• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 60
  • 26
  • 23
  • 18
  • 13
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • Tagged with
  • 536
  • 110
  • 73
  • 70
  • 69
  • 61
  • 59
  • 52
  • 47
  • 47
  • 47
  • 43
  • 36
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Inclusive curriculum design: application to open channel hydraulics module

Pu, Jaan H. 07 July 2017 (has links)
No / This study investigates an inclusive curriculum design based on student-centred approach. This proposed design approach has been applied to Open Channel Hydraulics module (CSE6008-A) at School of Engineering, University of Bradford, United Kingdom. This paper will introduce in step-by-step manner the full curriculum design and how the student-centred approach is being adapted in each step of the design. The required criteria will be designed based on learning outcomes design, curriculum organization, assessment strategies and student achievement evaluation. Besides, a key discussion will also be allocated for the inclusive practice that allows the vastly diverse student group to benefit from this approach, and a separate section will also be utilized to fully discuss this inclusive approach in the proposed curriculum design. This paper proposes a useful student-centred curriculum design concept, which is adaptable for different engineering modules.
362

Comparative Landscape Infrastructure in Kolda, Senegal and Washington, D.C.

Cadwallender, Mary Virginia 07 July 2017 (has links)
This comparative study of two urban areas—Kolda, Senegal and the Historic Anacostia Neighborhood in Washington, D.C.—explores how landscape infrastructure can decrease the scalar disconnect between the global water crisis and local water use practices. By looking at one city in the Global North and one in the Global South with similar risk of water stress, I am able to compare cultural aesthetics and engage two different levels of infrastructural build out (World Resources Institute, Water Risk Atlas). The design approach draws inspiration from Lawrence Halprin's notion of "experiential equivalents," and proposes a suite of site scale water sources and seeps (Halprin, Ghirardelli Plaza). Unlike Halprin, whose designs primarily use, interpret, and express natural elements, cultural interactions with water as well as natural systems drive the designs in Kolda and Anacostia. Thus, the speculative designs I am presenting weave the experiences of sourcing water, filtering water, and water seeps into the existing urban and cultural fabric. By taking a systemic and episodic approach to public landscape development, not only will these infrastructural landscapes serve the community but the aesthetic experience of the designs also becomes part of daily life. Perhaps as Elizabeth Meyer theorizes in "Beyond 'Sustaining Beauty'", these designed landscapes "can contribute to…]a new ethos of a sustainable perception and living." Furthermore, this project presents a kit of parts for community-based development, suggesting the ability to extend the landscape infrastructure systems in Kolda and Anacostia and providing the tools for other communities. / Master of Landscape Architecture
363

Surface Water and Groundwater Hydraulics, Exchange, and Transport During Simulated Overbank Floods Along a Third-Order Stream in Southwest Virginia

Guth, Christopher Ryan 20 June 2014 (has links)
Restoring hydrologic connectivity between the channel and floodplain is a common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact biogeochemical processing and potential nutrient removal, yet rigorous field evaluations of surface and groundwater flows during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection. Experimental floods entailed pumping stream water onto an existing floodplain swale, and were conducted throughout the year to capture seasonal variation. Each set of experimental floods entailed two replicate floods occurring on successive days to test the effect of varying antecedent moisture. Water levels and specific conductivity were measured in surface water, shallow soils, and deep soils, along with surface flow into and out of the floodplain. Total flood water storage increased as vegetation density increased and or antecedent moisture decreased. Hydrologic flow mechanisms were spatially and temporally heterogeneous in surface water, in groundwater, as well as in exchange between the two and appeared to coexist in small areas. Immediate propagation of hydrostatic pressure into deep soils was suggested at some locations. Preferential groundwater flow was suggested in locations where the pressure and electrical conductivity signals propagated too fast for bulk Darcy flow through porous media. Preferential flow was particularly obvious where the pressure signal bypassed an intermediate depth but was observed at a deeper depth. Bulk Darcy flow in combination with preferential flow was suggested at locations where the flood pressure and electrical conductivity signal propagated more slowly yet arrived too quickly to be described using Darcy's Law. Finally, other areas exhibited no transmission of pressure or conductivity signals, indicating a complete lack of groundwater flow. Antecedent moisture affected the flood pulse arrival time and in some cases vertical connectivity with deeper sediments while vegetation density altered surface water storage volume. Understanding the variety of exchange mechanisms and their spatial variability will help understand the observed variability of floodplain impacts on water quality, and ultimately improve the effectiveness of floodplain restoration in reducing excess nutrient in river basins. / Master of Science
364

Hydraulisk centrering i vägstålstillverkning vid Olofsfors AB / Hydraulic centering in road steel production at Olofsfors AB

Andersson, Elias January 2022 (has links)
Olofsfors AB är ett företag som tillverkar olika typer av stålprodukter. En av produkterna är deras vägstål, vilket de har tillverkningsproblem med i dagsläget. Råmaterialet i form av plattstång behöver centreras av hydraulcylindrar under transport samt under hålstansningsprocessen. I dagsläget centrerar cylindrarna inte materialet på ett korrektsätt. I detta arbete har brister i det nuvarande systemet undersökts och förslag till förbättringar för det hydrauliska centreringssystemet tagits fram. Syftet med arbetet var att få en bättre funktion för centreringen av plattstång ivägstålsproduktionen, samt att möjliggöra en kortare cykeltid. För att hitta problem i nuvarande system studerades hydraulschemat. När misstankar om en dålig systemdesign uppstod, användes ett program som heter FluidSim 5 för att simulera och validera misstankarna. En slutsats som kunde dras var att det nuvarande hydrauliska systemet inte kan garantera en tillförlitlig centrering av råmaterialet. Lösningsförslaget som tagits fram innefattar en roterande flödesdelare med ett säkerhetssystem för tryckintensifiering och kavitation. Om en flödesdelare med 2% delningsnoggrannhet används, blir centreringsnoggrannheten runt 1—2 mm, beroende på vilka cylindrar som studeras. Då en flödesdelare används, är noggrannheten hos cylindrarna starkt beroende av den aktiva slaglängden. När slaglängden minskas uppnås snävare toleranser hos centreringen. / Olofsfors AB is a company that manufactures different steel products. For one of their products, road grading steel, they currently experience problems in the manufacturing process. The raw material in the form of flat bars needs to be centered by hydraulic cylinders during transport and during hole punching. In the current situation, thecylinders do not center the material in a correct way. In this report, functional errors are identified and improvements in the hydraulic centering system are proposed. The purpose of this study was to improve centering of the flat bar for road grading steel production, and to enable a shorter cycle time. To identify problems in the existing system, the hydraulic scheme was studied. When suspicions of a poor system design arose, a program called FluidSim 5 was used to simulate and validate the suspicions. One conclusion that could be drawn was that thecurrent hydraulic system could not guarantee a reliable centering of the raw material. The proposed solution comprises a gear type flow divider, with a safety system for pressure intensification and cavitation. Using a flow divider with 2% dividing accuracy, the centering accuracy is around 1—2 mm, depending on the cylinders selected. When using a flow divider, the accuracy of the cylinders is strongly dependent of the active stroke length. When the stroke length is reduced, tighter tolerances are achieved in the centering.
365

On Modeling Spatial Time-to-Event Data with Missing Censoring Type

Lu, Diane January 2024 (has links)
Time-to-event data, a common occurrence in medical research, is also pertinent in the ecological context, exemplified by leaf desiccation studies using innovative optical vulnerability techniques. Such data can unveil valuable insights into the influence of various factors on the event of interest. Leveraging both spatial and temporal information, spatial survival modeling can unravel the intricate spatiotemporal dynamics governing event occurrences. Existing spatial survival models often assume the availability of the censoring type for censored cases. Various approaches have been employed to address scenarios where a "subset" of cases lacks a known "censoring indicator" (i.e., whether they are right-censored or uncensored). This uncertainty in the subset pertains to missing information regarding the censoring status. However, our study specifically centers on situations where the missing information extends to "all" censored cases, rendering them devoid of a known censoring "type" indicator (i.e., whether they are right-censored or left-censored). The genesis of this challenge emerged from leaf hydraulic data, specifically embolism data, where the observation of embolism events is limited to instances when leaf veins transition from water-filled to air-filled during the observation period. Although it is known that all veins eventually embolize when the entire plant dries up, the critical information of whether a censored leaf vein embolized before or after the observation period is absent. In other words, the censoring type indicator is missing. To address this challenge, we developed a Gibbs sampler for a Bayesian spatial survival model, aiming to recover the missing censoring type indicator. This model incorporates the essential embolism formation mechanism theory, accounting for dynamic patterns observed in the embolism data. The model assumes spatial smoothness between connected leaf veins and incorporates vein thickness information. Our Gibbs sampler effectively infers the missing censoring type indicator, as demonstrated on both simulated and real-world embolism data. In applying our model to real data, we not only confirm patterns aligning with existing phytological literature but also unveil novel insights previously unexplored due to limitations in available statistical tools. Additionally, our results suggest the potential for building hierarchical models with species-level parameters focusing solely on the temporal component. Overall, our study illustrates that the proposed Gibbs sampler for the spatial survival model successfully addresses the challenge of missing censoring type indicators, offering valuable insights into the underlying spatiotemporal dynamics.
366

Multi Purpose Electro-Hydraulic Converter for More Electrical Power : A Case Study of Using Electro-Hydraulic Energy Converters in a Fighter Aircraft Application

Allansson, Niklas, Böhlin, Erik January 2024 (has links)
The hydraulic system in a fighter aircraft is not fully utilised during large parts of the flight mission were more electrical power is needed. To better utilise the hydraulic power the current Auxiliary Hydraulic Pump (AHP) and the Emergency Hydraulic Pump (EHP) can be exchanged to an Electro Hydraulic Energy Converter (EHEC). The EHEC has the possibility to provide hydraulic power to the system, but also convert hydraulic power into electric power. The control for such a unit can be implemented in different ways. A literature study was performed to decide a suitable architecture for use in a fighter aircraft application. A simulation model representing the resulting architecture was created. The simulation model was successful in describing the basic behaviour of the hydraulic system, but lacks a realistic representation of hydraulic consumers.  Different control strategies were created and tested on the simulation model with several test scenarios based on real flight data from tests performed on the aircraft. The control strategies were compared and suitable candidates were presented based on their relative performance and compared with the current hydraulic system behaviour. An architecture consisting of a variable displacement pump with over-center capabilities combined with a permanent magnet synchronous machine (PMSM) was decided to be used. A PI-controller with a feedforward on consumer flow was the best performing controller for use in emergency operation of the EHEC. For the case when regenerating electrical power a PI-controller with load pressure feedback is desired initially during start up. When reaching steady state a PI-controller without load pressure feedback is then advantageous.
367

Simulation of the cavitating flow in a model oil hydraulic spool valve using different model approaches

Schümichen, Michel, Rüdiger, Frank, Fröhlich, Jochen, Weber, Jürgen 27 April 2016 (has links) (PDF)
The contribution compares results of Large Eddy Simulations of the cavitating flow in a model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler- Lagrange model. The impact of the choice of the empirical constants in the Kunz cavitation model is demonstrated. Provided these are chosen appropriately the approach can yield reasonable agreement with the corresponding experiment. The one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is due to the lack of realistic volumetric coupling, rarely accounted for in this type of method. First results of such an algorithm are presented featuring substantially more realism.
368

Efficient and high performing hydraulic systems in mobile machines

Frerichs, Ludger, Hartmann, Karl 03 May 2016 (has links) (PDF)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.
369

Unsteady flow conditions at dam bottom outlet works due to air entrainment during gate closure : Berg River dam model

Vos, Adele 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A trial closure of the emergency gate of the Berg River Dam was undertaken by the Trans- Caledon Tunnel Authority (TCTA) on 12 June 2008. The air vent downstream of the emergency gate was designed to introduce air to mitigate the negative pressures that were expected in the conduit during emergency gate operations. The emergency gate has to close when the radial gate at the downstream end of the outlet conduit fails. Contrary to the theoretical design, the measured air vent velocities in the field indicated that, while the emergency gate was closing, very large volumes of air were apparently continuously being released from the air vent, commencing when the gate was about 30% closed (i.e. 70% open). This is in contrast to what the design intended, namely that air should have been drawn into the vent. This thesis is concerned with the testing of a 1:14.066 physical model representing the outlet works and air vent of the Berg River Dam as a means to determine the reasons for the release of large volumes of air from the air vent during the trial closure in 2008. It also seeks solutions to mitigate the excessive airflow from the air vent. It was concluded that the air velocity in the air vent was independent of the rate of closure of the emergency gate, but to increase with increasing water head. The problem at the Berg River Dam was determined to be one of air blowback. Modifications were made to the configuration of the model in order to determine whether the configuration of the outlet works caused air to be released from the air vent. It was determined that the downward sloping roof at the outlet of the conduit, used to accommodate the radial gate chamber, was the cause of the air blowback phenomenon. An additional air vent was fitted directly onto the conduit at the constriction was found to be ineffective in reducing the air blowback. It was concluded that there are no rational structural change that can prevent or inhibit a recurrence of the blowback phenomenon in the Berg River Dam outlet conduit. The recommendation follows that the outlet conduit should not be constricted by any structural or mechanism further downstream in the conduit. / AFRIKAANSE OPSOMMING: ʼn Toetssluiting van die noodsluis van die Bergrivierdam is op 12 Junie 2008 deur die TCTA (Trans-Caledon Tunnel Authority) uitgevoer. Die lugskag stroomaf van die noodsluis is ontwerp om lug in te voer om die verwagte negatiewe drukke tydens die noodsluissluiting te beperk. Die noodsluis moet sluit indien die radiaalsluis aan die einde van die uitlaatpyp sou faal. In teenstelling met die teoretiese ontwerp, het die gemete lugsnelhede in die lugskag in die veld aangedui dat groot volumes lug voortdurend uit die lugskag vrygelaat word wanneer die noodsluis ongeveer 30% toe is (dit wil sê 70% oop). Dit is in teenstelling met die ontwerp, want die lugskag is ontwerp vir die insuig van lug. Hierdie tesis het ten doel om die redes vir die vrylating van groot volumes lug uit die lugskag vas te stel met behulp van ʼn 1:14.066 fisiese skaalmodel van die uitlaatwerke en lugskag van die Bergrivierdam soos getoets tydens die inwydingstoetssluiting in 2008. Die toetse op die model het getoon dat die lugsnelheid in die lugskag onafhankik van die sluistoemaak tyd is, maar verhoog met die toename in die watervlak. Die Bergrivier dam probleem was bepaal as die van lug terugslag. Die model is gewysig ten einde te bepaal of die spesifieke samestelling van die uitlaatwerke die oorsaak van die vrystelling van lug uit die lugskag is. Die analises en verandering aan die uitleg toon aan dat die skuins afwaartse dak van die uitlaattonnel om die radiaalsluiskamer te huisves die rede was vir die vrylating van die lug uit die lugskag. ‘n Addisionele lugskag was gebou in die dak van die uitlaattonnel reg bo die sametrekking, maar was oneffektief om die terug vloei van lug te verminder. Die gevolgtrekking is dat daar geen rasionele strukturele verandering aangebring kan word aan die Bergrivier dam om die vrystelling van lug uit die lugskag te verhoed of te verminder nie. ’n Aanbeveling vir toekomstige ontwerpe is dus dat die uitlaattonnel nie beperkend by die uitlaatend moet wees nie.
370

Labyrinth weir hydraulics : validation of CFD modelling

Robertson, Guy Kinloch 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The use of computational fluid dynamics (CFD) as a design tool is becoming increasingly popular in the water resources field. This thesis aims to extend the knowledge of CFD and determine the usefulness of current CFD programs as a modelling tool. This thesis also seeks to determine the accuracy of CFD modelling when compared to physical modelling, the more established form of model testing. It is important that research is conducted on the validation of CFD because with an increase in computer power, processing speed and continual development in the programs used to generate the models, CFD could become an essential tool for the hydraulic engineer. A current key difficulty faced by CFD programs is the mapping of the free surface level of a body of fluid in a two-phase (water and air) flow condition. This is further complicated by the existence of three-dimensional flow over a labyrinth weir and a fluctuating nappe, which at times requires a free surface level to be mapped both above and below the nappe. This thesis begins by detailing the design methods and actual design of a typical labyrinth weir. It then describes the construction of a 1:20 scale physical model, testing procedures, goals, and the results of the physical model tests. Following the physical model study, the thesis discusses the development of a three-dimensional CFD model, designed in a way that matched the physical model. Simulation results obtained from the CFD model are then compared to those from the physical model study and the accuracy and suitability of CFD modelling as a design tool are evaluated. This evaluation considers the surcharge upstream of the weir and transient pressures on the weir. The thesis concludes with recommendations for further research in this field. The results achieved show that the CFD model was able to accurately map the movement of particles within the domain, to fully develop a flow profile, and to accurately predict the water surface level. The pressure readings obtained during CFD modelling were in the same order as those obtained during physical modelling. However, the CFD modelling pressure readings did not often accurately correspond with the physical modelling data, with the average error being 92%. These results indicate that there is still further development required in CFD before it can be relied upon as a design tool independent of other experimental methods. The difficulty and the length of time taken to generate the results also indicate that, at this stage and in this particular scenario, the engineer would be better served through the use of a physical model. / AFRIKAANSE OPSOMMING: Die gebruik van gerekenariseerde vloeidinamika (CFD) as ’n ontwerpinstrument het toenemend gewild begin raak op die gebied van waterhulpbronne. Die doel van hierdie verslag is om kennis van CFD uit te brei en die nut van huidige CFD-programme as ’n modelleringsinstrument te bepaal. Daar word voorts ook gepoog om die akkuraatheid van CFD-modellering te bepaal in vergelyking met fisiese modellering – die meer gevestigde vorm van modeltoetsing. Dit is noodsaaklik dat navorsing gedoen word oor die bekragtiging van CFD, want met ’n toename in rekenaarkrag, verwerkingsnelheid en deurlopende ontwikkeling in die programme wat gebruik word om die modelle te genereer, sal CFD ’n noodsaaklike instrument vir die hidroulika-ingenieur word. ’n Belangrike probleem wat CFD-programme tans inhou, is die kartering van die vry oppervlak van ’n liggaam vloeistof in ’n tweefasse vloeitoestand (water en lug). Dit word verder bemoeilik deur die bestaan van driedimensionele vloei oor ’n labirint-stuwal en ’n skommelende “nappe”, wat by tye vereis dat ’n vry oppervlak sowel bo as onder die “nappe” gekarteer met word. Die verslag begin met ’n uiteensetting van die ontwerpmetodes en fisiese ontwerp van ’n tipiese labirintstuwal. Die bou van ’n 1:20-skaal- fisiese model, toetsprosedures, doelwitte en die resultate van die toetse op die fisiese model word dan beskryf. Ná die studie van die fisiese model, word die ontwikkeling van ’n driedimensionele CFD-model bespreek, wat ontwerp is om by die fisiese model te pas. Die simulasie-resultate van die CFD-model word dan vergelyk met dié van die studie van die fisiese model en die akkuraatheid en geskiktheid van CFD-modellering as ’n ontwerpinstrument word geëvalueer. In hierdie evaluering word die opdamming stroomop van die stuwal en druk op die stuwal ondersoek. Die verslag word afgesluit met aanbevelings vir verdere navorsing op hierdie gebied. Die resultate toon dat die CFD-model die beweging van partikels in die domein akkuraat kon karteer ten einde ’n volledige vloeiprofiel te ontwikkel en die watervlak akkuraat te voorspel. Die drukke wat tydens CFD-modellering verkry is, stem egter nie ooreen met die lesings wat tydens fisiese modellering verkry is nie. Die gemiddelde fout is 92%. Hierdie resultate toon dat verdere ontwikkeling in CFD nodig is voordat daarop staat gemaak kan word as ’n ontwerpinstrument wat onafhanklik van ander eksperimentele metodes gebruik kan word. Die moeilikheidsgraad en die lang tydsduur betrokke by die generering van resultate is ook ’n aanduiding dat die gebruik van ’n fisiese model die ingenieur op hierdie stadium en in hierdie spesifieke scenario beter tot diens sal wees.

Page generated in 0.2272 seconds