• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 2
  • Tagged with
  • 19
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'algèbre de Lie d'homotopie rationnelle des espaces de configurations dans une variété

Roisin, Paul 15 December 2006 (has links)
D'un point de vue rationnel, la question fondamentale dans l'étude des espaces de configurations dans une variété est la suivante : « Le type d'homotopie rationnel de l'espace des configurations de k points d'une variété simplement connexe dépend-t-il uniquement du type d'homotopie rationnel de cette variété ? » Dans cet ouvrage, nous nous intéressons aux variétés compactes, simplement connexes et sans bord. Dans ce cadre précis, nous étudions le lien entre les invariants d'homotopie rationnelle de l'espace des configurations de 2 points dans une variété, et le modèle minimal de Sullivan de cette variété. Le point clef de ce travail est la construction explicite d'une algèbre de Sullivan minimale qui s'injecte dans le modèle minimal de Sullivan de l'espace des configurations de deux points d'une variété. Nous en déduisons deux résultats essentiels concernant l'algèbre de Lie d'homotopie rationnelle de cet espace. D'une part, nous identifions une relation de cette algèbre de Lie, induite par l'action du groupe des permutations de deux éléments sur l'espace des configurations de deux points. D'autre part, nous prouvons que si la variété est coformelle et de catégorie rationnelle supérieure à 3, alors cette algèbre de Lie est complètement déterminée par le modèle minimal de la variété.
2

Objets rigides : de la combinatoire des catégories amassées supérieures à l'algèbre homotopique / Rigid objects : from higher cluster category combinatorics to homotopical algebra

Jacquet-Malo, Lucie 29 September 2017 (has links)
Dans cette thèse, nous décrivons une réalisation géométrique des carquois de type Dynkin, et certains carquois euclidiens. Nous traitons le cas D ̃n en profondeur et démontrons quelques résultats complémentaires aux travaux de Baur, Marsh et Torkildsen sur les réalisations géométriques des catégories amassées supérieures. Pour le cas D ̃n, on trouve la figure qui correspond à l'étude, on démontre la compatibilité entre le flip d'une (m+2)-angulation, et la mutation de carquois coloré. On trouve une bijection entre les objets m-rigides et chaque arc dit admissible, puis entre les objets amas-basculants et les (m+2)-angulations. De plus, on démontrela compatibilité entre la réduction d'Iyama-Yoshino, et le fait de couper le long d'un arc, qu'on définira formellement. Nous démontrons aussi qu'une catégorie exacte est une catégorie de préfibration au sens de Anderson-Brown-Cisinski, qui vérifie le théorème de Quillen, et une catégorie de Frobenius est munie d'une structure de modèle, compatible avec le passage à la catégorie stable, qui est triangulée / We show that a subcategory of the m-cluster category of type D ̃n is isomorphic to a category consisting of arcs in an (n - 2)m-gon with two central (m - 1)-gons inside of it. We show that the mutation of colored quivers and m-cluster-tilting objects is compatible with the flip of an (m + 2)-angulation. In this thesis, we study the geometric realizations of m-cluster categories of Dynkin types A, D, A ̃ and D ̃. We show, in those four cases, that there is a bijection between (m + 2)-angulations and isoclasses of basic m-cluster tilting objects. Underthese bijections, flips of (m + 2)-angulations correspond to mutations of m-cluster tilting objects. Our strategy consists in showing that certain Iyama-Yoshino reductions of the m-cluster categories under consideration can be described in terms of cutting along an arc the corresponding geometric realizations. This allows to infer results from small cases to the general ones. Let Ɛ be a weakly idempotent complete exact category with enough injective and projective objects. Assume that M ⊆ Ɛ is a rigid, contravariantly finite subcategoryof Ɛ containing all the injective and projective objects, and stable under taking direct sums and summands. In this paper, Ɛ is equipped with the structure of a prefibration category with cofibrant replacements. As a corollary, we show, using the results of Demonet and Liu in [DL13], that the category of finite presentation modules on the costable category M is a localization of Ɛ. We also deduce that Ɛ → modM admits a calculus of fractions up to homotopy. These two corollaries are analogues for exact categories of results of Buan and Marsh in [BM13], [BM12] (see also [Bel13]) that hold for triangulated categories. If Ɛ is a Frobenius exact category, we enhance its structure of prefibration category to the structure of a model category (see the article of Palu in [?] for the case of triangulated categories). This last result applies in particular when Ɛ is any of the Hom-finite Frobenius categories appearing in relation to cluster algebras
3

Sur les A-infini-catégories

Lefèvre-Hasegawa, Kenji 06 November 2003 (has links) (PDF)
Nous étudions les A-infini-algèbres Z-graduées (non nécessairement connexes) et leurs A-infini-modules. En utilisant les constructions bar et cobar ainsi que les outils de l'algèbre homotopique de Quillen, nous décrivons la localisation de la catégorie des A-infini-algèbres par rapport aux A-infini-quasi-isomorphismes. Nous adaptons ensuite ces méthodes pour décrire la catégorie dérivée DA d'une A-infini-algèbre augmentée A. Le cas où A n'est pas muni d'une augmentation est traité différemment. Néanmoins, lorsque A est strictement unitaire, sa catégorie dérivée peut être décrite de la même manière que dans le cas augmenté. Nous étudions ensuite deux variantes de la notion d'unitarité pour les A-infini-algèbres : l'unitarité stricte et l'unitarité homologique. Nous montrons que d'un point de vue homotopique, il n'y a pas de différence entre ces deux notions. Nous donnons ensuite un formalisme qui permet de définir les A-infini-catégories comme des A-infini-algèbres dans certaines catégories monoïdales. Nous généralisons à ce cadre les constructions fondamentales de la théorie des catégories : le foncteur de Yoneda, les catégories de foncteurs, les équivalences de catégories... Nous montrons que toute catégorie triangulée algébrique engendrée par un ensemble d'objets est A-infini-prétriangulée, c'est-à-dire qu'elle est équivalente à H^0 Tw A, où Tw A est l'A-infini-catégorie des objets tordus d'une certaine A-infini-catégorie A. Nous démontrons ainsi une partie des énoncés d'algèbre homologique presentés par M. Kontsevich pendant son cours ``Catégories triangulées et géométrie'' à l'ENS en 1998.
4

Towards a homotopical algebra of dependent types / Vers une algèbre homotopique des types dépendants

Cagne, Pierre 07 December 2018 (has links)
Cette thèse est consacrée à l'étude des interactions entre les structures homotopiques en théorie des catégories et les modèles catégoriques de la théorie des types de Martin-Löf. Le mémoire s'articule selon trois axes: les bifibrationos de Quillen, les catégories homotopiques des bifibrations de Quillen, et les tribus généralisées. Le premier axe définit une nouvelle notion de bifibration classifiant les pseudo foncteurs avec de bonnes propriétés depuis un catégorie de modèles et à valeurs dans la 2-catégorie des catégories de modèles et adjonctions de Quillen entre elles. En particulier on montre comment équipper d'une structure de modèle la construction de Grothendieck d'un tel pseudo foncteur. Le théorème principal de cette partie est une caractérisation des bonnes propriétés qu'un pseudo foncteur doit posséder pour supporter cette structure de catégorie de modèles sur sa construction de Grothendieck. En ce sens, on améliore les deux théorèmes précédemment existants dans la littérature qui ne donnent que des conditions suffisantes alors que nous donnons des conditions nécessaires et suffisantes. Le second axe se concentre sur le foncteur induit entre les catégories homotopiques des catégories de modèles mises en oeuvre dans une bifibration de Quillen. On y prouve que cette localization peut se faire en deux étapes au moyen d'un quotient homotopique à la Quillen itéré. De manière à rendre cette opération rigoureuse, on a besoin de travailler dans un cadre légèrement plus large que celui imaginé par Quillen : en se basant sur le travail d'Egger, on utilise des catégories de modèles sans nécessairement tous les (co)égalisateurs. Le chapitre de prérequis sert précisément à reconstruire la théorie basique des l'algèbre homotopique à la Quillen dans ce cadre élargi. Les structures mis à nu dans cette partie imposent de considérer des versions "homotopique" des poussés en avant et des tirés en arrière qu'on trouve habituellement dans les (op)fibrations de Grothendieck. C'est le point de départ pour le troisième axe, dans lequel on définit une nouvelle structure, appelée tribu relative, qui permet d'axiomatiser des versions homotopiques de la notion de flèche cartésienne et cocartésienne. Cela est obtenu en réinterprétant les (op)fibrations de Grothendieck en termes de problèmes de relèvement. L'outil principal dans cette partie est une version relative des systèmes de factorisation stricts ou faibles usuels. Cela nous permet en particulier d'expérimenter un nouveau demodèle de la théorie des types dépendants intentionnelle dans lequelles types identités sont donnés par l'exact analogue homotopique du prédicat d'égalité dans les hyperdoctrines de Lawvere. / This thesis is concerned with the study of the interplay between homotopical structures and categorical model of Martin-Löf's dependent type theory. The memoir revolves around three big topics: Quillen bifibrations, homotopy categories of Quillen bifibrations, and generalized tribes. The first axis defines a new notion of bifibrations, that classifies correctly behaved pseudo functors from a model category to the 2-category of model categories and Quillen adjunctions between them. In particular it endows the Grothendieck construction of such a pseudo functor with a model structure. The main theorem of this section acts as a charaterization of the well-behaved pseudo functors that tolerates this "model Gothendieck construction". In that respect, we improve the two previously known theorems on the subject in the litterature that only give sufficient conditions by designing necessary and sufficient conditions. The second axis deals with the functors induced between the homotopy categories of the model categories involved in a Quillen bifibration. We prove that this localization can be performed in two steps, by means of Quillen's construction of the homotopy category in an iterated fashion. To that extent we need a slightly larger framework for model categories than the one originally given by Quillen: following Egger's intuitions we chose not to require the existence of equalizers and coequalizers in our model categories. The background chapter makes sure that every usual fact of basichomotopical algebra holds also in that more general framework. The structures that are highlighted in that chapter call for the design of notions of "homotopical pushforward" and "homotopical pullback". This is achieved by the last axis: we design a structure, called relative tribe, that allows for a homotopical version of cocartesian morphisms by reinterpreting Grothendieck (op)fibrations in terms of lifting problems. The crucial tool in this last chapter is given by a relative version of orthogonal and weak factorization systems. This allows for a tentative design of a new model of intentional type theory where the identity types are given by the exact homotopical counterpart of the usual definition of the equality predicate in Lawvere's hyperdoctrines
5

Propérades en Algèbre, Topologie, Géométrie et Physique Mathématique

Vallette, Bruno 11 June 2009 (has links) (PDF)
Ce mémoire contient un résumé de mes travaux sur le thème des propérades et de leurs applications en algèbre, topologie, géométrie et physique mathématique.
6

Opérations sur la K-théorie algébrique et régulateurs via la théorie homotopique des schémas

Riou, Joël 07 July 2006 (has links) (PDF)
Cette thèse est une contribution à la théorie homotopique des schémas. Dans la première partie, on poursuit les constructions de Fabien Morel et Vladimir Voevodsky en définissant la catégorie homotopique stable des sites suspendus avec intervalles. La généralité, plus grande que celle permise par la définition de John F. Jardine, permet de donner une construction rigoureuse des foncteurs " points complexes " en théorie homotopique des schémas.<br /><br />Dans la seconde partie, on montre qu'au-dessus d'un schéma de base régulier S, se donner un endomorphisme dans la catégorie homotopique de S de la grassmannienne infinie (donnant un modèle de la K-théorie algébrique d'après un théorème de Morel et Voevodsky) revient à se donner une application fonctorielle K_0(X) -> K_0(X) où X parcourt la catégorie des schémas lisses sur S. Ceci permet de construire une structure de lambda-anneau spécial sur les groupes de K-théorie algébrique supérieure et de vérifier que cette structure coïncide avec les constructions antérieures. Les opérations additives sur la K-théorie algébrique sont étudiées en détail et des versions stables de ces énoncés sont obtenues, à coefficients entiers ou rationnels. La technique utilisée permet également de construire des classes de Chern sur la K-théorie algébrique supérieure à valeurs dans la cohomologie motivique (et dans d'autres théories cohomologiques) et de montrer très explicitement l'existence de morphismes stablement fantômes en théorie homotopique des schémas.
7

Invariants topologiques des espaces non-commutatifs.

Blanc, Anthony 05 July 2013 (has links) (PDF)
Dans cette thèse, on donne une définition de la K-théorie topologique des espaces non-commutatifs de Kontsevich (c'est-à-dire des dg-catégories) définis sur les nombres complexes. L'introduction de ce nouvel invariant initie la recherche des invariants de nature topologique des espaces non-commutatifs, comme "simplifications" des invariants algébriques (K-théorie algébrique, homologie cyclique, périodique comme étudiés dans les travaux de Tsygan, Keller). La motivation principale vient de la théorie de Hodge non-commutative au sens de Katzarkov--Kontsevich--Pantev. En géométrie algébrique, la partie rationnelle de la structure de Hodge est donnée par la cohomologie de Betti rationnelle, qui est la cohomologie rationnelle de l'espace des points complexes du schéma. La recherche d'un espace associé à une dg-catégorie trouve une première réponse avec le champ (défini par Toën--Vaquié) classifiant les dg-modules parfaits sur cette dg-catégorie. La définition de la K-théorie topologique a pour ingrédient essentiel le foncteur de réalisation topologique des préfaisceaux en spectres sur le site des schémas de type fini sur les complexes. La partie connective de la K-théorie semi-topologique peut être définie comme la réalisation topologique du champ en monoïdes commutatifs des dg-modules parfaits. Cependant pour atteindre la K-théorie négative, on réalise le préfaisceau donné par la K-théorie algébrique non-connective. Un de nos résultats principaux énonce l'existence d'une équivalence naturelle entre ces deux définitions dans le cas connectif. On montre que la réalisation topologique du préfaisceau de K-théorie algébrique connective pour la dg-catégorie unité donne le spectre de K-théorie topologique usuel. Puis que c'est aussi vrai pour la K-théorie algébrique non-connective, en utilisant la propriété de restriction aux lisses de la réalisation topologique. En outre, cette propriété de restriction aux schémas lisses nécessite de montrer une généralisation de la descente propre cohomologique de Deligne, dans le cadre homotopique non-abélien.La K-théorie topologique est alors définie en localisant par rapport à l'élément de Bott. Cette définition repose donc sur des résultats non-triviaux. On montre alors que le caractère de Chern de la K-théorie algébrique vers l'homologie périodique se factorise par la K-théorie topologique, donnant un candidat naturel pour la partie rationnelle d'une structure de Hodge non-commutative sur l'homologie périodique, ceci étant énoncé sous la forme de la conjecture du réseau. Notre premier résultat de comparaison concerne le cas d'un schéma lisse de type fini sur les complexes -- la conjecture du réseau est alors vraie pour de tels schémas. On montre ensuite que cette conjecture est vraie dans le cas des algèbres associatives de dimension finie.
8

Invariants topologiques des espaces non-commutatifs. / Topological invariants of non-commutative spaces.

Blanc, Anthony 05 July 2013 (has links)
Dans cette thèse, on donne une définition de la K-théorie topologique des espaces non-commutatifs de Kontsevich (c'est-à-dire des dg-catégories) définis sur les nombres complexes. L'introduction de ce nouvel invariant initie la recherche des invariants de nature topologique des espaces non-commutatifs, comme "simplifications" des invariants algébriques (K-théorie algébrique, homologie cyclique, périodique comme étudiés dans les travaux de Tsygan, Keller). La motivation principale vient de la théorie de Hodge non-commutative au sens de Katzarkov--Kontsevich--Pantev. En géométrie algébrique, la partie rationnelle de la structure de Hodge est donnée par la cohomologie de Betti rationnelle, qui est la cohomologie rationnelle de l'espace des points complexes du schéma. La recherche d'un espace associé à une dg-catégorie trouve une première réponse avec le champ (défini par Toën--Vaquié) classifiant les dg-modules parfaits sur cette dg-catégorie. La définition de la K-théorie topologique a pour ingrédient essentiel le foncteur de réalisation topologique des préfaisceaux en spectres sur le site des schémas de type fini sur les complexes. La partie connective de la K-théorie semi-topologique peut être définie comme la réalisation topologique du champ en monoïdes commutatifs des dg-modules parfaits. Cependant pour atteindre la K-théorie négative, on réalise le préfaisceau donné par la K-théorie algébrique non-connective. Un de nos résultats principaux énonce l'existence d'une équivalence naturelle entre ces deux définitions dans le cas connectif. On montre que la réalisation topologique du préfaisceau de K-théorie algébrique connective pour la dg-catégorie unité donne le spectre de K-théorie topologique usuel. Puis que c'est aussi vrai pour la K-théorie algébrique non-connective, en utilisant la propriété de restriction aux lisses de la réalisation topologique. En outre, cette propriété de restriction aux schémas lisses nécessite de montrer une généralisation de la descente propre cohomologique de Deligne, dans le cadre homotopique non-abélien.La K-théorie topologique est alors définie en localisant par rapport à l'élément de Bott. Cette définition repose donc sur des résultats non-triviaux. On montre alors que le caractère de Chern de la K-théorie algébrique vers l'homologie périodique se factorise par la K-théorie topologique, donnant un candidat naturel pour la partie rationnelle d'une structure de Hodge non-commutative sur l'homologie périodique, ceci étant énoncé sous la forme de la conjecture du réseau. Notre premier résultat de comparaison concerne le cas d'un schéma lisse de type fini sur les complexes -- la conjecture du réseau est alors vraie pour de tels schémas. On montre ensuite que cette conjecture est vraie dans le cas des algèbres associatives de dimension finie. / In this thesis, we give a definition of a topological K-theory of Kontsevich's non-commutative spaces (i.e. of dg-categories) defined over complex numbers. The introduction of this invariant initiates the quest for topological invariants of non-commutative spaces, which are considered as "simplifications" of algebraic ones like algebraic K-theory, cyclic homology, periodic homology as studied by Tsygan, Keller. The main motivation comes from non-commutative Hodge theory in the sense of Katzarkov--Kontsevich--Pantev. In algebraic geometry, the rational part of the Hodge structure is given by rational Betti cohomology, which is the rational cohomology of the underlying space of complex points. The existence of a space associated to a dg-category admits a first answer given by the stack (defined by Toën--Vaquié) classifying perfect dg-modules over this dg-category. The essential ingredient in the definition of the topological K-theory is the topological realization functor of spectral presheaves on the site of complex schemes of finite type. The connective part of the semi-topological K-theory can then be definied as the topological realization of the stack of perfect dg-modules over the space, together with its commutative monoid structure up to homotopy. But to deal with negative K-groups, we realize the presehaf given by non-connective algebraic K-theory. One of our main results relies the two previous definition in the connective case. We show that the topological realization of the presheaf of connective algebraic K-theory for the unit dg-category is equivalent to the usual topological K-theory spectrum. We show this is also true in the non-connective case, using a property of restriction to smooth schemes. This last property leads us to show a generalization of Deligne's proper cohomological descent to the homotopical non-abelian setting. This enables us to define topological K-theory by inverting the Bott element. We point out that the process of the definition involves non-trivial results. We then show that the Chern character from algebraic K-theory to periodic homology factorizes through topological K-theory, giving a natural candidate for the rational part of a non-commutative Hodge structure on the periodic homology of a smooth and proper dg-category. This last claim is written in the form of a conjecture : the lattice conjecture. Our first comparison result deals with the case of a smooth scheme of finite type over complex numbers -- we show the lattice conjecture holds for dg-categories of perfect complexes. We also show this conjecture is true in the case of finite dimensional associative algebras.
9

Extending type theory with syntactic models / Etendre la théorie des types à l'aide de modèles syntaxiques

Boulier, Simon Pierre 29 November 2018 (has links)
Cette thèse s'intéresse à la métathéorie de la théorie des types intuitionniste. Les systèmes que nous considérons sont des variantes de la théorie des types de Martin-Löf ou du Calcul des Constructions, et nous nous intéressons à la cohérence de ces systèmes ou encore à l'indépendance d'axiomes par rapport à ces systèmes. Le fil rouge de cette thèse est la construction de modèles syntaxiques, qui sont des modèles qui réutilisent la théorie des types pour interpréter la théorie des types. Dans une première partie, nous introduisons la théorie des types à l'aide d'un système minimal et de plusieurs extensions potentielles. Dans une seconde partie, nous introduisons les modèles syntaxiques donnés par traduction de programme et donnons plusieurs exemples. Dans une troisième partie, nous présentons Template-Coq, un plugin de métaprogrammation pour Coq. Nous montrons comment l'utiliser pour implémenter directement certains modèles syntaxiques. Enfin, dans une dernière partie, nous nous intéressons aux théories des types à deux égalités : une égalité stricte et une égalité univalente. Nous proposons une relecture des travaux de Coquand et. al. et Orton et Pitts sur le modèle cubique en introduisant la notion de fibrance dégénérée. / This thesis is about the metatheory of intuitionnistic type theory. The considered systems are variants of Martin-Löf type theory of Calculus of Constructions, and we are interested in the coherence of those systems and in the independence of axioms with respect to those systems. The common theme of this thesis is the construction of syntactic models, which are models reusing type theory to interpret type theory. In a first part, we introduce type theory by a minimal system and several possible extensions. In a second part, we introduce the syntactic models given by program translation and give several examples. In a third part, we present Template-Coq, a plugin for metaprogramming in Coq. We demonstrate how to use it to implement directly some syntactic models. Last, we consider type theories with two equalities: one strict and one univalent. We propose a re-reading of works of Coquand et.al. and of Orton and Pitts on the cubical model by introducing degenerate fibrancy.
10

Un relèvement d'une structure d'algèbre de Batalin-Vilkovisky sur la double construction cobar

Quesney, Alexandre 08 January 2014 (has links) (PDF)
Dans une première partie, on établit des résultats structuraux sur la construction cobar, visant à obtenir un relèvement homotopique explicite d'une structure de BV-algèbre sur la double construction cobar. Ces résultats interviennent à différentes itérations de la construction cobar. En conclusion, nous obtenons par descente de structures, un critère à l'obtention d'une structure de BV-algèbre homotopique (à la Gerstenhaber-Voronov) sur la double construction cobar Ω²C d'une G-cogèbre homotopique C, ceci en terme de co-opérations structurelles de C. Dans une seconde partie, nous appliquons le critère précédent sur la G-cogèbre homotopique C(X), où C(X) est le complexe de chaînes simpliciales sur un ensemble simplicial X. La structure de G-cogèbre homotopique considérée sur C(X) est telle que la double construction cobar Ω²C(X) est un modèle pour les lacets doubles Ω²|X|. Nous donnons ensuite des résultats de comparaisons entre la structure d'algèbre de Batalin-Vilkovisky obtenue sur la double construction cobar Ω²C(X) lorsque X est une double suspension et celle sur l'homologie H(Ω²|X|) induite par l'action diagonale du cercle sur Ω²|X|. Pour finir, lorsque l'anneau des coefficients est Q, nous déformons la structure de dg-algèbre de Hopf sur la construction cobar de Baues ΩC(X) en une structure de dg-algèbre de Hopf involutive (∇, S). On obtient alors une structure de BV-algèbre homotopique sur la double construction cobar Ω(ΩC(X), ∇, S) pour tout ensemble simplicial X.

Page generated in 0.1384 seconds