• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude expérimentale de la digitation visqueuse de fluides miscibles en cellule de Hele-Shaw / Experimental study of viscous fingering of miscible fluids in a Hele-Shaw cell

Maes, RENAUD,POL 07 May 2010 (has links)
La digitation visqueuse est une instabilité hydrodynamique apparaissant lorsque, dans un milieu poreux, un fluide moins visqueux déplace un fluide plus visqueux. L'objectif de notre thèse est l'étude expérimentale des propriétés des motifs de digitation lorsque l'échantillon de fluide visqueux est de taille finie et lorsqu'une réaction chimique modifie la viscosité dans un milieu poreux modèle, en l'occurrence une cellule de Hele-Shaw. En particulier, notre étude a permis de quantifier la contribution de dispersion et de la digitation visqueuse, l'étalement dans l'espace d'échantillons de taille finie en fonction des paramètres expérimentaux (contraste de viscosité, vitesse de déplacement et taille de l'échantillon). Pour les fluides réactifs, nous analysons la digitation induite par une réaction A + B C dont le produit C est plus visqueux que les réactifs A et B, ceux-ci ayant la même viscosité. Nous mettons en évidence l'effet des concentrations en réactifs, du choix du fluide vecteur et du débit d'injection sur le motif de digitation. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
12

Plasmons dans un potentiel unidimensionnel<br />Etude par spectroscopie Raman de fils quantiques gravés

Perez, Florent 30 January 1998 (has links) (PDF)
Nous avons étudiés des fils quantiques dopés de semi-conducteurs gravés par spectroscopie de diffusion Raman. Nous avons observés les excitations du gaz d'électrons. Celles-ci présentent des règles de sélection différentes de celles établies pour les systèmes bi-dimensionnels. Nous avons montré théoriquement qu'elles proviennent de la modification de la structure du champ électromagnétique local provoquée par la géométrie particulière des fils gravés. Pour cela nous avons dû calculer le champ local et l'introduire dans la section efficace de diffusion Raman pour en déduire les règles de sélection de toutes les excitations. Cela a permis de déterminer sans équivoque la nature des excitations qui sont des plasmons. Aucune excitations à une particule ni fluctuations de densité de spin n'a été observées. Nous avons étudié l'évolution continue des dispersions de ces plasmons lorsque la largeur du fil est réduite de 1 micromètre à 30 nm. Jusqu'à 60 nm, celles-ci sont en très bon accord avec les résultats d'un modèle hydrodynamique. Au dessous de 60 nm, la comparaison avec un modèle RPA s'impose. Le plasmon intra-bande dispersif est observé jusqu'à 45 nm, largeur en dessous de laquelle les spectres Raman sont dominés par des excitations localisées qui nécessitent une analyse ultérieure pour en déterminer clairement leur nature. Nous montrons à l'aide du modèle RPA que nous avons atteint la limite quantique pour un fil de largeur 55 nm. Une gamme étroite de fils dont les largeurs sont comprises entre 55 nm à 45 nm permet donc l'étude de gaz strictement unidimensionnel.<br />Nous avons cherché à déterminer la contribution de la forte illumination dans les conclusions précédentes. Nous avons utilisé pour cela la spectroscopie de magnéto-transmission infra-rouge qui ne modifie pas les conditions d'équilibre du gaz d'électrons. Une largeur critique de 130 nm a été extraite, en dessous de laquelle nous n'avons plus aucun signe de la présence d'électrons libres. La comparaison des mesures Raman et infra-rouge a permis l'établissement et la validation d'un modèle microscopique du potentiel de confinement présent dans les fils. Enfin nous avons fabriqués des échantillons de géométries plus complexes. L'observation et l'analyse par diffusion Raman des plasmons dans ces fils a montré que nous pouvions contrôler la géométrie du potentiel confinant les électrons et a mis en évidence des effets nouveaux tels que le repliement et le confinement de plasmons unidimensionnels.
13

Some Studies of Statistical Properties of Turbulence in Plasmas and Fluids

Banerjee, Debarghya January 2014 (has links) (PDF)
Turbulence is ubiquitous in the flows of fluids and plasmas. This thesis is devoted to studies of the statistical properties of turbulence in the three-dimensional (3D) Hall magnetohydrodynamic (Hall-MHD) equations, the two-dimensional (2D) MHD equations, the one-dimensional (1D) hyperviscous Burgers equation, and the 3D Navier-Stokes equations. Chapter 1 contains a brief introduction to statistically homogeneous and isotropic turbulence. This is followed by an over-view of the equations we study in the subsequent chapters, the motivation for the studies and a summary of problems we investigate in chapters 2-6. In Chapter 2 we present our study of Hall-MHD turbulence [1]. We show that a shell-model version of the 3D Hall-MHD equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of 3D Hall-MHD, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements. In Chapter 3 we present our study of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence [2]. We present a detailed direct numerical simulation (DNS) of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic (2D MHD) turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream-function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies. In Chapter 4 we compare the statistical properties of 2D MHD turbulence for two different energy injection scales. We present systematic DNSs of statistically steady 2D MHD turbulence. Our two DNSs are distinguished by kinj, the wave number at which we inject energy into the system. In our first DNS (run R1), kinj = 2 and, in the second (run R2) kinj = 250. We show that various statistical properties of the turbulent states in the runs R1 and R2 are strikingly different The nature of energy spectrum, probability distribution functions, and topological structures are compared for the two runs R1 and R2 are found to be strikingly different. In Chapter 5 we study the hyperviscous Burgers equation for very high α, order of hyperviscosity [3]. We show, by using direct numerical simulations and theory, how, by increasing α in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable result, already conjectured for the asymptotic case α →∞ [U. Frisch et al., Phys. Rev. Lett. 101, 144501 (2008)], is now shown to be true for any large, but finite, value of α greater than a crossover value α crossover. We thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like conservative systems, and hence elucidate the subtle connection between equilibrium statistical mechanics and out-of-equilibrium turbulent flows. In Chapter 6 we show how to use asymptotic-extrapolation and Richardson extrapolation methods to extract the exponents ξ p that characterize the dependence of the order-p moments of the velocity gradients on the Reynolds number Re. To use these extrapolation methods we must have high-precision data for such moments. We obtain these high-precision data by carrying out the most extensive, quadruple precision, pseudospectral DNSs of the Navier-Stokes equation.
14

Mesurer la masse de trous noirs supermassifs à l’aide de l’apprentissage automatique

Chemaly, David 07 1900 (has links)
Des percées récentes ont été faites dans l’étude des trous noirs supermassifs (SMBH), grâce en grande partie à l’équipe du télescope de l’horizon des évènements (EHT). Cependant, déterminer la masse de ces entités colossales à des décalages vers le rouge élevés reste un défi de taille pour les astronomes. Il existe diverses méthodes directes et indirectes pour mesurer la masse de SMBHs. La méthode directe la plus précise consiste à résoudre la cinématique du gaz moléculaire, un traceur froid, dans la sphère d’influence (SOI) du SMBH. La SOI est définie comme la région où le potentiel gravitationnel du SMBH domine sur celui de la galaxie hôte. Par contre, puisque la masse d’un SMBH est négligeable face à la masse d’une galaxie, la SOI est, d’un point de vue astronomique, très petite, typiquement de quelques dizaines de parsecs. Par conséquent, il faut une très haute résolution spatiale pour étudier la SOI d’un SMBH et pouvoir adéquatement mesurer sa masse. C’est cette nécessité d’une haute résolution spatiale qui limite la mesure de masse de SMBHs à de plus grandes distances. Pour briser cette barrière, il nous faut donc trouver une manière d’améliorer la résolution spatiale d’objets observés à un plus au décalage vers le rouge. Le phénomène des lentilles gravitationnelles fortes survient lorsqu’une source lumineuse en arrière-plan se trouve alignée avec un objet massif en avant-plan, le long de la ligne de visée d’un observateur. Cette disposition a pour conséquence de distordre l’image observée de la source en arrière-plan. Puisque cette distorsion est inconnue et non-linéaire, l’analyse de la source devient nettement plus complexe. Cependant, ce phénomène a également pour effet d’étirer, d’agrandir et d’amplifier l’image de la source, permettant ainsi de reconstituer la source avec une résolution spatiale considérablement améliorée, compte tenu de sa distance initiale par rapport à l’observateur. L’objectif de ce projet consiste à développer une chaîne de simulations visant à étudier la faisabilité de la mesure de la masse d’un trou noir supermassif (SMBH) par cinéma- tique du gaz moléculaire à un décalage vers le rouge plus élevé, en utilisant l’apprentissage automatique pour tirer parti du grossissement généré par la distorsion d’une forte lentille gravitationnelle. Pour ce faire, nous générons de manière réaliste des observations du gaz moléculaire obtenues par le Grand Réseau d’Antennes Millimétrique/Submillimétrique de l’Atacama (ALMA). Ces données sont produites à partir de la suite de simulations hydrody- namiques Rétroaction dans des Environnements Réalistes (FIRE). Dans chaque simulation, l’effet cinématique du SMBH est intégré, en supposant le gaz moléculaire virialisé. Ensuite, le flux d’émission du gaz moléculaire est calculé en fonction de sa vitesse, température, densité, fraction de H2, décalage vers le rouge et taille dans le ciel. Le cube ALMA est généré en tenant compte de la résolution spatiale et spectrale, qui dépendent du nombre d’antennes, de leur configuration et du temps d’exposition. Finalement, l’effet de la forte lentille gravi- tationnelle est introduit par la rétro-propagation du faisceau lumineux en fonction du profil de masse de l’ellipsoïde isotherme singulière (SIE). L’exploitation de ces données ALMA simulées est testée dans le cadre d’un problème de régression directe. Nous entraînons un réseau de neurones à convolution (CNN) à apprendre à prédire la masse d’un SMBH à partir des données simulées, sans prendre en compte l’effet de la lentille. Le réseau prédit la masse du SMBH ainsi que son incertitude, en supposant une distribution a posteriori gaussienne. Les résultats sont convaincants : plus la masse du SMBH est grande, plus la prédiction du réseau est précise et exacte. Tout comme avec les méthodes conventionnelles, le réseau est uniquement capable de prédire la masse du SMBH tant que la résolution spatiale des données permet de résoudre la SOI. De plus, les cartes de saillance du réseau confirment que celui-ci utilise l’information contenue dans la SOI pour prédire la masse du SMBH. Dans les travaux à venir, l’effet des lentilles gravitationnelles fortes sera introduit dans les données pour évaluer s’il devient possible de mesurer la masse de ces mêmes SMBHs, mais à un décalage vers le rouge plus élevé. / Recent breakthroughs have been made in the study of supermassive black holes (SMBHs), thanks largely to the Event Horizon Telescope (EHT) team. However, determining the mass of these colossal entities at high redshifts remains a major challenge for astronomers. There are various direct and indirect methods for measuring the mass of SMBHs. The most accurate direct method involves resolving the kinematics of the molecular gas, a cold tracer, in the SMBH’s sphere of influence (SOI). The SOI is defined as the region where the gravitational potential of the SMBH dominates that of the host galaxy. However, since the mass of a SMBH is negligible compared to the mass of a galaxy, the SOI is, from an astronomical point of view, very small, typically a few tens of parsecs. As a result, very high spatial resolution is required to study the SOI of a SMBH and adequately measure its mass. It is this need for high spatial resolution that limits mass measurements of SMBHs at larger distances. To break this barrier, we need to find a way to improve the spatial resolution of objects observed at higher redshifts. The phenomenon of strong gravitational lensing occurs when a light source in the back- ground is aligned with a massive object in the foreground, along an observer’s line of sight. This arrangement distorts the observed image of the background source. Since this distor- tion is unknown and non-linear, analysis of the source becomes considerably more complex. However, this phenomenon also has the effect of stretching, enlarging and amplifying the image of the source, enabling the source to be reconstructed with considerably improved spatial resolution, given its initial distance from the observer. The aim of this project is to develop a chain of simulations to study the feasibility of measuring the mass of a supermassive black hole (SMBH) by kinematics of molecular gas at higher redshift, using machine learning to take advantage of the magnification generated by the distortion of a strong gravitational lens. To this end, we realistically generate observations of molecular gas obtained by the Atacama Large Millimeter/Submillimeter Antenna Array (ALMA). These data are generated from the Feedback in Realistic Environments (FIRE) suite of hydrodynamic simulations. In each simulation, the kinematic effect of the SMBH is integrated, assuming virialized molecular gas. Next, the emission flux of the molecular gas is calculated as a function of its velocity, temperature, density, H2 fraction, redshift and sky size. The ALMA cube is generated taking into account spatial and spectral resolution, which depend on the number of antennas, their configuration and exposure time. Finally, the effect of strong gravitational lensing is introduced by back-propagating the light beam according to the mass profile of the singular isothermal ellipsoid (SIE). The exploitation of these simulated ALMA data is tested in a direct regression problem. We train a convolution neural network (CNN) to learn to predict the mass of an SMBH from the simulated data, without taking into account the effect of the lens. The network predicts the mass of the SMBH as well as its uncertainty, assuming a Gaussian a posteriori distribution. The results are convincing: the greater the mass of the SMBH, the more precise and accurate the network’s prediction. As with conventional methods, the network is only able to predict the mass of the SMBH as long as the spatial resolution of the data allows the SOI to be resolved. Furthermore, the network’s saliency maps confirm that it uses the information contained in the SOI to predict the mass of the SMBH. In future work, the effect of strong gravitational lensing will be introduced into the data to assess whether it becomes possible to measure the mass of these same SMBHs, but at a higher redshift.
15

Influence du stochastique sur des problématiques de changements d'échelle / Stochastic influence on problematics around changes of scale

Ayi, Nathalie 19 September 2016 (has links)
Les travaux de cette thèse s'inscrivent dans le domaine des équations aux dérivées partielles et sont liés à la problématique des changements d'échelle dans le contexte de la cinétique des gaz. En effet, sachant qu'il existe plusieurs niveaux de description pour un gaz, on cherche à relier les différentes échelles associées dans un cadre où une part d'aléa intervient. Dans une première partie, on établit la dérivation rigoureuse de l'équation de Boltzmann linéaire sans cut-off en partant d'un système de particules interagissant via un potentiel à portée infinie en partant d'un équilibre perturbé.La deuxième partie traite du passage d'un modèle BGK stochastique avec champ fort à une loi de conservation scalaire avec forçage stochastique. D'abord, on établit l'existence d'une solution au modèle BGK considéré. Sous une hypothèse additionnelle, on prouve alors la convergence vers une formulation cinétique associée à la loi de conservation avec forçage stochastique.Au cours de la troisième partie, on quantifie dans le cas à vitesses discrètes le défaut de régularité dans les lemmes de moyenne et on établit un lemme de moyenne stochastique dans ce même cas. On applique alors le résultat au cadre de l'approximation de Rosseland pour établir la limite diffusive associée à ce modèle.Enfin, on s'intéresse à l'étude numérique du modèle de Uchiyama de particules carrées à quatre vitesses en dimension deux. Après avoir adapté les méthodes de simulation développées dans le cas des sphères dures, on effectue une étude statistique des limites à différentes échelles de ce modèle. On rejette alors l'hypothèse d'un mouvement Brownien fractionnaire comme limite diffusive / The work of this thesis belongs to the field of partial differential equations and is linked to the problematic of scale changes in the context of kinetic of gas. Indeed, knowing that there exists different scales of description for a gas, we want to link these different associated scales in a context where some randomness acts, in initial data and/or distributed on all the time interval. In a first part, we establish the rigorous derivation of the linear Boltzmann equation without cut-off starting from a particle system interacting via a potential of infinite range starting from a perturbed equilibrium. The second part deals with the passage from a stochastic BGK model with high-field scaling to a scalar conservation law with stochastic forcing. First, we establish the existence of a solution to the considered BGK model. Under an additional assumption, we prove then the convergence to a kinetic formulation associated to the conservation law with stochastic forcing. In the third part, first we quantify in the case of discrete velocities the defect of regularity in the averaging lemmas. Then, we establish a stochastic averaging lemma in that same case. We apply then the result to the context of Rosseland approximation to establish the diffusive limit associated to this model.Finally, we are interested into the numerical study of Uchiyama's model of square particles with four velocities in dimension two. After adapting the methods of simulation which were developed in the case of hard spheres, we carry out a statistical study of the limits at different scales of this model. We reject the hypothesis of a fractional Brownian motion as diffusive limit

Page generated in 0.0909 seconds