Spelling suggestions: "subject:"hydrogenbond"" "subject:"hydrogenbonds""
91 |
Difluoroboronate Urea-Induced Acid Amplification for Insertion ChemistryCouch, Erica Dawn 07 October 2014 (has links)
No description available.
|
92 |
The assessment of intramolecular hydrogen bonding in ortho-substituted anilines by an NMR methodAbraham, M.H., Abraham, R.J., Aghamohammadi, Amin, Afarinkia, Kamyar, Liu, Xiangli 20 July 2020 (has links)
Yes / We describe the Δlog P method for the assessment of intramolecular hydrogen bonds (IMHBs), and show that it is not a very general method of distinguishing between molecules in which there is an IMHB and molecules in which there is no IMHB. The ‘double’ Δlog P method of Shalaeva et al. is a much more reliable method for the assessment of IMHB but requires the synthesis of a model compound and the determination of no less than four water-solvent partition coefficients. In addition, it is difficult to apply to compounds that contain more than one hydrogen bond acidic group capable of IMHB. We then describe our NMR method of assessing IMHB, based on 1H NMR chemical shifts in solvents DMSO and CDCl3. We have determined 1H NMR chemical shifts for a number of ortho-substituted anilines and show that the only compound we have studied that forms an IMHB is methyl 2-methylaminobenzoate though there is no IMHB present in methyl 2-aminobenzoate. This apparently anomalous result is supported by both MM and ab initio calculations.
The NMR method is much simpler and less time consuming than other methods for the assessment of IMHB. It provides a quantitative assessment of IMHB and can be applied to molecules with more than one hydrogen bond acidic group.
|
93 |
Premiers nanovecteurs supramoléculaires ciblant le cerveau par transport actif / First supramolecular nanovectors targeting the brain by active transportMarmin, Thomas January 2017 (has links)
La délivrance de médicament dans l’organisme vers des organes cibles tout en minimisant les effets secondaires représente un énorme défi scientifique. Les recherches actuelles révèlent qu’il existe de nombreuses embuches pour acheminer des composés thérapeutiques vers le système nerveux central. De nombreuses maladies (l’autisme, la schizophrénie, la maladie d’Alzheimer…) liées au système nerveux central nuisent à la qualité de vie et entrainent des coûts importants pour la société. Ce mémoire repose sur l’amélioration de l’accessibilité de composés thérapeutiques vers le cerveau en passant la barrière hémato-encéphalique, une barrière biologique difficilement franchissable. Pour introduire des médicaments dans le système nerveux central, il faut passer cette barrière, ce qui est très difficile, car elle est remarquablement efficace pour protéger le milieu cérébral. C’est pourquoi nous allons développer une nouvelle stratégie consistant à élaborer un nouveau type de transporteur. Nous proposons d’utiliser des macrolactames ayant la propriété de s’empiler sous forme de tubes supramoléculaires d’une stabilité adéquate. Il sera alors possible d’y greffer des médicaments et aussi des agents d’ouverture de la barrière hémato-encéphalique. Ce mémoire présente l’élaboration de ces nouveaux macrocycles chiraux, les résultats de différentes analyses structurales prouvant la présence de tubes et de systèmes robustes et enfin la fonctionnalisation du macrocycle par un agent médicamenteux (doxorubicine). / Abstract : Delivering drug into the body to target specific organs, while minimizing side effects, is an
enormous scientific challenge. Current research reveals that there are many pitfalls for
delivering therapeutic compounds to the central nervous system. Many diseases (autism,
schizophrenia, Alzheimer's, etc.) linked to the central nervous system affect the quality of
life and entail significant costs for society. This thesis is based on the improvement in the
accessibility of therapeutic compounds to the brain by passing the blood-brain barrier, a
biological barrier difficult to cross. To introduce drugs into the central nervous system, this
barrier must be overcome. This is very difficult because it is remarkably effective in
protecting the brain. This is why we will develop a new strategy based on a new type of
transporter. We propose to use macrolactams having the property of stacking in the form of
supramolecular tubes of adequate stability. It will then be possible to graft medicines and
also agents capable of opening the blood-brain barrier. This manuscript describes the
development of these new chiral macrocycles, the results of various structural analyses
proving the presence of robust tubes and systems, and finally the functionalization of the
macrocycles by a medicinal agent (doxorubicin).
|
94 |
Soluções de aminas em líquidos iônicos para captura de CO2: espectroscopia vibracional e cálculos DFT / Solutions of amines in ionic liquids for CO2 capture: vibrational spectroscopy and DFT calculationsLepre, Luiz Fernando 25 July 2013 (has links)
A substituição da água por líquidos iônicos (LI) oferece uma alternativa promissora para o desenvolvimento de processos de separação de gases, principalmente devido à significativa demanda energética em processos convencionais que utilizam soluções aquosas de aminas. Esta proposta apresenta-se interessante por aliar as propriedades dos LI à reatividade de aminas perante o CO2. A físico-química que governa as interações entre os íons dos líquidos iônicos é bastante diversa das encontradas em solventes moleculares, sendo que ainda permanecem muitas questões fundamentais acerca destes materiais. A melhor compreensão das interações estabelecidas entre aminas e LI, e dos produtos formados após a reação com CO2, pode contribuir para o desenvolvimento de processos mais eficazes que permitam a substituição da água nos processos convencionais. O presente trabalho teve como objetivo investigar soluções das aminas primárias propilamina (PA), 2-metoxietilamina (MOEN) e monoetanolamina (MEA) em líquidos iônicos imidazólicos com diferentes ânions: 1-butil-3-metilimidazólio tetrafluoroborato (BMIBF4), hexafluorofosfato (BMIPF6), bis-(trifluorometilsulfonil)imida (BMITFSI) e dicianamida (BMIN(CN)2). Para tal, foram utilizadas as espectroscopias Raman e infravermelho (IR), cujos resultados foram suportados por cálculos baseados na teoria do funcional da densidade (DFT). Os resultados mostram que o modo de estiramento assimétrico do grupo NH2 das aminas, νas(NH2), é o mais adequado para se inferir sobre o grau de agregação das aminas em solventes orgânicos e em LI. No caso das reações das aminas com CO2 nos diferentes LI, o comportamento foi similar à reação com as aminas puras, ou seja, na PA houve cristalização, na MOEN, a formação de um líquido miscível com os LI, e na MEA, a formação de um gel com a subsequente separação de fases. Em particular, no caso da reação entre MEA e CO2 em LI, além da separação de fases, foi observada a diferente solubilidade dos produtos de reação dependendo do LI em questão. Em contraste ao processo convencional que utiliza soluções aquosas de aminas para a captura do CO2, acredita-se que a separação de fases observada em LI seja uma vantagem a ser explorada, já que permitiria um menor gasto energético na recuperação da amina absorvedora, além da recuperação do solvente não volátil / The replacement of water by ionic liquids (IL) offers a promising alternative for the development of gas separation processes, mainly due to the significant energy demand in conventional processes using aqueous solutions of amines. This proposal is exciting because it combines the properties of IL with the reactivity of amines towards CO2. The physical-chemistry that governs the interactions between the ionic liquids ions is quite different from those found in molecular solvents, and many fundamental questions still remain about these materials. A better understanding of the interactions between amines and IL, and the products formed after the reaction with CO2, may contribute to the development of more efficient processes to enable the replacement of water in conventional processes. This study aimed to investigate solutions of the primary amines propylamine (PA), 2-methoxyethylamine (MOEN) and monoethanolamine (MEA) in imidazolium ionic liquids with different anions: 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4), hexafluorophosphate (BMIPF6), bis (trifluoromethylsulfonyl)imide (BMITFSI) and dicyanamide (BMIN(CN)2). For these purposes, the Raman and infrared (IR) spectroscopies were used, whose results were supported by calculations based on density functional theory (DFT). The results show that the asymmetric stretching mode of the amines group NH2, νas(NH2), are the most suitable for inferring the degree of aggregation of amines in organic solvents and IL. In the case of reactions of amines with CO2 in different IL, the behavior was similar to the reactions with neat amines, that is, it was observed crystallization with PA, the formation of a liquid miscible with IL in MOEN, and the formation of a gel-like product with subsequent phase separation in MEA. In particular, the case of the reaction between MEA and CO2 in IL, in addition to the phase separation, it was observed the different solubility of the reaction products depending on the IL concerned. In contrast to the conventional process using aqueous solutions of amines for the capture of CO2, it is believed that the phase separation observed in IL is an advantage to be exploited, since they allow lower energy consumption in the recovery of the amine absorber, besides the recovery of the non-volatile solvent.
|
95 |
Dinickel Complexes of the "Two-In-One" Pincer scaffoldGoursot, Pierre 29 May 2019 (has links)
No description available.
|
96 |
Regulation of Proton Coupled Electron Transfer from Amino Acids in Artificial Model Systems: A Mechanistic Study / En Mekanistisk Studie rörande Reglering av Protonkopplad Elektronöverföring från Aminosyror i Artificiella ModellsystemSjödin, Martin January 2004 (has links)
<p>Amino acid radicals are key redox intermediates in several natural enzymes including Cytochrome c peroxidase, DNA photolyase, ribonucletide reductase, cytochrome c oxidase and photosystem II. Electron transfer from amino acids is often coupled to deprotonation and this thesis concerns the coupling of electron transfer from tyrosine and tryptophan to trisbipyridineruthenium(III) with deprotonation in model complexes. Specifically the mechanisms for these proton coupled electron transfer reactions have been studied and the controlling parameters have been identified, the possible mechanisms being stepwise electron transfer followed by deprotonation and deprotonation followed by electron transfer or concerted electron transfer/deprotonation.</p><p>Proton coupled electron transfer reactions have been studied using nano-second flash photolysis in water solution and the effect of pH, temperature, reaction driving force, deuteration and nature of the amino acid has been determined. I have shown that the rate constant for the concerted reaction depends intrinsically on the mixing entropy of the released proton and that the pH-dependence can be used as an experimental tool for mechanistic discrimination. Moreover I have shown that the concerted reaction inherently has a high reorganisation energy due to the coupling of the electron motion with deprotonation. Hydrogen bonding to the transferring proton however significantly reduces this reorganisation energy. The concerted reaction also has a relatively high driving force counteracting the high reorganisation energy in the competition between the concerted reaction and the stepwise electron transfer first reaction. The relative importance of the high reorganisation energy and the high driving force for the concerted reaction determines the mechanistic outcome of the reaction, the stepwise reaction being favoured by high over-all driving forces and the concerted reaction by high pH.</p><p>By comparing my results from model complexes with tyrosineZ oxidation in photosystem II, I give strong evidence for a concerted electron transfer/deprotonation mechanism.</p>
|
97 |
Regulation of Proton Coupled Electron Transfer from Amino Acids in Artificial Model Systems: A Mechanistic Study / En Mekanistisk Studie rörande Reglering av Protonkopplad Elektronöverföring från Aminosyror i Artificiella ModellsystemSjödin, Martin January 2004 (has links)
Amino acid radicals are key redox intermediates in several natural enzymes including Cytochrome c peroxidase, DNA photolyase, ribonucletide reductase, cytochrome c oxidase and photosystem II. Electron transfer from amino acids is often coupled to deprotonation and this thesis concerns the coupling of electron transfer from tyrosine and tryptophan to trisbipyridineruthenium(III) with deprotonation in model complexes. Specifically the mechanisms for these proton coupled electron transfer reactions have been studied and the controlling parameters have been identified, the possible mechanisms being stepwise electron transfer followed by deprotonation and deprotonation followed by electron transfer or concerted electron transfer/deprotonation. Proton coupled electron transfer reactions have been studied using nano-second flash photolysis in water solution and the effect of pH, temperature, reaction driving force, deuteration and nature of the amino acid has been determined. I have shown that the rate constant for the concerted reaction depends intrinsically on the mixing entropy of the released proton and that the pH-dependence can be used as an experimental tool for mechanistic discrimination. Moreover I have shown that the concerted reaction inherently has a high reorganisation energy due to the coupling of the electron motion with deprotonation. Hydrogen bonding to the transferring proton however significantly reduces this reorganisation energy. The concerted reaction also has a relatively high driving force counteracting the high reorganisation energy in the competition between the concerted reaction and the stepwise electron transfer first reaction. The relative importance of the high reorganisation energy and the high driving force for the concerted reaction determines the mechanistic outcome of the reaction, the stepwise reaction being favoured by high over-all driving forces and the concerted reaction by high pH. By comparing my results from model complexes with tyrosineZ oxidation in photosystem II, I give strong evidence for a concerted electron transfer/deprotonation mechanism.
|
98 |
Impact of Secondary Interactions in Asymmetric CatalysisFrölander, Anders January 2007 (has links)
This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained employing hydroxy- and methoxy-containing ligands in the catalytic reaction. This type of hydrogen bond was further studied in phenanthroline metal complexes. As expected for a hydrogen bond, the strength of the bond was found to increase with increased electron density at the metal and with increased acidity of the hydroxy protons. The second part deals with the use of hydroxy- and methoxy-containing phosphinooxazoline ligands in the rhodium- and iridium-catalyzed asymmetric hydrosilylation reaction. The enantioselectivities obtained were profoundly enhanced upon the addition of silver salts. This phenomenon was explained by an oxygen–metal coordination in the catalytic complexes, which was confirmed by NMR studies of an iridium complex. Interestingly, the rhodium and iridium catalysts nearly serve as pseudo-enantiomers giving products with different absolute configurations. The final part deals with ditopic pyridinobisoxazoline ligands and the application of their metal complexes in asymmetric cyanation reactions. Upon complexation, these ligands provide catalysts with both Lewis acidic and Lewis basic sites, capable of activating both the substrate and the cyanation reagent. Lanthanide and aluminum complexes of these ligands were found to catalyze the addition of the fairly unreactive cyanation reagents ethyl cyanoformate and acetyl cyanide to benzaldehyde, whereas complexes of ligands lacking the Lewis basic coordination sites failed to do so. / QC 20100709
|
99 |
Theoretical And Spectroscopic Studies On Weakly Bound Complexes And AcetyleneRaghavendra, B 10 1900 (has links)
Atoms construct the molecules and molecules construct the material substances (with the exceptions as well, e.g.., metals, where atoms directly construct the material substances). Intermolecular interactions play an important role in most of the branches of sciences, ranging from material sciences to biological sciences. Van der Waals interactions are weak intermolecular interactions while hydrogen bonding varies in strength from weak to strong (1 to 40 kcal/mol). The present work focuses on applying some theoretical methods (ab initio and Atoms in Molecules theory) on these interactions to differentiate them with physically meaningful parameters such as hydrogen bond radii and atoms in molecules theory parameters. 1)Defining and calculating H-bond radii have been done using atoms in molecules theory approach which can explain ruling out the presence or absence of an H-bond in an intermolecular interaction. 2) A blue-shift of 200 cm-1 for a weakly bound complex is unprecedented. Our studies on weakly bound complexes showed the blue-shift of 200 cm-1 for H3C•••CIF and shift has been found to be purely from the mixing of normal modes and not because of an interaction. 3)Methane, a symmetric top molecule can act both as H-bond acceptor and donor. The present work shows that methane is rather a better H-bond acceptor than a donor and all the calculated parameters are in favor of this description. 4) Microwave spectrometer is an ultimate tool (at least at present) for structural characterization of the weakly bound complexes accurately. The rotational spectrum of the weakly bound isotopomer weakly bound complexes accurately. The rotational spectrum of the weakly bound isotopomer 13CC5H6•••Ar, which is a symmetric top and gives only “B” rotational constant. Moreover, the A rotational constant of the complex is the same as the rotational constant for 13CC5H6, which has no dipole moment.
C2H2 molecule is an astrophysically important molecule as it is present in asymptotic giant branch and T-type stars (Teff<3000K). Due to its various infrared active vibrational modes, C2H2 is one of the most important sources in cool stars. The production of C2H2 infrared spectroscopic data at high temperature is therefore essential to trace back physical characteristics of these objects and to model the radiative transfer in their envelope. The databases such as “HITRAN”, do not have enough data available for stimulating high temperature spectra. Keeping all these objectives in mind, high temperature emission spectrum of acetylene has been recorded around 3µm region of acetylene.
|
100 |
Hydrogen- and halogen-bond driven co-crystallizations: from fundamental supramolecular chemistry to practical materials scienceWidanalage Dona, Tharanga Kumudini Wijethunga January 1900 (has links)
Doctor of Philosophy / Chemistry / Christer B. Aakeroy / A series of co-crystallizations between four biimidazole based compounds with nine symmetric aliphatic di-acids and fifteen perfluorinated halogen-bond donors were carried out to determine if a MEPS based ranking can be used to effectively assign selectivity in hydrogen- and halogen-bond interactions. The results suggested that a simple electrostatic view provides a reliable tool for successfully implementing the practical co-crystal synthesis with desired connectivity.
MEPS based selectivity guidelines for halogen-bond interactions were explored in co-crystallizations between twelve asymmetric ditopic acceptors and nine halogen-bond donors. If the difference between the two acceptor sites is below 35 kJ/mol, no selectivity was observed; above 65 kJ/mol halogen bond selectivity dominates and mid ΔE range was recognized as the grey area where predictions cannot be made.
To examine competition between hydrogen and halogen bonds, five heteroaryl-2-imidazoles were co-crystallized with fifteen halogen-bond donors. It was found that halogen bonds prefer best the acceptor site, demonstrating that a suitably activated halogen-bond donor can compete with a strong hydrogen-bond donor.
The benefits of ‘double activation’ for promoting halogen bond effectiveness was explored with nine haloethynylnitrobenzenes. The positive potential on halogen atoms was enhanced through a combination of an sp-hybridized carbon and electron-withdrawing nitro group(s). Iodoethynylnitrobenzenes were identified as the most effective halogen-bond donors reported to date and the compounds were exploited for the interaction preferences of nitro group and nitro⋯X-Csp interactions were identified as synthetic tools for energetic co-crystal assembly.
A synthetic strategy for the deliberate assembly of molecular polygons was developed utilizing bifurcated halogen bonds constructed from N-oxides and complementary halogen-bond donors via co-crystallization.
A convenient, effective, and scalable protocol for stabilizing volatile liquid chemicals with co-crystallization was achieved. Through the use of halogen-bonding, liquid iodoperfluoroalkanes were transformed into crystalline materials with low-vapor pressure, considerable thermal stability and moisture resistance.
To stabilize the energetic compound ethylenedinitramine, a co-crystallization approach targeting the acidic protons was employed. Eight co-crystals were obtained and the acceptors were identified as supramolecular protecting groups leading to diminished reactivity and enhanced stability while retaining the desirable energetic properties.
|
Page generated in 0.0501 seconds