• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 108
  • 32
  • 25
  • 24
  • 19
  • 17
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Algebras geradas por menores de matrizes cataleticas

Machado, Paulo Antonio Fonseca 18 March 1997 (has links)
Orintadores: Aron Simis, Paulo Roberto Brumatti / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-22T01:40:02Z (GMT). No. of bitstreams: 1 Machado_PauloAntonioFonseca_D.pdf: 3103261 bytes, checksum: 806ab8cc1b64f2bbad4afc9600943153 (MD5) Previous issue date: 1997 / Resumo: Neste trabalho estabelecemos o conceito de matriz r-catalética e estudamos algumas álgebras relacionadas com menores máximos destas matrizes sobre um corpo. Seja X = (Xj+(i-1)r)ij uma m x n-matriz r-catalética, com m ? n, 1 ? i ? m, 1 ? j ? m e l ? r ? n, e seja K um corpo. Seja M o conjunto dos menores máximos de X. Considere-se em K[X] a ordem lexicográfica graduada <? determinada pela ordem total nas variáveis Xk > X1 se k < l. Seja in?(M) o conjunto dos monômios iniciais dos elementos de M e tome-se A = K[in?(M)]. Se I é o ideal gerado por in?(M) em K[X], seja n(I) S:! K[X, in?(M)t] a álgebra de Rees associada. Desenvolvemos então uma teoria análoga á teoria de tableaux standard para matrizes genéricas . em relação às matrizes cataléticas, o que chamamos de tableaux r-standard. Esta teoria dos tableaux para matrizes r-cataléticas apresenta muitos pontos em comum com a teoria das álgebras de Hodge, indicando que podem existir por trás estruturas algébricas interessantes. Com isto conseguimos construir representações adequadas para A e para n(I) que permitem aplicar a teoria de complexos simpliciais e anéis de Stanley-Reisner. Usando estas técnicas calculamos o a-invariante e o grau do h-vetor de A. Como A e n(I) são anéis de semigrupos, podemos também demonstrar que estas álgebras são álgebras normais de Cohen-Macaulay usando critérios de semigrupos. afins. Usando técnicas de corpos de frações e alguns resultados sobre grafos, calculamos a dimensão de A.....Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital. / Abstract: Not informed / Doutorado / Doutor em Matemática
32

Ideais diferenciais em álgebras finitamente geradas / Differential ideals in finitely generated algebras

Luan Benzi Medeiros 18 May 2018 (has links)
O objetivo principal dessa dissertação é o estudo do comportamento de ideais diferenciais com respeito à importantes temas de álgebra comutativa como decomposição primária e localização. Veremos que dado um ideal diferencial em um anel noetheriano de característica zero, seus primos associados também serão diferenciais e que ele admite uma decomposição primária cujas componentes são diferenciais. Em relação a localização, teremos uma equivalência dos conceitos de ideais diferenciais no anel dado e no localizado, ou seja, um ideal é diferencial se, e somente se, sua localização também o é. / The main goal of this dissertation is to study the behavior of differential ideals regarding important themes of commutative algebra such as primary decomposition and localization. We will see that, given a differential ideal in a noetherian ring of caracteristic zero, its associated primes ideals will also be differentials and we will exhibit a primary decomposition whose components will be differentials too. In relation to localization, we will have an equivalence of the concepts of differential ideals in the given ring and in the localized ring, that is, an ideal is differential if, and only if, its localization is differential too.
33

PI-Algebras

Galvão, Alcindo Teles 05 December 2003 (has links)
Orientador: Plamen Emilov Kochloukov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T14:21:33Z (GMT). No. of bitstreams: 1 Galvao_AlcindoTeles_M.pdf: 3348446 bytes, checksum: d79941e3341f08dbb553b6c6dcbedf9c (MD5) Previous issue date: 2003 / Resumo: Esta dissertação introduz as primeiras noções para o estudo combinatório da teoria de álgebras que satisfazem identidades polinomiais (resumidamente P I-álgebras), bem como alguns dos seus resultados mais importantes. Apresentamos o teorema de Kaplansky e o teorema de Regev sobre produto tensorial de PI-álgebras. Além disso, descrevemos alguns resultados devidos a Amitsur e o teorema sobre identidades mínimas em álgebras matriciais conhecido como teorema de Amitsur e Levitzki. Consideramos também polinômios centrais e o teorema de Posner, o teorema sobre a altura, de Shirshov, incluindo o problema de Kurosh. No final da dissertação desenvolvemos os métodos descobertos por Razmyslov, que o levaram a descrever uma base para as identidades polinomiais satisfeitas pela álgebra de Lie das matrizes de ordem dois com traço zero, e em seguida, para a álgebra (associativa) das matrizes de ordem dois / Abstract: This dissertation introduces the first notions of the combinatorial study of the theory of algebras that satisfy polynomial identities (the so-called P I -algebras), as well as some of their most important results. We present the theorems due to Kaplansky and Regev, about the tensor product of P 1-algebras. Besides, we describe some results due to Amitsur and the theorem about minimum identities in matricial algebras known as Amitsur and Levitzki's theorem. We also consider central polynomials and Posner's theorem, and Shirshov's height theorem, including Kurosh's problem. At the end of the dissertation we develop the methods discovered by Razmyslov which led him to the description of a basis for the polynomial identities satisfied by the Lie algebra of the traceless matrices of order two and, afterwards, for the (associative) algebra of all second arder matrices / Mestrado / Mestre em Matemática
34

Sobre os grupos das classes de ideais dos corpos numericos abelianos reais

Prada, Francisco Thaine, 1948- 16 July 2018 (has links)
Tese (livre-docencia) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação / Made available in DSpace on 2018-07-16T16:06:58Z (GMT). No. of bitstreams: 1 Prada_FranciscoThaine_LD.pdf: 538302 bytes, checksum: c4e464646221e1826ecd3970ffcd458a (MD5) Previous issue date: 1987 / Resumo: Se obtém uma relação entre os grupos das classes de ideais e os grupos das unidades dos corpos numéricos abelianos reais por meio do estudo da fatoração em ideais primos de certos inteiros ciclotômicos semelhantes as somas de Gauss. Se obtém anuladores de classes de ideais que satisfazem uma condição dada. Esta condição é satisfeita por todas as classes cuja ordem é uma potencia de p se o corpo está contido num corpo pn-ciclotômico (p primo). Para uma classe de corpos, a relação mencionada induz uma outra parte o grupo das classes de ideais e o grupo quociente das unidades por as unidades circulatórias. Os subcorpos reais dos corpos p-ciclotômicos são dessa classe. Se dá uma aplicação ao último teorema de Fermat / Abstract: Not informed / Tese (livre-docencia) - Univer / Livre-Docente em Matematica
35

Invariantes de germes de aplicações de \'C POT. n+m\' em \'C POT.m\' e ideais de Fitting / Invariantes of map germs from \'C POT. n+m\' to \'C POT. m\' and Fitting ideals

Miranda, Aldicio José 14 April 2009 (has links)
O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições de Whitney equisingularidade ou trivialidade topollógica para germes de aplicações f : (\'C POT.n+3\' ,0) \'SETA\' (\'C POT.3\',0). São obtidas relações entre os invariantes sem considerar a hipótese de que o germe tenha co-posto 1 e o desdobramento ser excelente, generalizando os resultados obtidos por Jorge Pèrez para germes f : (\'C POT.3\' ,0) \' SETA\' !(\'C POT.3\' ,0) de co-posto 1. Outro problema interessante em teoria de singularidades é encontrar fórmulas para calcular invariantes 0-estáveis que podem surgir no discriminante de uma deformaçãao estável de um germe finitamente determinado. Neste contexto são desenvolvidos métodos de contagem dos invariantes 0-estáveis a partir dos ideais de Fitting associados ao conjunto discriminante de f . Por último, implementamos um algoritmo no software Maple, para determinar a matriz de uma apresentação do \'O IND.m\' módulo finitamente gerado \'O IND.SIGMA( f ). Desta matriz, podemos obter os ideais de definição de todos os conjuntos de pontos múltiplos de f . Além disto apresentamos uma aplicação deste algoritmo no cálculo do número de pontos múltiplos em germes finitamente determinados de \'C POT.2\' em \'C POT.2\' / In the first of this work we study the necessary invariants to give conditions for the Whitney equissingularity or the topological triviality in families of map germs f : (\'C POT. n+3\', 0) \'ARROW\' (\'C POT.3\' ,0). We obtain relations between these invariants without the hypothesis of the germ to be of co-rank 1 and the unfolding to be excelent. We generalize the results given by Jorge Perez in the case co-rank one map germs f : (\'C POIT.3\', 0)!(\'C POT.3\' ,0). Other interesting problem in Singularity Theory is to find formulae which allow us to count the 0-stable singularities which appear in the discriminant of a stable deformation of a finitely determibed germ. In this context are developed methods of calculation of invariant 0-stable from the ideals of fitting associated with the discriminant set of f . Last, but not least we implement an algorithm using Maple to obtain the representation matrix of the finitely generated \'O IND.m\' module \'O IND. SIGMA\'( f ). From this matrix we obtain all Fitting ideals related with the multiple points. Moreover we show how to apply this algorithm to obtain the multiple points of finitely determined map germs f : (\'C POT.2\' ,0) \'ARROW\' (\'C POT.2\', 0)
36

Ideais primos, maximais e primitivos em certos subanéis de anéis de polinômios

Miranda, Edilson Soares January 2008 (has links)
Nesta tese caracterizamos completamente ideais primos, primitivos e maximais em certos subanéis graduados de anéis de polinômios, que chamamos de subanéis admissíveis. Obtivemos uma correspondência biunívoca, via contração entre certas subfamílias de ideais primos, primitivos e maximais de R[x] e certas subfamílias de ideais primos, primitivos e maximais de subanéis admissíveis, respectivamente. Também caracterizamos ideais primos e maximais em subanéis admisséveis com várias variáveis. Ainda, estendemos alguns resultados sobre anéis de Jacobson para anéis admissíveis e generalizamos alguns resultados obtidos em subanéis admissíveis para certos subanéis de skew anéis de polinômios. / In this thesis we completely characterize prime, primitive and maximal ideals in certain graded subrings of polynomial rings, that we call of admissible subrings. We obtain via contraction a one-to-one correspondence between certain subfamily of prime, primitive and maximal ideals of R[x] and certain subfamily of prime, primitive and maximal ideals of admissible subrings, respectively. We also characterize prime and maximal ideals in admissible subrings with several variables. We also extend some results about Jacobson rings for admissible rings and we generalize some results obtained in admissible subrings for certain subrings of skew polynomial rings.
37

Relação entre o número máximo de elementos independentes em um anel local e a coaltura de ideais primos associados ao seu completamento

Doering, Luisa Rodriguez January 1990 (has links)
Neste trabalho estudamos resultados sobre elementos independentes em relação a um ideal de um anel noetheriano comutativo com unidade. Começamos mostrando, num resultado devido a G. VALLA, que o supremo de um ideal (número máximo de elementos independentes nesse ideal) está entre a profundidade e a altura do mesmo. Demonstramos então um teorema, devido a N.V. TRUNG, que relaciona o supremo de um ideal com o comportamento do ideal nulo de completamentos de localizações do anel em primos associados a este ideal. Como aplicação desse resultado provamos que o completamento de um anel local (R, m) possui um ideal primo associado (mÍnimo) ao ideal nulo de coaltura r se e somente se em R existir um ideal m-primário (inteiramente fechado) cujo supremo é r. / We prove results concerning independent elements with respect to an ideal of a commutative Noetherian ring with unity. First we prove a. result dueto G. VALLA: the supremum of a.n ideal, tha.t is, the maximum number of independent elements of an ideal with respect to itself, is bounded below by the depth and above by the height of the ideal. Next we prove a cha.ra.cterization theorem of N.V. TRUNG which relates the supremum of an ideal with the behavior of the zero ideal of completions of localiza.tions of the ring at its associated prime ideais. As an applica.tion, we prove that the completion of a local ring (R, m) has a (minimal) prime divisor of coheight r if and only if there exists in R a.n (integrally closed) m-primary ideal with supremum r.
38

Sobre fechos de módulos sobre anéis semiprimos e não-singulares

Nery, Janice January 2002 (has links)
Se R é um anel não-singular `a direita e Q é o seu anel maximal de quocientes à direita, existe um teorema que estabelece condições equivalentes para que a envoltória injetiva de um ideal `a direita de R seja um Q-bimódulo ([8]). Este teorema ´e provado usando a ortogonalidade de uma família de ideais. Nesta tese estendemos a ortogonalidade de uma família de ideais para uma família de módulos sobre anéis semiprimos e não-singulares `a direita. Com esta noção estendemos o resultado de [8] acima mencionado, para bimódulos centralizantes sobre anéis semiprimos e não-singulares `a direita. / In case R is a right nonsingular ring and Q is its right maximal quotients ring, there is a theorem that gives equivalent conditions for the injective hull of a right ideal of R to be a Q-bimodule ([8]). This theorem is proved using the orthogonality of a family of ideals. In this thesis we extended the orthogonality of a family of ideals to a family of modules over semiprime and right nonsingular rings. With this notion we extend the result of [8] to centralizing bimodules over semiprime and right nonsingular rings.
39

Extensões de Ore : ideais maximas e outras questões

Cortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, ›σ an automorphism of R and d a ›σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; ›σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; ›σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
40

Ideais primos, maximais e primitivos em certos subanéis de anéis de polinômios

Miranda, Edilson Soares January 2008 (has links)
Nesta tese caracterizamos completamente ideais primos, primitivos e maximais em certos subanéis graduados de anéis de polinômios, que chamamos de subanéis admissíveis. Obtivemos uma correspondência biunívoca, via contração entre certas subfamílias de ideais primos, primitivos e maximais de R[x] e certas subfamílias de ideais primos, primitivos e maximais de subanéis admissíveis, respectivamente. Também caracterizamos ideais primos e maximais em subanéis admisséveis com várias variáveis. Ainda, estendemos alguns resultados sobre anéis de Jacobson para anéis admissíveis e generalizamos alguns resultados obtidos em subanéis admissíveis para certos subanéis de skew anéis de polinômios. / In this thesis we completely characterize prime, primitive and maximal ideals in certain graded subrings of polynomial rings, that we call of admissible subrings. We obtain via contraction a one-to-one correspondence between certain subfamily of prime, primitive and maximal ideals of R[x] and certain subfamily of prime, primitive and maximal ideals of admissible subrings, respectively. We also characterize prime and maximal ideals in admissible subrings with several variables. We also extend some results about Jacobson rings for admissible rings and we generalize some results obtained in admissible subrings for certain subrings of skew polynomial rings.

Page generated in 0.0288 seconds