômios homogêneos com coeficientes matriciais de grau arbitrário. Para a construção dessas soluções, um procedimento baseado em resoluções de problemas de otimiza¸c¿ao na forma de um número finito de desigualdades matriciais lineares 'e proposto, resultando em seqüências de relaxações que convergem para uma solução polinomial homogênea sempre que uma solução existe. Problemas de análise robusta e custo garantido s¿ao analisados em detalhes tanto para sistemas a tempo contínuo quanto para sistemas discretos no tempo. Vários exemplos numéricos são apresentados ilustrando a eficiência dos métodos propostos em termos da acurácia dos resultados e do esforço computacional quando comparados com outros métodos da literatura / Abstract: This thesis proposes, as main contribution, a new methodology to solve parameterdependent linear matrix inequalities which frequently appear in robust analysis and control problems of linear system with polytopic uncertainties. The proposed method relies on the parametrization of the solutions in terms of homogeneous polynomials of arbitrary degree with matrix valued coefficients. For constructing such solutions, a procedure based on optimization problems formulated in terms of a finite number of linear matrix inequalities is proposed, yielding sequences of relaxations which converge to a homogeneous polynomial solution whenever a solution exists. Problems of robust analysis and guaranteed costs are analyzed in details for continuous and discrete-time uncertain systems. Several numerical examples are presented illustrating the efficiency of the proposed methods in terms of accuracy and computational burden when compared to other methods from the literature / Doutorado / Automação / Doutor em Engenharia Elétrica
5

Composition Operators on Classes of Holomorphic Functions on Banach Spaces

Santacreu Ferra, Daniel 05 September 2022 (has links)
[ES] El objetivo principal de esta tesis es el estudio de diferentes propiedades (principalmente ergódicas) de operadores de composición y de composición ponderados actuando en espacios de funciones holomorfas definidas en un espacio de Banach de dimensión infinita. Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación φ : U → U, la acción f 7 → Cφ ( f ) = f ◦ φ define un operador, llamado operador de composición (y a φ se le llama símbolo del operador). Consideramos este operador actuando en diferentes espacios de funciones. La filosofía general es intentar caracterizar en cada caso las propiedades de nuestro interés en función de condiciones en φ. También, dada ψ: U → C, el operador de multiplicación se define como Mψ( f ) = ψ · f y (con φ como antes), el operador de composición ponderado como Cψ,φ ( f ) = ψ·( f ◦φ) (en este caso ψ se conoce como el peso o multiplicador del operador). Nuevamente, la idea es describir propiedades de estos operadores en términos de condiciones sobre φ y/o ψ. Claramente Cψ,φ = Mψ ◦ Cφ , y tomando φ = idU (la identidad en U) o ψ ≡ 1 (la función constante 1) recuperamos Mψ y Cφ . Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas f : B → C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas en B. Vamos a considerar operadores de composición y de composición ponderados definidos en cada uno de estos espacios (tomando entonces U = B en la definición). También consideramos operadores de composición definidos en el espacio vectorial de polinomios continuos y m-homogéneos (denotado P (m X )). En este caso tomamos U = X . La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resultados básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos con operadores de composición ergódicos en media y acotados en potencias definidos en P (m X ). En el Capítulo 3 estudiamos operadores de composición ergódicos en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando también el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4 estudiamos la compacidad de operadores de composición ponderados definidos en H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (débil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación en potencias y ergodicidad en media de operadores de composición ponderados actuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media del operador de multiplicación. / [CA] L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment ergòdiques) d’operadors de composició i de composició ponderats actuant en espais de funcions holomorfes en un espai de Banach de dimensió infinita. Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació φ : U → U, l’acció f 7 → Cφ ( f ) = f ◦ φ defineix un operador, anomenat operador de compo- sició (i φ s’anomena símbol de l’operador). Considerem aquest operador actuant en diferents espais de funcions. La filosofia general és intentar caracteritzar en cada cas les propietats del nostre interés en funció de condicions en φ. També, donada ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) = ψ · f i (amb φ com abans), l’operador de composició ponderat com a Cψ,φ ( f ) = ψ · ( f ◦ φ) (en aquest cas ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure propietats d’aquests operadors en termes de condicions sobre φ i/o ψ. Clarament Cψ,φ = Mψ ◦ Cφ , i prenent φ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1) recuperem Mψ i Cφ . Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B → C es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope- radors de composició i de composició ponderats definits en cadascun d’aquests espais (prenent llavors U = B en la definició). També considerem operadors de composició definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (m X )). En aquest cas prenem U = X . La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope- radors de composició ergòdics en mitjana i fitats en potències definits en P (m X ). En el Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi- ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en mitjana de l’operador de multiplicació. / [EN] The main aim in this thesis is to study different properties (mostly ergodic) of compo- sition and weighted composition operators acting on spaces of holomorphic functions defined on an infinite dimensional complex Banach space. Let X be a Banach space and U some open subset. Given a mapping φ : U → U the action f 7 → Cφ ( f ) = f ◦ φ defines an operator, called composition operator (and φ is called the symbol of the operator). We consider this operator acting on different spaces of functions. The general philosophy is to try to characterise in each case the properties of our interest in terms of conditions on φ. Also, given ψ: U → C the multiplication operator is defined as Mψ( f ) = ψ· f and (with φ as above), the weighted composition operator as Cψ,φ ( f ) = ψ · ( f ◦ φ) (here ψ is called the weight or multiplier of the operator). Again, the idea is to describe properties of these operators in terms of conditions on ψ and/or φ. Clearly Cψ,φ = Mψ ◦ Cφ , and taking φ = idU (the identity on U) or ψ ≡ 1 (the constant function 1) we recover Mψ and Cφ . We denote the open unit ball of X by B. The space of all holomorphic functions f : B → C is denoted by H(B). We write Hb(B) for the space holomorphic functions of bounded type on B, and H∞(B) for the space of bounded holomorphic functions on B. We are going to consider composition and weighted composition operators defined on each one of these spaces (taking then U = B in the definition). We also consider composition operators defined on the vector space of all continuous m-homogeneous polynomials on X (which is denoted by P (m X )). In this case we take U = X . The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba- sic results, needed to make the text self-contained. In Chapter 2 we deal with mean ergodic and power bounded composition operators defined on P (m X ). In Chapter 3 we study mean ergodic and power bounded composition operators defined on H(B), Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert space. In Chapter 4 we study compactness of weighted composition operators defined on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded- ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B) and H∞(B), as well as about compactness and mean ergodicity of the multiplication operator. / Santacreu Ferra, D. (2022). Composition Operators on Classes of Holomorphic Functions on Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185235
6

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
7

A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei

Zeekoei, Elroy Denovanne January 2011 (has links)
Recall that a Banach space X has the Dunford-Pettis property if every weakly compact operator defined on X takes weakly compact sets into norm compact sets. Some valuable characterisations of Banach spaces with the Dunford-Pettis property are: X has the DPP if and only if for all Banach spaces Y, every weakly compact operator from X to Y sends weakly convergent sequences onto norm convergent sequences (i.e. it requires that weakly compact operators on X are completely continuous) and this is equivalent to “if (xn) and (x*n) are sequences in X and X* respectively and limn xn = 0 weakly and limn x*n = 0 weakly then limn x*n xn = 0". A striking application of the Dunford-Pettis property (as was observed by Grothendieck) is to prove that if X is a linear subspace of L() for some finite measure  and X is closed in some Lp() for 1 ≤ p < , then X is finite dimensional. The fact that the well known spaces L1() and C() have this property (as was proved by Dunford and Pettis) was a remarkable achievement in the early history of Banach spaces and was motivated by the study of integral equations and the hope to develop an understanding of linear operators on Lp() for p ≥ 1. In fact, it played an important role in proving that for each weakly compact operator T : L1()  L1() or T : C()  C(), the operator T2 is compact, a fact which is important from the point of view that there is a nice spectral theory for compact operators and operators whose squares are compact. There is an extensive literature involving the Dunford-Pettis property. Almost all the articles and books in our list of references contain some information about this property, but there are plenty more that could have been listed. The reader is for instance referred to [4], [5], [7], [8], [10], [17] and [24] for information on the role of the DPP in different areas of Banach space theory. In this dissertation, however, we are motivated by the two papers [7] and [8] to study alternative Dunford-Pettis properties, to introduce a scale of (new) alternative Dunford-Pettis properties, which we call DP*-properties of order p (briefly denoted by DP*P), and to consider characterisations of Banach spaces with these properties as well as applications thereof to polynomials and holomorphic functions on Banach spaces. In the paper [8] the class Cp(X, Y) of p-convergent operators from a Banach space X to a Banach space Y is introduced. Replacing the requirement that weakly compact operators on X should be completely continuous in the case of the DPP for X (as is mentioned above) by “weakly compact operators on X should be p-convergent", an alternative Dunford-Pettis property (called the Dunford-Pettis property of order p) is introduced. More precisely, if 1 ≤ p ≤ , a Banach space X is said to have DPPp if the inclusion W(X, Y)  Cp(X, Y) holds for all Banach spaces Y . Here W(X, Y) denotes the family of all weakly compact operators from X to Y. We now have a scale of “Dunford-Pettis like properties" in the sense that all Banach spaces have the DPP1, if p < q, then each Banach space with the DPPq also has the DPPp and the strongest property, namely the DPP1 coincides with the DPP. In the paper [7] the authors study a property on Banach spaces (called the DP*-property, or briey the DP*P) which is stronger than the DPP, in the sense that if a Banach space has this property then it also has DPP. We say X has the DP*P, when all weakly compact sets in X are limited, i.e. each sequence (x*n)  X * in the dual space of X which converges weak* to 0, also converges uniformly (to 0) on all weakly compact sets in X. It turns out that this property is equivalent to another property on Banach spaces which is introduced in [17] (and which is called the *-Dunford-Pettis property) as follows: We say a Banach space X has the *-Dunford-Pettis property if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. After a thorough study of the DP*P, including characterisations and examples of Banach spaces with the DP*P, the authors in [7] consider some applications to polynomials and analytic functions on Banach spaces. Following an extensive literature study and in depth research into the techniques of proof relevant to this research field, we are able to present a thorough discussion of the results in [7] and [8] as well as some selected (relevant) results from other papers (for instance, [2] and [17]). This we do in Chapter 2 of the dissertation. The starting point (in Section 2.1 of Chapter 2) is the introduction of the so called p-convergent operators, being those bounded linear operators T : X  Y which transform weakly p-summable sequences into norm-null sequences, as well as the so called weakly p-convergent sequences in Banach spaces, being those sequences (xn) in a Banach space X for which there exists an x  X such that the sequence (xn - x) is weakly p-summable. Using these concepts, we state and prove an important characterisation (from the paper [8]) of Banach spaces with DPPp. In Section 2.2 (of Chapter 2) we continue to report on the results of the paper [7], where the DP*P on Banach spaces is introduced. We focus on the characterisation of Banach spaces with DP*P, obtaining among others that a Banach space X has DP*P if and only if for all weakly null sequences (xn) in X and all weak* null sequences (x*n) in X*, we have x*n(xn) n 0. An important characterisation of the DP*P considered in this section is the fact that X has DP*P if and only if every T  L(X, c0) is completely continuous. This result proves to be of fundamental importance in the study of the DP*P and its application to results on polynomials and holomorphic functions on Banach spaces. To be able to report on the applications of the DP*P in the context of homogeneous polynomials and analytic functions on Banach spaces, we embark on a study of “Complex Analysis in Banach spaces" (mostly with the focus on homogeneous polynomials and analytic functions on Banach spaces). This we do in Chapter 3; the content of the chapter is mostly based on work in the books [23] and [14], but also on the work in some articles such as [15]. After we have discussed the relevant theory of complex analysis in Banach spaces in Chapter 3, we devote Chapter 4 to considering properties of polynomials and analytic functions on Banach spaces with DP*P. The discussion in Chapter 4 is based on the applications of DP*P in the paper [7]. Finally, in Chapter 5 of the dissertation, we contribute to the study of “Dunford-Pettis like properties" by introducing the Banach space property “DP*P of order p", or briefly the DP*Pp for Banach spaces. Using the concept “weakly p-convergent sequence in Banach spaces" as is defined in [8], we define weakly-p-compact sets in Banach spaces. Then a Banach space X is said to have the DP*-property of order p (for 1 ≤ p ≤ ) if all weakly-p-compact sets in X are limited. In short, we say X has DP*Pp. As in [8] (where the DPPp is introduced), we now have a scale of DP*P-like properties, in the sense that all Banach spaces have DP*P1 and if p < q and X has DP*Pq then it has DP*Pp. The strongest property DP*P coincides with DP*P. We prove characterisations of Banach spaces with DP*Pp, discuss some examples and then consider applications to polynomials and analytic functions on Banach spaces. Our results and techniques in this chapter depend very much on the results obtained in the previous three chapters, but now we have to find our own correct definitions and formulations of results within this new context. We do this with some success in Sections 5.1 and 5.2 of Chapter 5. Chapter 1 of this dissertation provides a wide range of concepts and results in Banach spaces and the theory of vector sequence spaces (some of them very deep results from books listed in the bibliography). These results are mostly well known, but they are scattered in the literature - they are discussed in Chapter 1 (some with proof, others without proof, depending on the importance of the arguments in the proofs for later use and depending on the detail with which the results are discussed elsewhere in the literature) with the intention to provide an exposition which is mostly self contained and which will be comfortably accessible for graduate students. The dissertation reflects the outcome of our investigation in which we set ourselves the following goals: 1. Obtain a thorough understanding of the Dunford-Pettis property and some related (both weaker and stronger) properties that have been studied in the literature. 2. Focusing on the work in the paper [8], understand the role played in the study of difierent classes of operators by a scale of properties on Banach spaces, called the DPPp, which are weaker than the DP-property and which are introduced in [8] by using the weakly p-summable sequences in X and weakly null sequences in X*. 3. Focusing on the work in the paper [7], investigate the DP*P for Banach spaces, which is the exact property to answer a question of Pelczynsky's regarding when every symmetric bilinear separately compact map X x X  c0 is completely continuous. 4. Based on the ideas intertwined in the work of the paper [8] in the study of a scale of DP-properties and the work in the paper [7], introduce the DP*Pp on Banach spaces and investigate their applications to spaces of operators and in the theory of polynomials and analytic mappings on Banach spaces. Thereby, not only extending the results in [7] to a larger family of Banach spaces, but also to find an answer to the question: “When will every symmetric bilinear separately compact map X x X  c0 be p-convergent?" / Thesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
8

Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques / DC programming and DCA combinatorial optimization and polynomial optimization via SDP techniques

Niu, Yi Shuai 28 May 2010 (has links)
L’objectif de cette thèse porte sur des recherches théoriques et algorithmiques d’optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d’optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l’Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L’implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d’ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d’optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L’ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l’utilisation pratique et d’enrichir nos travaux de recherche. / The main objective of this thesis focuses on theoretical and algorithmic researches of local and global optimization techniques to DC programming & DCA with Branch and Bound (B&B) and the DC/SDP relaxation techniques to solve several types of non-convex optimization problems (including Combinatorial Optimization and Polynomial Optimization). This thesis is divided into four parts :We present in the first part some fondamental theorems and essential techniques in DC programming & DC Algorithm (DCA), the SDP Relaxation techniques, as well as the Branch and Bound methods (B&B).In the second part, we are interested in solving mixed integer quadratic and linear programs. We propose new local and global approaches based on DCA, B&B and SDP. The implementation of software and numerical simulations have also been investigated.The third part explores the DC programming approaches & DCA combined with a B&B technique and SDP for locally and globally solving a class of polynomial programming. The polynomial program with homogeneous polynomial functionsand its application to portfolio selection problem involving higher order moments in financial optimization have been deeply studied in this part.Finally, in the last part, we present our research on optimization problems under constraints of semi-definite matrices via our DC programming approaches. This part is dedicated to the resolution of the BMI and QMI feasibility problems in the field of optimal control.All these proposed methods have been implemented with MATLAB, C++ etc., that allowing us to confirm the practical use and enrich our research works.

Page generated in 0.061 seconds