Spelling suggestions: "subject:"hos/pathogen interactions""
71 |
Characterization of Histone H3 Lysine 18 deacetylation during infection with Listeria monocytogenesEskandarian, Haig Alexander 05 June 2013 (has links) (PDF)
Bacterial pathogens dramatically affect host cell transcription programs for their own profit, however the underlying mechanism in most cases remain elusive. While investigating the effects of listeria monocytogenes on histone modifications, we discovered a new transcription regulatory machanism by which the expression of genes is repressed, during infection. Upon infection by L. monocytogenes, the secret virulence factor, InlB, binds the c-Met receptor and activates signaling through PI3K/Akt. This signaling platform is necessary for causing the relocalization of the histone deacetylase, SIRT2, to the nucleus and associating to chromatin.In characterizing the mechanism governing SIRT2 nuclear relocazing during infection, our results have demonstrated that SIRT2 undergoes a post-translational modification. SIRT2 undergoes dephosphorylation at a novel N-terminal phospho-site. SIRT2 is recruiter to the transcription star sites of genes repressed during inection leading to H3K18 deacetylation and transcriptional repression.finnaly, my results demonstrate that SIRT2 is hijacked by L monocytogenes and promotes an increase in intracellular bacteria. Together, these data uncover a key role for SIRT2 mediated H3K18 deacetylation during infection and characterize a novel mechanisme imposed by a pathogenic bacteriomto reprogram the host cell.
|
72 |
Characterization of Histone H3 Lysine 18 deacetylation during infection with Listeria monocytogenes / Caractérisation de l'histone H3 lysine désacétylation au cours de l'infection par Listeria monocytogenesEskandarian, Haig Alexander 05 June 2013 (has links)
De nombreuses bacteries pathogènes sont capables d'affecter les programmes transcriptionnels de la cellule hôte pendant l'infection. Cependant, les mécanismes contrôlant ce processus restent largement méconnus. En investigant les effets de la Listerai monocytogenes sur les modifications des histones de l'hôte, nous avons mis en évidence un nouveau mecanisme de régulation de transcription nécessaire pour la répression de certains gènes, pendant l'infection. Lors de l'infection par L. monocytogenes, le facteur de virulence sécrété, InlB, se lie au récepteur c-Met et active la signalisation par les intermédiaires PI3K et Akt. cette plateforme de signalisation est nécessaire pour la relocalisation de la deacetylase d'histone, SIRT2, au noyau et l'association à la chromatine.En caractérisant me mécanisme gouvernant la relocalisation nucléaire de SIRT2 lors de l'infection, nous avons démontrés que SIRT2 subit une modification post-traductionnelle. SIRT2 est déphosphorylée à un nouveau site de phosphorylation localisé à la partie terminale de la protéine. SIRT2 est recrutée au site de démarrage de la transcription des gènes réprimés lors de l'infection menant à la deacetylation de H3K18 et la répression transcriptionnelle. Nous avons mis en évidence que SIRT2 est détournée par L. monocytogenes et provoque une croissance des bactéries intracellulaires. Ces résultats démontrent un clef de SIRT2 en provoquant la deacetylation de H3K18 mors de l'infection et dévoilent un nouveau mécanisme imposée par les bactéries pathogènes dans le but de reprogrammer la cellule hôte. / Bacterial pathogens dramatically affect host cell transcription programs for their own profit, however the underlying mechanism in most cases remain elusive. While investigating the effects of listeria monocytogenes on histone modifications, we discovered a new transcription regulatory machanism by which the expression of genes is repressed, during infection. Upon infection by L. monocytogenes, the secret virulence factor, InlB, binds the c-Met receptor and activates signaling through PI3K/Akt. This signaling platform is necessary for causing the relocalization of the histone deacetylase, SIRT2, to the nucleus and associating to chromatin.In characterizing the mechanism governing SIRT2 nuclear relocazing during infection, our results have demonstrated that SIRT2 undergoes a post-translational modification. SIRT2 undergoes dephosphorylation at a novel N-terminal phospho-site. SIRT2 is recruiter to the transcription star sites of genes repressed during inection leading to H3K18 deacetylation and transcriptional repression.finnaly, my results demonstrate that SIRT2 is hijacked by L monocytogenes and promotes an increase in intracellular bacteria. Together, these data uncover a key role for SIRT2 mediated H3K18 deacetylation during infection and characterize a novel mechanisme imposed by a pathogenic bacteriomto reprogram the host cell.
|
73 |
Structural And Functional Studies Of Neisserial Lactoferrin Binding ProteinsRavi Yadav (11850101) 17 December 2021 (has links)
<p>Two species of <i>Neisseria</i>, <i>N. meningitidis</i> and <i>N.
gonorrhoeae</i>, are obligate human pathogens that cause meningitis and
gonorrhea, respectively. Although generally asymptomatic, <i>N. meningitidis</i>
can cause invasive meningococcal disease with high mortality rate. Due to
emerging antibiotic resistance strains of <i>N. gonorrhoeae</i>, the Centers
for Disease Control and Prevention (CDC) have designated it as an urgent threat
to public health. Therefore, immediate interventions are required for fight
against these Neisserial pathogens. Iron is an essential nutrient for all
bacteria, including <i>Neisseria</i>. However, free iron is scarce in human,
therefore, <i>Neisseria</i> have evolved to acquire iron from host proteins.
These iron acquisition systems are immunogenic and important for infection and
are promising therapeutic targets.</p>
<p> In the
host, lactoferrin sequesters free iron and limits iron availability to
pathogens. However, <i>Neisseria</i> have evolved machinery to hijack iron directly
from lactoferrin itself. Lactoferrin
binding proteins, LbpA and LbpB, are outer membrane proteins that together
orchestrate the acquisition of iron from lactoferrin. Additionally, LbpB serves
an additional role in providing protection against host cationic antimicrobial
peptides and innate immune response. Despite studies aimed at deciphering the
roles of LbpA and LbpB, the molecular mechanisms underpinning iron acquisition
and immune protection remain unknown. Here, we investigated the role of the lactoferrin
binding proteins in iron acquisition and protection against cationic
antimicrobial peptides. We obtained three-dimensional structures of <i>Neisseria</i>
LbpA and LbpB in complex with lactoferrin using cryo-electron microscopy and
X-ray crystallography. These structures show that both LbpA and LbpB bind to
C-lobe of lactoferrin, albeit at distinct sites. Structural analyses show that
while lactoferrin maintains its iron-bound closed conformation in the
LbpB-lactoferrin complex, it undergoes a large conformational change from an
iron-bound closed to an iron-free open conformation upon binding to LbpA. This
observation suggest that LbpA alone can trigger the extraction of iron from
lactoferrin. Our studies also provide an explanation for LbpB’s preference
towards holo-lactoferrin over apo-lactoferrin and LbpA’s inability to
distinguish between holo- and apo-lactoferrin. Furthermore, using mutagenesis
and binding studies, we show that anionic loops in the C-lobe of LbpB
contribute to binding the cationic antimicrobial peptide lactoferricin.
Solution scattering studies of the LbpB-lactoferricin complex showed that LbpB
undergoes a small conformational change upon peptide binding.</p>
Together,
our studies provide structural insights into the role of the lactoferrin
binding proteins in iron acquisition and evasion of the host immune defenses.
Moreover, this work lays the foundation for structure-based design of
therapeutics against <i>Neisseria</i> targeting the lactoferrin binding
proteins.
|
74 |
Different Journeys, Same Destination: Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of InflammasomesGhosh, Sreya 12 September 2017 (has links)
Interferon-inducible PYHIN protein family includes the DNA-binding proteins, AIM2 and IFI16, which form ASC-caspase 1 dependent inflammasomes, important in immunity against cytosolic bacteria, DNA viruses and HIV. The role of other members of this family in the recognition of DNA and/or regulation of immune responses is unclear. We identified an immune regulatory function of p205, another member of the PYHIN family, in the transcriptional control of immune genes. Knockdown of p205 in macrophages revealed that inflammasome activation due to dsDNA and ligands that engage the NLRP3 inflammasome were severely compromised. Detailed mechanistic analysis showed that loss of p205 was associated with a decrease in Asc mRNA and protein levels. p205 knockdown resulted in reduced RNA Polymerase II-mediated endogenous Asc gene transcription and mRNA processing, suggesting a co-transcriptional control of Asc gene expression. Ectopically expressed p205 induced expression of an Asc gene-luciferase reporter and collaborated with other transcription factors, such as c/EBPβ, p65/RelA, to further enhance expression. p205 knockdown also affected the expression of the immune genes Cd86, Cox2, Cxcl2, Il1α, Il10, Il12α, Il6 and Ifnα in LPS-stimulated macrophages. Together these findings suggest that p205 regulates inflammation through control of Asc gene expression, and other immune genes.
Fungal infections activate both caspase 1-dependent and -independent inflammasomes. In an independent study, we show that Paracoccidioides brasiliensis fungal infection also induces caspase 8-dependent non-canonical inflammasome. Caspase 8-dependent IL-1β processing required dectin-1, Syk and Asc. Rip3-/- Casp8-/- mice infected with P. brasiliensis displayed increased fungal load and showed worse disease progression compared to wild type and Rip3-/- mice. These results revealed the importance of caspase 8 in activating and regulating inflammasome responses during fungal infection in vivo.
|
75 |
<b>Agent-Based Modeling Of </b><b>Infectious Disease Dynamics: Insights into Tuberculosis, Pediatric HIV, and Tuberculosis-HIV Coinfection</b>Alexis Lynn Hoerter (18424443) 23 April 2024 (has links)
<p dir="ltr">Tuberculosis (TB), caused by <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), and human immunodeficiency virus-1 (HIV) are major public health concerns, individually and in combination. The status of the host immune system, previous <i>Mtb</i> infection and HIV-mediated T cell exhaustion, can have significant impacts on immune dynamics during reinfection. Individuals with asymptomatic latent TB infection (LTBI) may be protected against <i>Mtb </i>reinfection, as demonstrated by animal and <i>in vitro </i>studies. However, the underlying dynamics and protective mechanisms of LTBI are poorly understood. In HIV, long-term infection in children and associated T cell exhaustion leads to weakened immune responses to HIV reinfection. The complexity of these infections, particularly in the context of the heightened vulnerability of HIV+ individuals to TB, underscores the need for novel investigative approaches to study host-pathogen and pathogen-pathogen interactions. To this, we have developed an agent-based model (ABM) as a mechanistic computational tool to simulate the immune response to <i>Mtb </i>and HIV, separately and during coinfection. Our ABM integrates clinical and experimental data; simulates immune cell dynamics between macrophages, CD4+ and CD8+ T cells; and produces emergent granuloma-like structures – a critical response to <i>Mtb</i>. This <i>in silico</i> approach allows us to efficiently explore host-pathogen interactions and their clinical implications. By unraveling the complex interplay of immune cell activation, T cell exhaustion, and pathogen dynamics, our model offers insights that could guide the development of targeted therapies. By quantifying the multifaceted nature of these diseases and their interactions, we highlight the potential of computational approaches in understanding and treating complex diseases, individually and in combination.</p>
|
76 |
A modeling perspective on Candida albicans' interactions with its human hostTyc, Katarzyna Marta 25 February 2013 (has links)
Ansätze der mathematischen Modellierung ermöglichen die Analyse der dynamischen Eigenschaften biologischer Systeme und den Einfluß spezifischer Funktionen. Das Ziel dieser Arbeit ist es verschiedene Aspekte der Interaktionen zwischen Wirt und Krankheitserregern zu analysieren. In Kapitel 3 diskutiere ich ein Modell der zellulären Antwort auf Hitzeschockstress im Pilz Candida albicans. Das Modell in Form von gewöhnlichen Differentialgleichungen erörtert mehrere Aspekte des Systems, wie z.B. die erworbene Thermotoleranz und eine perfekte Anpassung an die Beanspruchung durch die Temperaturwechsel. Im Rahmen der Interaktionen zwischen Wirt und Krankheitserreger ist die Studie relevant, da die Entwicklung von Fieber eine primäre Antwort des Organismus auf eine Pilzinvasion ist. Die Dynamik von C. albicans Virulenzfaktoren, wie z.B. der Übergang vom Hefe- zum Hyphenstadium, und die Abwehrmechanismen des Wirts bestimmen den Zustand des Pilzes, d.h. ob er als Kommensale oder Krankheitserreger vorkommt. Mit Hilfe einer agenten-basierten Modellierungstechnik, in Kapitel 4, untersuche ich die Auswirkungen potenzieller medikamentöser Behandlungen von Pilzpopulationen und ihre Effektivität. In Kapitel 5 analysiere ich die Dynamik der C. albicans Hefe- und Hyphenpopulationen unter der Annahme, das zwischen den Individuen beider Populationen paarweise Wechselwirkungen bestehen, die zusätzlich von Fresszellen und Ernährungsbedingungen beeinflusst werden. Das erste Modell basiert auf den Prinzipien der Spieltheorie. Aus dieser Studie lässt sich die Hypothese aufstellen, dass sich im Verlauf der Infektion die evolutionäre Spieldynamik von der Snowdrift Spieldynamik in Richtung Gefangendilemma verschiebt. Im zweiten Modell untersuche ich die Umschaltraten zwischen Hefen und Hyphen. Das Modell zeigt, dass in Pilzpopulationen die Ausprägung verschiedener Phänotypen der Grund für die erhöhte Überlebensfähigkeit der Population sein könnte. / Mathematical modeling approaches facilitate the analysis of dynamic properties of mechanisms triggering specific functions of biological systems. Through this work I aim to shed light on various aspects of host-pathogen interactions. In Chapter 3, I discuss a model of heat shock stress response activated in the fungus Candida albicans. The model in form of ordinary differential equations reveals several features of the system, such as acquired thermotolerance and a perfect molecular adaptation to the thermal insult. The study is relevant in the context of host-pathogen interactions since development of fever is a primary host response to fungal invasion. The dynamics of C. albicans virulence factors, e.g., yeast to hypha transition, and defense mechanisms of the host determine the state of the fungi, i.e. whether to act as a commensal or as a foe. Through application of an agent-based modeling technique, in Chapter 4, I investigate effects of potential drug treatments on fungal populations and their effectivity in the fungal clearance. In Chapter 5, I analyze the dynamics of candida yeast and hyphal populations assuming pairwise interactions influenced by phagocytic cells and nutritional conditions. The first model is based on game theory principles. From the study it can be hypothesized that during the course of infection the evolutionary game dynamics shift from Snowdrift game dynamics toward Prisoners’ dilemma. In the second model, I examine switching rates between yeast and hypha. The model reveals that phenotypic variations may occur in order to increase the fitness of the population.
|
77 |
Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A DissertationWeng, Dan 07 July 2014 (has links)
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments.
Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
|
78 |
Innate Immune Memory and the Host Response to InfectionSherwood, Edward R., Burelbach, Katherine R., McBride, Margaret A., Stothers, Cody L., Owen, Allison M., Hernandez, Antonio, Patil, Naeem K., Williams, David L., Bohannon, Julia K. 15 February 2022 (has links)
Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.
|
79 |
Evolutionary genetics of malaria: genetic susceptibility and natural selectionSikora, Martin 04 June 2010 (has links)
Una de les forces selectives més fortes que han afectat a les poblacions humanes en la història més recent és el paràsit de la malària: Plasmodium falciparum, que és la causa de varis exemples d'adaptació induïda per patògens en els éssers humans. Una forma especial de malària és l'associada a l'embaràs, que es caracteritza per l'acumulació d'eritròcits infectats en la placenta, i que pot arribar a causar fins a 200.000 morts maternoinfantils cada any. L'objectiu d'aquest treball és descriure com aquesta forma peculiar de malària ha afectat la variació genètica humana. Amb aquesta finalitat, hem utilitzat mètodes tant de la genètica evolutiva com de l'epidemiologia molecular, resultant en la primera investigació a gran escala de la base genètica de la malària placentària. Els resultats ofereixen una nova visió sobre els gens que modulen el risc d'infecció, ,així com de la selecció natural actuant sobre les vies cel·lulars implicades en la patogènesi de la malaltia. Finalment, també aportem noves dades sobre l'estructura genètica de les poblacions sub-saharianes analitzades. / One of the strongest selective forces affecting human populations in recent history is the malaria parasite Plasmodium falciparum, which is the cause of a variety of well-established examples of pathogen-induced adaptation in humans. A special form of malaria is pregnancy-associated malaria, which is characterised by the accumulation of infected erythrocytes in the placenta, and causes up to 200,000 maternal and infant deaths every year. The aim of this work is to characterise how this particular form of malaria has shaped human genetic variation. To that end we use methods of both evolutionary genetics and molecular epidemiology, reporting the first large-scale investigation of the genetic basis of placental infection. Our results provide new insights into genes modulating the risk of infection, as well as natural selection acting on cellular pathways involved in the pathogenesis of the disease. Finally, we also provide new data on the genetic structure of affected populations in Sub-Saharan Africa.
|
Page generated in 0.1744 seconds