• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 16
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Efeito do fator de necrose tumoral-alfa (TNF-α)sobre células imortalizadas por papilomavírus humano (HPV) / Effects of tumor necrosis factor-alpha (TNF-α) on HPV - immortalized cells

Enrique Mario Boccardo Pierulivo 05 July 2002 (has links)
A infecção por papilomavírus humano (HPV) é o principal fator de risco para o desenvolvimento de neoplasias intra-epiteliais cervicais, as lesões precursoras do carcinoma da cérvice uterina. O fator de necrose tumoral-α (TNF-α) é um dos principais mediadores da inflamação da pele e das mucosas. Esta citocina é capaz de inibir a proliferação de queratinócitos normais e imortalizados por HPV-16. Por outro lado, queratinócitos imortalizados por HPV-18 ou transformados por HPV 16 ou 18 são resistentes aos efeitos do TNF-α. Entretanto, a base molecular desta diferença ainda é pouco conhecida. No presente estudo observamos o aumento dos níveis do inibidor de quinases p21, diminuição dos níveis de ciclina A e a ativação do fator NF-κB após tratamento com TNF-α, apenas em células sensíveis à citocina. Por outro lado não foi observada alteração dos níveis de p16, p27, p65, ciclinas D1, E e CDKs -4 e -6 em nenhuma das linhagens estudadas. Culturas organotípicas (rafts) de queratinócitos normais apresentaram uma acentuada inibição da proliferação após o tratamento com TNF-α. Isso não foi observado em rafts de queratinócitos infectados com o genoma completo de HPV-18. Entretanto, as culturas organotípicas transduzidas com vetores retrovirais contendo o gene viral E7 apresentaram um fenótipo intermediário, indicando que a proteína E7 desempenha um papel na resistência a esta citocina. / Infection by Human papillomavirus (HPV) is the major etiologic factor in the development of cervical intra-epithelial neoplasia, the precursor of carcinoma of the uterine cervix. Tumor necrosis factor-alpha (TNF-α) is one of the main mediators of skin and mucosa inflamation and has a potent anti-proliferative effect on normal and HPV16 immortalized keratinocytes. On the other hand, HPV-18 immortalized and HPV-16 or -18 transformed keratinocytes are resistant to TNF-α. However the molecular basis of this difference is not well understood. In the present study we observed and increase in the CDK inhibitor p21, reduced levels of cyclin A and activation of NF-κB factor only in cells sensitive to this cytokine. Conversely, no alterations in the p16, p27, p65, cyclins D1, E and CDKs -4 and -6 levels was observed in any of the cell lines analyzed. Proliferation of normal primary human keratinocytes (PHK) raft cultures was markedly inhibited after treatment with TNF-α. This was not observed in cultures transfected with HPV-18 whole genome. Cultures transduced retroviral vectors carrying the E7 viral gene showed an intermediate phenotype suggesting that this protein contribute to TNF-α resistance.
12

Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment

Anastassiadis, Konstantinos, Rostovskaya, Maria 18 January 2016 (has links)
Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.
13

Disease-causing Keratin Mutations and Cytoskeletal Dysfunction in Human Skin : In vitro Models and new Pharmacologic Strategies for Treating Epidermolytic Genodermatoses

Chamcheu, Jean Christopher January 2010 (has links)
Epidermolysis bullosa simplex (EBS) and epidermolytic ichthyosis (EI) are rare skin fragility diseases characterized by intra-epidermal blistering due to autosomal dominant-negative mutations in basal (KRT5 or KRT14) and suprabasal (KRT1 or KRT10) keratin genes,  respectively. Despite vast knowledge in the disease pathogenesis, the pathomechanisms are not fully understood, and no effective remedies exist. The purpose of this work was to search for keratin gene mutations in EBS patients, to develop in vitro models for studying EBS and EI, and to investigate novel pharmacological approaches for both diseases. We identified both novel and recurrent KRT5 mutations in all studied EBS patients but one which did not show any pathogenic keratin mutations. Using cultured primary keratinocytes from EBS patients, we reproduced a correlation between clinical severity and cytoskeletal instability in vitro. Immortalized keratinocyte cell lines were established from three EBS and three EI patients with different phenotypes using HPV16-E6E7. Only cell lines derived from severely affected patients exhibited spontaneous keratin aggregates under normal culture conditions. However, heat stress significantly induced keratin aggregates in all patient cell lines. This effect was more dramatic in cells from patients with a severe phenotype. In organotypic cultures, the immortalized cells were able to differentiate and form a multilayered epidermis reminiscent of those observed in vivo. Addition of two molecular chaperones, trimethylamine N-oxide dihydrate (TMAO) and sodium 4-phenylbutyrate (4-PBA), reduced the keratin aggregates in both stressed and unstressed EBS and EI keratinocytes, respectively. The mechanism of action of TMAO and 4-PBA was shown to involve the endogenous chaperone system (Heat shock proteins e.g. Hsp70). Besides, MAPK signaling pathways also seemed to be incriminated in the pathogenesis of EBS. Furthermore, depending on which type of keratin is mutated, 4-PBA up-regulated Hsp70 and KRT4 (possibly compensating for mutated KRT1/5), and down-regulated KRT1 and KRT10, which could further assist in protecting EBS and EI cells against stress. In conclusion, novel and recurrent pathogenic keratin mutations have been identified in EBS. Immortalized EBS and EI cell lines that functionally reflect the disease phenotype were established. Two pharmacologic agents, TMAO and 4-PBA, were shown to be promising candidates as novel treatment of heritable keratinopathies in this in vitro model.
14

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
15

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
16

Kryokonservierung und Immortalisierung von primären bovinen und porzinen Hepatozyten

Andres, Sandra 15 June 2022 (has links)
Die Bedeutung geeigneter in vitro Modelle gewinnt im Hinblick auf die Reduktion von Tierversuchen getreu des 3R-Prinzips immer mehr an Bedeutung. Für viele Fragestellungen in Bezug auf den Lebermetabolismus bei Nutztieren bieten primäre bovine und porcine Hepatozyten ein vielversprechendes in vitro Modell. Die Verfügbarkeit von primären Hepatozyten ist aber, aufgrund ihrer besonderen Sensibilität, äußerst begrenzt. Die Kryokonservierung von primären Hepatozyten stellt eine Strategie dar die Verfügbarkeit dieser Zellen maßgeblich zu verbessern. Eine weitere Möglichkeit Hepatozyten haltbar zu machen, ist die Proliferationsinduktion und somit die Immortalisierung der Leberzellen. Ziel dieser Arbeit war es, erstmals ein Kryokonservierungsprotokoll für primäre bovine Hepatozyten zu etablieren. Darüber hinaus sollte überprüft werden ob die Proliferationsaktivität von primären bovinen und porcinen Hepatozyten durch eine Behandlung mit Wachstumsfaktoren oder die Integration von humaner Telomerase reverse Transkriptase (hTERT) mittels Lipofectamine®-Transfektion induziert werden kann. Primäre Hepatozyten vom Rind und vom Schwein wurden von lebergesunden Spendertieren vergleichend mit einer zweischrittigen Kollagenaseperfusion gewonnen. Für die Etablierung des Kryokonservierungsprotokolls wurde zunächst die geeignete DMSO-Endkonzentration von 10 % ermittelt (n=3). Anschließend erfolgte die Kryokonservierung der Hepatozyten mit einer DMSO-Endkonzentration von 10 % und einer Konzentration von 20 % Fetalem Bovinem Serum vergleichend in William’s E Medium (WE) bzw. University of Wisconsin Medium (UW) mit und ohne Zusatz von 0,2 M Trehalose (T). Gleichzeitig wurde der Effekt einer computergesteuerten Einfriertechnik in einem Controlled-Rate-Freezer gegenüber einer manuellen Einfriertechnik mit Hilfe eines Gefrierbehälters evaluiert (n=6). Nach dem Auftauen wurde die Recovery (R, Zellzahl lebend aufgetauter Zellen im Vergleich zur Zahl der lebend eingefrorenen Zellen) und die Viabilität (V) der Hepatozyten mittels Trypanblaufärbung bestimmt, sowie die Kultivierbarkeit der Hepatozyten nach der Kryokonservierung untersucht. Für die Studien zur Proliferationsinduktion primärer boviner und porciner Hepatozyten, wurde im ersten Schritt ein geeignetes Transfektionsreagenz ermittelt, welches keine oder nur geringe zytotoxische Auswirkungen auf die Hepatozyten hat. Hierfür wurden die Hepatozyten in einer Monolayerkultur kultiviert und vergleichend mit Lipofectamine® 3000 und Lipofectamine® 2000 Reagenz behandelt (n=3). Anschließend erfolgte, mit Hilfe des Lipofectamine® 2000 Reagenz, eine Ko-Transfektion des eukaryotischen Plasmidvektors pCL-neo-hEST2 (hERT) sowie des fluoreszierenden eukaryotischen Plasmidvektors pmaxGFP™ in primäre bovine und porcine Hepatozyten. Die Überprüfung von Transfektionserfolg und -effizienz erfolgte mittels Fluoreszenzmikroskopie an Tag 2 nach Ko-Transfektion (n=6). Darüber hinaus wurde überprüft, ob eine Behandlung mit den Wachstumsfaktoren „bovine hepatocyte growth factor“ (bHGF) und „bovine epithelial growth factor“ (bEGF) bei kultivierten primären bovinen Hepatozyten zu einer effektiven Stimulation ihrer Proliferationsaktivität führt. Die Bestimmung der Signifikanzniveaus (P-Wert) erfolgte mittels One-way ANOVA Analyse mit Turkey-Test als Post-Hoc-Test, sowie der Two-Way ANOVA Analyse mit Šidák-Test als Post-Hoc-Test für Mehrfachvergleiche. Als statistisch signifikant wurde ein Signifikanzniveau von P ≤ 0,05 gewertet. Es konnte gezeigt werden, dass die computergesteuerte Einfriertechnik für die Kryokonservierung von primären bovinen und porcinen Hepatozyten einer manuellen Einfriertechnik deutlich überlegen ist (P < 0.0001). Im Hinblick auf die Wahl des Einfriermediums konnten für bovine Hepatozyten mit WE + T (V: 65,1 ± 8,3 %; R: 36,5 ± 6,0 %) und UW (V: 66,0 ± 11,2 %; R: 34,0 ± 8,9 %) und für porcine Hepatozyten mit UW (V: 76,8 ± 2,7 %; R: 69,7 ± 26,2 %) und UW + T (V: 64,4 ± 7,3 %; R: 67,6 ± 26,1 %) die besten Ergebnisse erzielt werden. Im Gegensatz zu kryokonservierten porcinen Hepatozyten, konnten bovine Hepatozyten ihre Kultivierbarkeit nach der Kryokonservierung nicht beibehalten. Für die Studien zur Proliferationsinduktion primärer boviner und porciner Hepatozyten, konnte gezeigt werden, dass das Transfektionsreagenz Lipofectamine® 3000 für die Transfektion primärer boviner und porciner Hepatozyten aufgrund zytotoxischer Eigenschaften nicht geeignet ist. Im Gegensatz dazu konnte mit Hilfe des Lipofectamine® 2000 Reagenz ein erfolgreiches Transfektionsprotokoll für primäre bovine und porcine Hepatozyten etabliert werden. Eine Induktion der Proliferationsaktivität durch die Integration von hTERT konnte allerdings nicht beobachtet werden. Ebenso konnte gezeigt werden, dass eine Behandlung mit den Wachstumsfaktoren bHGF und bEGF allenfalls zu einer geringgradigen Steigerung der Proliferationsaktivität primärer boviner Hepatozyten in einer Kollagen-Monolayer-Kultur führt. Zusammenfassend kann festgehalten werden, dass das Kryokonservierungsprotokoll für primäre bovine Hepatozyten weiter angepasst werden muss, um diese nach dem Tiefgefrieren brauchbar zu machen. Darüber hinaus sollte im Prozess der Etablierung einer Hepatozyten-Zelllinie aus primären bovinen bzw. porcinen Hepatozyten die Transfektion viraler Onkogene durchgeführt werden.:Inhaltsverzeichnis 1 Einleitung 1 2 Literaturübersicht 3 2.1 Anwendungsgebiete primärer Hepatozyten 3 2.2 Kryokonservierung 4 2.2.1 Geschichte 4 2.2.2 Grundlagen des Tiefgefrierens 5 2.2.3 Kryoprotektiva 8 2.2.3.1 Penetrierende Kryoprotektiva 8 2.2.3.2 Nicht penetrierende Kryoprotektiva 11 2.2.4 Einfriermedium 13 2.2.5 Kühlungsrate 14 2.2.6 Lagerung kryokonservierter Zellen 15 2.2.7 Auftauen 15 2.2.8 Kryokonservierung primärer Hepatozyten 17 2.3 Immortalisierung primärer Hepatozyten 19 2.3.1 Grundlagen der Immortalisierung 19 2.3.1.1 Zellzyklus Regulation 20 2.3.1.2 Kontrollpunkte und Kontrollmechanismen im Zellzyklus 23 2.3.2 Immortalisierungs-Strategien für primäre Hepatozyten 24 2.3.3 Gentransfer 26 3 Tiere, Material und Methoden 28 3.1 Material 28 3.2 Spendertiere 28 3.3 Methoden 30 3.3.1 Leberentnahme Rind 30 3.3.2 Leberentnahme Schwein 30 3.3.3 Leberzellisolation 31 3.3.4 Bestimmung von Zellzahl, Viabilität und Morphologie primärer Hepatozyten 35 3.3.5 Vorbereitung der Zellkulturplatten 36 3.3.6 Kultivierung primärer boviner und porziner Hepatozyten 37 3.3.7 Kryokonservierung 38 3.3.7.1 Vorversuch 38 3.3.7.2 Hauptversuch 40 3.3.8 Transfektion 44 3.3.8.1 Vorversuch 44 3.3.8.2 Hauptversuch 47 3.3.9 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 50 3.4 Auswertung 51 3.4.1 Beurteilung der Qualität der aufgetauten Hepatozyten 51 3.4.2 Statistik 52 4 Ergebnisse 53 4.1 Beurteilung der Viabilität und Qualität der isolierten primären Hepatozyten 53 4.2 Kryokonservierung 55 4.2.1 Vorversuch 55 4.2.2 Hauptversuch 57 4.3 Transfektion 63 4.3.1 Vorversuch 63 4.3.2 Hauptversuch 67 4.4 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 73 5 Diskussion 77 5.1 Ausgangsmaterial 77 5.2 Kryokonservierung 79 5.2.1 DMSO-Konzentration 79 5.2.2 Einfluss des Einfriermediums und des Zusatzes von Trehalose auf die Viabilität und Recovery kryokonservierter primärer boviner und porziner Hepatozyten 81 5.2.3 Einfluss der Einfriertechnik auf die Qualität kryokonservierter primärer boviner und porziner Hepatozyten 82 5.2.4 Einfluss der Langzeitlagerung bei -80 °C bzw. -150 °C auf die Qualität kryokonservierter primärer boviner und porziner Hepatozyten 83 5.2.5 Kultivierung kryokonservierter Hepatozyten 84 5.2.6 Vergleich primärer boviner und porziner Hepatozyten 88 5.3 Transfektion 90 5.3.1 Wahl des geeigneten Lipofectamine®-Reagenz und der geeigneten Einwirkdauer 90 5.3.2 Auswirkungen der Integration von hTERT in primäre bovine und porzine Hepatozyten 91 5.4 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 93 6 Ausblick 94 7 Zusammenfassung 96 8 Summary 98 9 Literaturverzeichnis 100 10 Anhang 119 10.1 Geräte 119 10.2 Chemikalien 120 10.3 Plasmide 123 10.4 Gas 123 10.5 Verbrauchsmaterialien 123 10.6 Original Temperatur-Kurven 126 11 Danksagung 129 / The importance of suitable in vitro models is gaining more and more importance with regard to the reduction of animal experiments true to the 3Rs principle. Primary bovine and porcine hepatocytes offer a promising in vitro model to study liver metabolism in farm animals. However, the availability of primary hepatocytes is extremely limited due to their particular sensitivity. Cryopreservation of primary hepatocytes illustrates one strategy to increase their availability. Another approach to preserve hepatocytes in vitro is to induce cell-proliferation resulting in an immortalized hepatocyte cell line. This study aimed to establish for the first time a cryopreservation protocol for primary bovine hepatocytes. Furthermore, it should be verified whether proliferation activity can be induced by treatment with growth factors or integration of human telomerase reverse transcriptase (hTERT) via Lipofectamine® transfection. Primary bovine and porcine hepatocytes of liver healthy animals were obtained comparatively using a two-step collagenase-perfusion technique. For the establishment of the cryopreservation protocol, the appropriate final DMSO concentration of 10 % was first determined (n=3). Subsequently, cryopreservation of hepatocytes was performed comparatively in William's E medium (WE) and University of Wisconsin medium (UW) respectively, with and without the addition of 0.2 M trehalose (T) with a final DMSO concentration of 10% and a concentration of 20% fetal bovine serum. At the same time, the effect of a computer-controlled freezing technique in a controlled-rate freezer versus a manual freezing technique using a freezing container was evaluated (n=6). Cell-recovery (R, cell number of live thawed cells compared to the number of live frozen cells), as well as cell-viability (V) of cryopreserved hepatocytes was determined by trypan blue staining, after thawing. In addition, it was examined if cryopreserved hepatocytes maintain plateable after thawing. For the studies on proliferation induction of primary bovine and porcine hepatocytes, the first step was to determine a suitable transfection reagent that has no or only minor cytotoxic effects on the hepatocytes. For this purpose, hepatocytes were cultured in a monolayer culture and comparatively treated with Lipofectamine® 3000 and Lipofectamine® 2000 reagent (n=3). Subsequently, the eukaryotic plasmid vector pCL-neo-hEST2 (hTERT) plus fluorescent eukaryotic plasmid vector pmaxGFP™ were transfected into primary bovine and porcine hepatocytes using Lipofectamine® 2000 reagent. Transfection success and efficiency was verified by fluorescence microscopy 2 days after co-transfection (n=6). Futhermore, it was examined whether treatment with bovine hepatocyte growth factor' (bHGF) and bovine epithelial growth factor (bEGF) leads to an effective stimulation of proliferation activity in cultured primary bovine hepatocytes Significance levels (P value) were determined by one-way ANOVA analysis with Turkey test as post hoc test, and two-way ANOVA analysis with Šidák-test as post hoc test for multiple comparisons. A significance level of P ≤ 0.05 was considered statistically significant. It was shown that a computer-controlled freezing technique is clearly superior to a manual freezing technique for the cryopreservation of primary bovine and porcine hepatocytes (P < 0.0001). With regard to the choice of the freezing medium, the best results were obtained for bovine hepatocytes with WE + T (V: 65.1 ± 8.3 %; R: 36.5 ± 6.0 %) and UW (V: 66.0 ± 11.2 %; R: 34.0 ± 8.9%) and for porcine hepatocytes with UW (V: 76.8 ± 2.7%; R: 69.7 ± 26.2%) and UW + T (V: 64.4 ± 7.3%; R: 67.6 ± 26.1%). In contrast to cryopreserved porcine hepatocytes, bovine hepatocytes could not maintain their cultivability after cryopreservation. For the studies on proliferation induction of primary bovine and porcine hepatocytes, it was shown that the transfection reagent Lipofectamine® 3000 is not suitable for transfection of primary bovine and porcine hepatocytes due to cytotoxic properties. In contrast, a successful transfection protocol for primary bovine and porcine hepatocytes could be established using Lipofectamine® 2000 reagent. However, induction of proliferation activity by integration of hTERT could not be observed. Similarly, treatment with the growth factors bHGF and bEGF was shown to result in at most a modest increase in the proliferation activity of primary bovine hepatocytes in a collagen monolayer culture. In conclusion, the cryopreservation protocol for primary bovine hepatocytes needs to be further adapted to make hepatocytes useful after deep freezing. Furthermore, transfection of viral oncogenes should be considered in the further process of establishing a hepatocyte cell line of primary bovine or porcine hepatocytes.:Inhaltsverzeichnis 1 Einleitung 1 2 Literaturübersicht 3 2.1 Anwendungsgebiete primärer Hepatozyten 3 2.2 Kryokonservierung 4 2.2.1 Geschichte 4 2.2.2 Grundlagen des Tiefgefrierens 5 2.2.3 Kryoprotektiva 8 2.2.3.1 Penetrierende Kryoprotektiva 8 2.2.3.2 Nicht penetrierende Kryoprotektiva 11 2.2.4 Einfriermedium 13 2.2.5 Kühlungsrate 14 2.2.6 Lagerung kryokonservierter Zellen 15 2.2.7 Auftauen 15 2.2.8 Kryokonservierung primärer Hepatozyten 17 2.3 Immortalisierung primärer Hepatozyten 19 2.3.1 Grundlagen der Immortalisierung 19 2.3.1.1 Zellzyklus Regulation 20 2.3.1.2 Kontrollpunkte und Kontrollmechanismen im Zellzyklus 23 2.3.2 Immortalisierungs-Strategien für primäre Hepatozyten 24 2.3.3 Gentransfer 26 3 Tiere, Material und Methoden 28 3.1 Material 28 3.2 Spendertiere 28 3.3 Methoden 30 3.3.1 Leberentnahme Rind 30 3.3.2 Leberentnahme Schwein 30 3.3.3 Leberzellisolation 31 3.3.4 Bestimmung von Zellzahl, Viabilität und Morphologie primärer Hepatozyten 35 3.3.5 Vorbereitung der Zellkulturplatten 36 3.3.6 Kultivierung primärer boviner und porziner Hepatozyten 37 3.3.7 Kryokonservierung 38 3.3.7.1 Vorversuch 38 3.3.7.2 Hauptversuch 40 3.3.8 Transfektion 44 3.3.8.1 Vorversuch 44 3.3.8.2 Hauptversuch 47 3.3.9 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 50 3.4 Auswertung 51 3.4.1 Beurteilung der Qualität der aufgetauten Hepatozyten 51 3.4.2 Statistik 52 4 Ergebnisse 53 4.1 Beurteilung der Viabilität und Qualität der isolierten primären Hepatozyten 53 4.2 Kryokonservierung 55 4.2.1 Vorversuch 55 4.2.2 Hauptversuch 57 4.3 Transfektion 63 4.3.1 Vorversuch 63 4.3.2 Hauptversuch 67 4.4 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 73 5 Diskussion 77 5.1 Ausgangsmaterial 77 5.2 Kryokonservierung 79 5.2.1 DMSO-Konzentration 79 5.2.2 Einfluss des Einfriermediums und des Zusatzes von Trehalose auf die Viabilität und Recovery kryokonservierter primärer boviner und porziner Hepatozyten 81 5.2.3 Einfluss der Einfriertechnik auf die Qualität kryokonservierter primärer boviner und porziner Hepatozyten 82 5.2.4 Einfluss der Langzeitlagerung bei -80 °C bzw. -150 °C auf die Qualität kryokonservierter primärer boviner und porziner Hepatozyten 83 5.2.5 Kultivierung kryokonservierter Hepatozyten 84 5.2.6 Vergleich primärer boviner und porziner Hepatozyten 88 5.3 Transfektion 90 5.3.1 Wahl des geeigneten Lipofectamine®-Reagenz und der geeigneten Einwirkdauer 90 5.3.2 Auswirkungen der Integration von hTERT in primäre bovine und porzine Hepatozyten 91 5.4 Proliferationsinduktion primärer boviner Hepatozyten mit Wachstumsfaktoren 93 6 Ausblick 94 7 Zusammenfassung 96 8 Summary 98 9 Literaturverzeichnis 100 10 Anhang 119 10.1 Geräte 119 10.2 Chemikalien 120 10.3 Plasmide 123 10.4 Gas 123 10.5 Verbrauchsmaterialien 123 10.6 Original Temperatur-Kurven 126 11 Danksagung 129

Page generated in 0.1212 seconds