• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

LINKING THE STRUCTURE AND MECHANICAL BEHAVIOR OF NANOPOROUS GOLD

Sun, Ye 01 January 2008 (has links)
The structure of nanoporous gold (np-Au) provides a very limited volume for deformation to occur, and thus offers an opportunity to study the role of defects such as dislocations in nanoscale metal volumes. A practical goal is to understand mechanical properties of np-Au so that it can be can produced in stable form, for use in applications that require some mechanical integrity. Bulk and thin film np-Au have been fabricated and studied here. Bulk np-Au was prepared by electrochemically dealloying Au-Ag alloys with 25 and 30 at.% Au. In the lower Au content material, cracks always formed during dealloying. When Au content increased to 30 at.% and a two-step electrochemical dealloying method was used (first using diluted electrolyte and then concentrated acid), bulk np-Au with no volume change and minimal cracking was successfully fabricated. Thermal and mechanical behavior of np-Au was studied by heat treatment and microindentation. During annealing in air, Ostwald ripening governed ligament coarsening, while annealing of ligaments in vacuum was more likely a sintering process. Nanoporous Au thin films were produced by dealloying sputtered Au-Ag alloy films. Residual stresses in np-Au films were measured with wafer curvature. Similar to bulk materials, np-Au thin films made from 25 at.% Au alloy films exhibited extensive cracking during dealloying, whereas films from 30 at.% Au precursor alloys were completely crack-free. 25 at.% Au np-Au films carried almost no stress because of extensive cracking, whereas stress in 30 at.% Au np-Au films was up to ~230 MPa. Ligament coarsening followed a t1/8 time dependence for stress-free films, versus t1/4 in films under stress. It was proposed that bulk diffusion was responsible for formation of larger pits at grain centers during the incipient stages of dealloying. In situ nanoindentation experiments inside the transmission electron microscope were performed to investigate deformation of np-Au films and dislocation motion within ligaments. Dislocations were generated easily and moved along ligament axes, after which they interacted with other dislocations in the nodes of the porous network. It was found that slower displacement rates caused load drops to occur at shorter distance intervals and longer time intervals.
12

Evaluation of Microstructural and Mechanical Properties of Multilayered Materials

Subedi, Samikshya 01 February 2017 (has links)
Microstructure controls many physical properties of a material such as strength, ductility, 1density, conductivity, which, in turn, determine the application of these materials. This thesis work focuses on studying microstructural features (such as grain size, shape, defects, orientation gradients) and mechanical properties (such as hardness and yield strength) of multilayered materials that have undergone different loading and/or operating conditions. Two materials that are studied in detail are 18 nm Cu-Nb nanolaminates and 3D printed Inconel 718. Copper-Niobium (Cu-Nb) nanolaminate is a highly stable, high strength, nuclear irradiation resistant composite, which is destabilized with application of high pressure torsion (HPT). This work focuses on understanding the deformation and failure behavior of Cu-Nb using a novel orientation mapping technique in transmission electron microscopy in (TEM) called Automated Crystal Orientation Mapping (ACOM) and Digistar (ASTARTM) or Precession Electron Diffraction (PED). A new theory is postulated to explain strengthening mechanisms at the nanoscale using a data analytics approach. In-situ TEM compression and tensile testing is performed to image dislocation movement with the application of strain. This experiment was performed by Dr. Lakshmi Narayan Ramasubramanian at Xi’an Jiaotong University in China. Another major aspect of this research focuses on the design, fabrication, and microstructural characterization of 3D printed Inconel 718 heat exchangers. Various heat exchanger designs, machine resolution, printing techniques such as build orientation, power, and velocity of the laser beam are explored. Microstructural and mechanical properties of printed parts (before and after heat treatment) are then analyzed to check consistency in grain size, shape, porosity, hardness in relation to build height, scan parameters, and design. Various tools have been utilized such as scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), x-ray computed microtomography (at Advanced Photon Source at Argonne National Lab), hardness and micro-pillar compression testing for this study.
13

Deformation mechanisms in B2 aluminides: shear faults and dislocation core structures in FeAl, NiAl, CoAl and FeNiAl

Vailhé, Christophe N. P. 06 June 2008 (has links)
Although aluminides with the B2 crystal structures have good properties for high temperature applications, the strong ordered bonds that make them durable at high temperature also make them too brittle at room temperature for industrial fabrication. In order to better understand this lack of ductility, molecular statics simulations of planar fault defects and dislocation core structures were conducted in a series of B2 aluminides with increasing ordering energy (FeAl, NiAl, CoAl). The simulation results in NiAl were compared with in-situ straining observations of dislocation motion. The dislocations simulated were of (100) and (111) types. The simulations results obtained indicate a strong influence of the planar fault energies on the mobility of the dislocations. As the cohesive energy increases from FeAl to CoAl, antiphase boundary and unstable stacking fault energies increase resulting in more constricted dislocation core spreadings. This constriction of the cores decreases the mobility of dislocation with planar core structures and increases the mobility of dislocations with non-planar cores. The (100) screw dislocations were found with planar cores in {110} planes for FeAl, NiAl and CoAl. For very high APB values, the cores were very compact, as predicted by the Peierls- Nabarro model. As the APB energies decrease, increasingly two dimensional spreading of the cores was observed and ultimately dislocation dissociation into partials. As a result of the deviation of the stable planar fault energy from the APB fault, the partials were not exact 1/2(111) but deviate to the point corresponding to the actual minima of the γ-surfaces for these compounds. Alloying NiAl with Fe was found to promote the dissociation of the (100) dislocation. The in-situ straining of a single crystal of NiAl only revealed the motion of (100) dislocations. Both in-situ observations and atomistic simulations agreed on the zig-zag shape of the (100) dislocation with an average screw orientation. In this configuration, the mobility of the dislocation is severely reduced. / Ph. D.
14

Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafine-grained Metal Films Using Ex-situ and In-situ TEM Techniques

January 2017 (has links)
abstract: Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2017
15

In Situ Transmission Electron Microscopy Characterization of Nanomaterials

Lee, Joon Hwan 1977- 14 March 2013 (has links)
With the recent development of in situ transmission electron microscopy (TEM) characterization techniques, the real time study of property-structure correlations in nanomaterials becomes possible. This dissertation reports the direct observations of deformation behavior of Al2O3-ZrO2-MgAl2O4 (AZM) bulk ceramic nanocomposites, strengthening mechanism of twins in YBa2Cu3O7-x (YBCO) thin film, work hardening event in nanocrystalline nickel and deformation of 2wt% Al doped ZnO (AZO) thin film with nanorod structures using the in situ TEM nanoindentation tool. The combined in situ movies with quantitative loading-unloading curves reveal the deformation mechanism of the above nanomaterial systems. At room temperature, in situ dynamic deformation studies show that the AZM nanocomposites undergo the deformation mainly through the grain-boundary sliding and rotation of small grains, i.e., ZrO2 grains, and some of the large grains, i.e., MgAl2O4 grains. We observed both plastic and elastic deformations in different sample regions in these multi-phase ceramic nanocomposites at room temperature. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of YBCO films from the directions perpendicular and parallel to the twin interfaces. Hardness measured perpendicular to twin interfaces is ~50% and 40% higher than that measured parallel to twin interfaces, by ex situ and in situ, respectively. By using an in situ nanoindentation tool inside TEM, dynamic work hardening event in nanocrystalline nickel was directly observed. During stain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded during in situ experiments show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. In situ TEM nanoindentation has been conducted to explore the size dependent deformation behavior of two different types (type I: ~ 0.51 of width/length ratio and type II: ~ 088 ratio) of AZO nanorods. During the indentation on type I nanord structure, annihilation of defects has been observed which is caused by limitation of the defect activities by relatively small size of the width. On the other hand, type II nanorod shows dislocation activities which enhanced the grain rotation under the external force applied on more isotropic direction through type II nanorod.
16

Mécanismes de lubrification des nanoparticules à structure Fullerène : approche multi-échelle

Lahouij, Imène 27 November 2012 (has links)
Les fullerènes de bisulfure métallique de type ( M eS2 , où Me= Mo et W) rencontrent un intérêt croissant du fait de leurs pouvoirs anti usure et réducteur de frottement en régime de lubrification limite. Les propriétés tribologiques de ces nanoparticules, dépendent à la fois de leurs caractéristiques intrinsèques (structure, morphologie, taille, ... ), des conditions de sollicitations (nature des surfaces, pression, température, ... ) ainsi que du cocktail d'additifs présent dans une formulation d'huile moteur. La compréhension de l'origine de ces propriétés passe obligatoirement par une parfaite connaissance du mode d'action des nanoparticules. L'objectif de ce travail de thèse est d’identifier les paramètres pouvant avoir une influence sur le comportement des nanoparticules à l’échelle nanométrique et de faire le lien entre ce comportement, les mécanismes de lubrification des nanoparticules, et leurs propriétés tribologiques. Afin de répondre à cet objectif nous avons adopté une approche multi échelle qui consiste dans un premier temps à étudier le comportement de fullerènes individuels (IF - M eS2 , ou Me= Mo et W) en cours de sollicitation. Ainsi grâce à une méthodologie expérimentale originale couplant la technique de nano indentation à une observation in situ dans un microscope électronique à transmission haute résolution (HRMET), nous avons visualisé pour la toute première fois et en temps réelle comportement de nanoparticules individuelles d’if- M eS2 (Me= Mo et W) sollicitées en compression et/ou en cisaillement dans un contact dynamique. Cette étude a permis d'identifier l'influence des caractéristiques intrinsèques des fullerènes sur leur réponse à l'échelle nanométrique et d'estimer des pressions de contact pour lesquelles le fullerène s'exfolie, roule ou glisse dans le contact. Nous nous sommes ensuite intéressés aux mécanismes de lubrification des fullerènes en dispersion dans une base lubrifiante, en condition de lubrification limite. En se basant sur des analyses XPS et des observations MEB et MET des tribofilms et des débris d'usure générés à l'issu d'essais de frottement réalisés dans trois contacts de nature différente (acier, alumine et DLC), nous avons clairement montré que les propriétés lubrifiantes des nanoparticules d'IF - M eS2 (Me= Mo et W) dépendaient à la fois de leurs caractéristiques intrinsèques et de la nature des surfaces frottantes. Ainsi un lien a été établi entre le comportement des fullerènes à l'échelle nanométrique et leur mode d'action dans un contact tribologique. Enfin, l'influence de la mise en dispersion des nanoparticules sur leurs propriétés tribologiques a été étudiée. Les propriétés tribologiques des nanoparticules dans une huile moteur ont été également évaluées. Deux approches expérimentales de type 'Bottom up' et 'Top dawn'ont été adoptées afin d'évaluer les interactions entre les nanoparticules et l'ensemble des additifs présents dans une huile complétement formulée. L'influence de la température sur les propriétés tribologiques des nanoparticules a été également abordée. / Inorganic Fullerene-(IF) like nanoparticles made of metal dichalcogenides ( M eS2 , Me= Mo and W)continue to attract an increasing interest as friction modifiers and anti-wear additives in liquid lubricant. Their efficiency as lubricant additive strongly depends on intrinsic properties of the nanoparticles (structure, morphology, size ... ), tribological conditions (nature of rubbing surface, pressure, temperature ... ) and also on the package of additives present in the full y formulated engine oil. Thus the control and the optimization of these properties require a perfect knowledge of the lubrication mechanisms of these nanoparticles. The aim of this work is to identify the parameters which influence the behavior of the nanoparticles at the nano-scale and to establish a correlation between this behavior, the lubrication mechanisms of nanoparticles and their tribological properties observed at macro-scale. For this aim, we have chosen a multi-scale approach, which firstly consists in studying the behavior of individual fullerenes (IF- M eS2, Me= Mo and W) during mechanical solicitation. Therefore, thanks to a new in situ TEM technique including nanoindentation, we have visualized the behavior of individual fullerenes in real time during nana-compression and nano-sliding tests. These results allowed us to identify the influence of the intrinsic characteristics of nanoparticles on their response at the nano-scale and to estimate critical values of pressure for rolling, sliding, exfoliation and failure of individual IF - M eS2 particles (Me= Mo and W).Secondly, we focused on the lubrication mechanisms of fullerenes when they are dispersed in base oil in boundary lubrication. The tribofilms and the wear particles obtained after friction tests at three different rubbing surfaces (steel, alumina and DLC), were studied using XPS analyses, SEM and TEM observations. We have clearly shown that the lubricating properties of nanoparticles depend both on their intrinsic properties and on the nature of the contact. Thereby, a correlation between the behavior of single nanoparticles at nano-scale and their lubricating properties under boundary lubrication was established. Finally, the influence of the dispersant on the tribological properties of the nanoparticles was investigated. The tribological properties of nanoparticles in fully formulated engine oil were also evaluated. Two experimental methods based on a 'Bottomup' and a 'top-dawn' approach were adopted to evaluate the interactions between nanoparticles and all the additives in fully formulated oil. The influence of the temperature on the tribological properties of the nanoparticles was also discussed.
17

Liquid in situ analytical TEM : technique development and applications to austenitic stainless steel

Schilling, Sibylle January 2017 (has links)
Environmentally-assisted cracking (EAC) phenomena affect the in-service behaviour of austenitic stainless steels in nuclear power plants. EAC includes such degradation phenomena as Stress Corrosion Cracking (SCC) and Corrosion Fatigue (CF). Factors affecting EAC include the material type, microstructure, environment, and stress. This is an important degradation issue for both current and Gen III+ light water reactors, particularly as nuclear power plant lifetimes are extended ( > 60 years). Thus, it is important to understand the behaviour of the alloys used in light water reactors, and phenomena such as SCC to avoid failures. Although there is no agreement on the mechanism(s) of SCC, the importance of localized electrochemical reactions at the material surface is widely recognised. Considerable research has been performed on SCC and CF crack growth, but the initiation phenomena are not fully understood. In this project, novel in situ analytical TEM techniques have been developed and applied to explore localised reactions in Type 304 austenitic stainless steel. In situ transmission electron microscopy has become an increasingly important and dynamic research area in materials science with the advent of unique microscope platforms and a range of specialized in situ specimen holders. In metals research, the ability to image and perform X-ray energy dispersive spectroscopy (XED) analyses of metals in liquids are particularly important for detailed study of the metal-environment interactions with specific microstructural features. To further facilitate such studies a special hybrid specimen preparation technique involving electropolishing and FIB extraction has been developed in this thesis to enable metal specimens to be examined in the liquid cell TEM specimen holder using both distilled H2O and H2SO4 solutions. Furthermore, a novel electrode configuration has been designed to permit the localized electrochemical measurement of electron-transparent specimens in the TEM. These novel approaches have been benchmarked by extensive ex situ experiments, including both conventional electrochemical measurements and microcell measurements. The results are discussed in terms of validation of in situ test data as well as the role of the electron beam in the experiments. In situ liquid cell TEM experiments have also explored the localized dissolution of MnS inclusions in H2O, and correlated the behaviour with ex situ experiments. Based on the research performed in this thesis, in situ liquid cell and in situ electrochemical cell experiments can be used to study nanoscale reactions pertaining to corrosion and localized dissolution leading to "precursor" events for subsequent EAC phenomena.
18

Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications

Huang, Shan 01 November 2011 (has links)
Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high mobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, the atomistic and continuum modeling are performed to study the chemical-mechanical failures. The objective is to understand the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion-induced fracture in alloy electrodes for lithium-ion batteries. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures are discussed. Silicon is one of the most promising anode materials for Li-ion batteries (LIB) because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. To improve mechanical stability of LIB anode, failure mechanisms of silicon and coated tin-oxide nanowires have been studied at continuum level. It's shown that anisotropic diffusivity and anisotropic deformation play vital roles in lithiation process. Our predictions of fracture initiation and evolution are verified by in situ experiment observations. Due to the mechanical confinement of the coating layers, our study demonstrates that it is possible to simultaneously control the electrochemical reaction rate and the mechanical strain of the electrode materials through carbon or aluminum coating, which opens new avenues of designing better lithium ion batteries. This thesis addresses the nano-chemo-mechanical failure problems in two green energy-carrier systems toward improving the performance of Li-ion battery anode and hydrogen storage system. It provides an atomistic and continuum modeling framework for the study of chemo-mechanics of advanced materials such as nano-structured metals and alloys. The results help understand the chemical effects of impurities on the mechanical properties of host materials with different metallic and covalent bonding characteristics.
19

Mechanical behaviour of carbon nanostructures

Jackman, Henrik January 2014 (has links)
Abstract Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in future nanoelectromechanical systems and for many other applications. The extraordinary properties are however only attained by perfectly crystalline CNTs and quickly deteriorate when defects are introduced to the structure. The growth technique affects the crystallinity where in general CNTs grown by arc-discharge are close to perfectly crystalline, while CVD-grown CNTs have large defect densities. Mechanical deformation also affects these properties, even without introducing defects. When CNTs are bent they behave similarly to drinking straws, i.e. they buckle or ripple and their bending stiffness drops abruptly. In this thesis, the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers (VACNFs) has been studied by performing force measurements inside electron microscopes. Cantilevered CNTs, and VACNFs, were bent using a force sensor, yielding force-deflection curves while their structure was imaged simultaneously. We have found that CNTs grown by arc-discharge have a high enough crystallinity to possess a Young’s modulus close to the ideal value of 1 TPa. CVD-grown CNTs possess a Young’s modulus that is about one order of magnitude smaller, due to their large defect density. The VACNFs are yet another order of magnitude softer as a result of their cup-stacked internal structure.  We also found that a high defect density will increase the critical strain for the rippling onset and the relative post-rippling stiffness. Multi-walled CNTs with a small inner diameter are less prone to ripple and have a larger relative post-rippling stiffness. Our findings show large variations in the onset of rippling and the bending stiffness before and after rippling. These variations open up possibilities of tailoring the mechanical properties for specific applications. / Baksidetext Carbon nanotubes (CNTs) have extraordinary mechanical and electrical properties. Together with their small dimensions and low density, they are attractive candidates for building blocks in nanoelectromechanical systems (NEMS), and many other applications.  In this thesis the mechanical behaviour of individual CNTs and vertically aligned carbon nanofibers has been studied by performing force measurements inside electron microscopes. We have found that the mechanical behaviour is very sensitive to the defect density and the internal structure of the CNTs. The extraordinary properties are only attained by defect free CNTs and quickly deteriorate if defects are introduced to the structure. Mechanical deformations also alter these properties. Single-walled CNTs behave similarly to drinking straws when bent, i.e. they buckle, while the inner tubes of multi-walled CNTs prevent buckling. Instead a more distributed rippling pattern is created for multi-walled CNTs. Both these deformation behaviours will cause an abrupt drop in the bending stiffness, which is detrimental for many applications. The findings in this work will have implications for the design of future NEMS. / <p>Artikel 2 Image formation mechanisms tidigare som manuskript, nu publicerad: urn:nbn:se:kau:diva-16425 (MÅ 150924)</p>
20

In-situ study of the growth, structure and reactivity of Pt-Pd nanoalloys / Etude In-situ de la croissance, de la structure et de la réactivité des nanoalliages de Pt-Pd

De Clercq, Astrid 23 November 2015 (has links)
Les propriétés catalytiques des nanoparticules métalliques peuvent être améliorées par effet d’alliages. La synthèse en solution par voie colloïdale permet de préparer des nanoalliages homogènes en taille, en forme et en composition chimique, de structure ordonnée, désordonnée ou cœur-coquille. La nucléation et la croissance des nanoalliages de Pt-Pd sont étudiées ici par microscopie électronique en transmission, en condition standard, puis in situ dans une cellule liquide formée par des feuilles d’oxyde de graphène. La cinétique de croissance des nanoalliages de Pt-Pd correspond à l’incorporation directe des monomères en solution, compatible avec un processus limité par la réaction de surface, sans phénomène de coalescence, contrairement à la croissance du Pt pur. La structure théorique à l’équilibre des nanoalliages de Pt-Pd est déterminée par des simulations Monte Carlo. La structure la plus probable correspond à une surface riche en Pd et à une sous couche atomique riche en Pt, stable à des températures élevées. L’effet de l’adsorption de gaz oxydants ou réducteurs sur la forme des nanoparticules, est étudié in situ par microscopie environnementale sous pression de quelques mbar, dans un porte objet environnemental. On observe des changements de formes sous oxygène, dus au développement de facettes d’indices plus élevés. La réactivité des nanocubes de Pd@Pt est étudiée pour l’oxydation du CO en fonction du recouvrement de Pt à la surface. La réactivité maximale pour un faible recouvrement est interprétée par une baisse de l’énergie d’adsorption du CO liée au désaccord paramétrique entre le Pt et le Pd et à la modification de la structure électronique du Pt lié au Pd. / The catalytic properties of metal nanoparticles can be improved by the alloying effect. Nanoalloys homogeneous in size, shape and chemical composition can be prepared with the colloidal synthesis method, with an ordered, random or core-shell chemical structure. Nucleation and growth of colloidal Pt-Pd nanoalloys were studied by transmission electron microscopy (TEM), in standard conditions and in situ with the aid of a graphene oxide liquid cell. The growth kinetics of homogeneous Pt-Pd nanoalloys corresponds to the direct incorporation of the monomers in solution. It was compatible with a process limited by the surface reaction, without coalescence (Lifshitz-Slyozov-Wagner mechanism). On the contrary, coalescence occurs during the growth of pure Pt nanoparticles. The theoretical structure of Pt-Pd nanoalloys is determined by Monte Carlo simulations. The most stable structure corresponds to a Pd surface and Pt subsurface layer, which is stable up to high temperatures. The effect of adsorption of oxidizing or reducing gasses on the shape of pure Pd nanocubes and core-shell Pd@Pt nanocubes is studied in situ by TEM with an environmental cell. The observed changes in a few mbar of oxygen are due to the development of higher index facets. The CO oxidation reaction is used to compare the reactivity of homogeneous Pt-Pd nanoalloys and core-shell Pd@Pt nanocubes with increasing coverage of Pt at the surface. A maximal reactivity is attained for a low coverage. The effect is interpreted by a decrease in adsorption energy of CO, due to electronic effects originating from the lattice mismatch between Pt and Pd and the mixed Pt-Pd bonds.

Page generated in 0.0884 seconds