• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 14
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 56
  • 24
  • 24
  • 23
  • 19
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Evolutionary consequences of ecological interactions

Nonaka, Etsuko January 2014 (has links)
Eco-evolutionary dynamics integrates the reciprocal interactions betweenecology and evolution. These two branches of biology traditionally assumethe other as static for simplicity. However, increasing evidence shows thatthis simplification may not always hold because ecology and evolution canoperate in similar timescales. This thesis theoretically explores how thereciprocal interactions may influence ecological and evolutionary outcomesin four different eco-evolutionary contexts.Many species of non-social animals live in groups. Aggregating ingroups often has both benefits and costs that depend on group size. Thanksto the benefits of aggregation, population growth likely depends positivelyon population density when it is small. This phenomenon, the Allee effect,has been hypothesized to explain the evolution of aggregation behavior. Ifind that the Allee effect alone does not lead to the evolution whenpopulation dynamics is explicitly accounted for. Some other mechanisms,such as frequent needs for colonizing new patches or anti-aggregation,should be invoked to explain why aggregation behavior could evolve.Phenotypic plasticity is the ability of a genotype to express distinctphenotypes when exposed to different environments. Although it is oftenshown to be adaptive and not costly, highly plastic organisms are rare. Paststudies demonstrated some potential reasons. I test another possibility; costsmay arise from sexual selection because highly plastic individuals may beless preferred as a mate. I show that, even in the absence of the direct cost ofplasticity, the level of plasticity remained low at intermediate strengths ofassortative mating. This pattern is robust across wide ranges of parametervalues.Ecological speciation occurs when ecologically divergent selectionbetween environments causes reproductive isolation between divergingsubpopulations. Several verbal models of ecological speciation emphasizethe roles of phenotypic plasticity in promoting speciation. The complexprocesses involved in speciation, however, are difficult to be evaluated byverbal accounts. I quantitatively test the proposed idea in a mechanisticmodel of ecological speciation in the presence and absence of plasticity. Ifind conditions under which plasticity can promote or hinder ecologicalspeciation. Plasticity facilitates speciation by producing a gap in thedistributions of expressed phenotypes, which serves as a barrier to gene flowin an assortatively mating population.Ecosystem ecology and evolutionary biology are the least integratedfields in ecology and evolution. Natural selection operating at the individuallevels on traits governing ecosystem functions may affect ecosystemproperties, which may feedback to individuals. I reviewed this idea anddemonstrate the feedback loop by using a simple consumer-resource model.
52

Formação de teias tróficas e sua resistência à introdução e exclusão de espécies : propriedades resultantes de um modelo computacional baseado no indivíduo /

Giacomini, Henrique Corrêa. January 2011 (has links)
Orientador: Miguel Petrere Júnior / Banca: Claudio José Von Zuben / Banca: Carlos Edward de Carvalho Freitas / Banca: Ronaldo Angelini / Banca: Angelo Antonio Agostinho / Resumo: Um modelo baseado no indivíduo para história de vida e interações tróficas de peixes é proposto nesta tese. Ele integra teorias sobre fisiologia, crescimento, reprodução e alimentação num mesmo arcabouço dinâmico. As comunidades são formadas por um processo seqüencial de assembleamento que seleciona espécies com melhor ajuste às condições locais. No capítulo 1, experimentos computacionais foram feitos para avaliar a resposta seletiva de 10 características bionômicas em gradientes de produtividade, taxas de ataque por predadores, distribuição do tamanho corporal no conjunto regional de espécies, e a presença/ausência de assimetrias nas habilidades dos peixes em consumir presas e em evitar predação. Este último fator inclui conflitos funcionais entre a eficiência de captura versus generalidade de dieta e intensidade de forrageamento versus defesa contra predadores. As comunidades resultantes foram fortemente afetadas pelos gradientes. Picos de riqueza ocorrem em produtividades moderadamente baixas, associadas a baixas taxas de ataque, o que pode estar relacionado ao efeito estabilizador de respostas funcionais menos saturadas e às características emergentes das espécies. Com alta disponibilidade de recursos, espécies de rápido crescimento e tamanhos variados dominaram, promovendo rápida depleção dos recursos durante a formação das comunidades e ocasionando fortes efeitos de prioridade. As assimetrias de consumo aumentaram a coexistência onde ela tende a ser mais difícil, mas a diminuíram em seus pontos de pico. Mas seu principal efeito foi o de modificar a composição ao longo dos gradientes, modulando o formato das associações emergentes entre as características biológicas das espécies bem sucedidas. No capítulo 2 foram realizados experimentos de invasão e exclusão, para avaliar como as características das espécies... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: An individual-based model for fish life history and trophic interactions is here proposed. It integrates theories for individual physiology, growth, reproduction, and feeding in the same dynamical framework. Communities are formed by a sequential assembly process which selects for species best adjusted to local conditions. Simulation experiments were carried out to evaluate the distribution of diversity and selective response of 10 bionomic features along gradients of resource productivity, predators maximum attack rates, body size distribution in species pool, and the presence/absence of asymmetries in both the abilities of fish to consume prey and to avoid being consumed. This last factor includes tradeoffs concerning capture efficiency versus diet generality and foraging intensity (associated to growth rate) versus defense against predators. The resulting communities were strongly affected by the gradients. Richness peaks are localized at moderately low productivities associated to low maximum attack rates, which might be related to the stabilizing effect of less saturated functional responses and to the emergent features of selected species. At high resource availability, fast growing species with variable sizes dominated, promoting early fast resource depletion during assembly and leading to strong priority effects. The hierarchical consumption asymmetries increased coexistence where it tends to be more difficult, but diminished it at its points of peak. But its main effect was modifying species trait composition along other gradients, modulating the shape of emergent associations among biological features of successful species. Additional invasion and deletion experiments were carried out to evaluate how species and community features are related invasion success and native extinctions. Successful invaders tend to possess similar life-history features to invaded community, but low... (Complete abstract click electronic access below) / Doutor
53

Matematické modelování konkurence velkých afrických karnivorů / Mathematical modelling of competition between African carnivores

RYCHTECKÁ, Terezie January 2008 (has links)
Two types of mathematical models incorporating several types of competition between two species of African carnivores were constructed and analysed. The heuristic model focuses on population dynamics of both carnivores and their shared prey. The individual-based model focuses on the role of habitat heterogeneity and unique features of ecology of one of the predators, using the African wild dogs and hyaenas as a case study.
54

Modelos de simulação aplicados à conservação de paisagens fragmentadas da Mata Atlântica brasileira / Simulation models applied to the conservation of fragmented landscapes in the Brazilian Atlantic Forest

Milton Cezar Ribeiro 06 August 2010 (has links)
Uma efetiva ação de conservação depende de um claro entendimento de como as espécies respondem às características ambientais, em particular à cobertura, configuração espacial e qualidade do habitat. No entanto, nem sempre esses dados estruturais da paisagem estão disponíveis em extensão e escala compatíveis com o planejamento ambiental. Ademais, a obtenção de dados empíricos sobre as respostas das espécies à estrutura da paisagem é longa e custosa, o que exige abordagens alternativas para o entendimento destas relações. Esta tese teve dois objetivos principais: i. gerar informações atualizadas sobre as características espaciais dos remanescentes de Mata Atlântica, estimando a quantidade e distribuição de mata existente ao longo de todo o Domínio fitogeográfico, além de avaliar a distribuição da floresta em relação a características do relevo; ii. avaliar, através de modelos de simulação, o efeito da estrutura da paisagem, qualidade de habitat e atributos das espécies, em processos associados à movimentação de aves. A Mata Atlântica é uma das florestas com maior biodiversidade do planeta, mas está também entre as mais ameaçadas, dado o avançado estágio de perda e fragmentação do hábitat, o que a coloca entre os principais hotspots do planeta. Na primeira parte desta tese, estimamos que a cobertura da Mata Atlântica está entre 12 a 16% (em função de erros de mapeamento), o que representa um valor intermediário em relação às estimativas anteriores (7-8%, ou 22-23%). Os dados de configuração mostram uma situação pouco favorável para conservação das espécies. Mais de 80% dos fragmentos remanescentes são menores que 50 hectares, tamanho extremamente reduzido e incapaz de preservar a maioria das espécies florestais. Ademais, quase a metade da floresta existente está a menos de 100 m de ambientes antropizados, sendo que as áreas mais distantes da borda ficam a aproximadamente 12 km da matriz. Outro fato alarmante é a grande distância média entre os remanescentes de mata (1.440 m), o que torna difícil a movimentação de indivíduos entre fragmentos. A quantidade de unidades de conservação é extremamente reduzida, correspondendo apenas a aproximadamente 1% da Mata Atlântica original, bem abaixo dos 10% sugeridos como mínimo para a manutenção de espécies. As faixas de altitude acima de 1200 m mantêm mais de 20% da cobertura original, enquanto as faixas mais baixas conservam somente 10% da floresta. Algumas diretrizes de conservação e restauração por sub-regiões biogeográficas foram propostas, porém tais regiões apresentaram-se muito extensas para a definição de ações de manejo. Este fato nos levou a sugerir a subdivisão do domínio em 55 novos compartimentos, considerando características de clima e relevo, além dos aspectos biogeográficos. Na segunda parte desta tese, foi desenvolvido o BioDIM (Biologically scaled dispersal model), um modelo baseado em indivíduos que simula a movimentação de aves florestais calibradas para espécies encontradas na Mata Atlântica. O BioDIM inclui vários perfis (i.e. sensibilidades) de espécies, permitindo simular desde espécies muito sensíveis (preferência pelo interior dos fragmentos), até espécies moderadamente generalistas (cruzam até 120 m através de ambientes abertos). Além da sensibilidade a ambientes abertos ou de borda, a área de vida (i.e. requerimento de habitat), e o deslocamento máximo diário ou explorativo (i.e. quando o indivíduo está dispersando) também foram considerados. As simulações com o BioDIM foram feitas para 10.000 paisagens simuladas, apresentando grande variação de porcentagem (de 5 a 70%), agregação e qualidade do habitat, o que nos permitiu estudar uma ampla gama de paisagens, o que não seria viável em estudos empíricos. Os resultados sugerem as características das espécies e a estrutura da paisagem foram igualmente importantes para explicar os processos ecológicos analisados, porém a qualidade de habitat foi pouco influente. A sensibilidade das espécies foi o fator mais importante para explicar a mortalidade de indivíduos e a taxa de dispersão, sendo um fator de efeito secundário para o custo de movimentação e para a taxa de encontros entre indivíduos. A porcentagem de cobertura foi o fator mais influente para custo de movimentação, enquanto para a taxa de encontros o efeito primário foi o tamanho da área de vida. Uma surpresa foi que, ao se avaliar os efeitos para cada perfil de espécie, observou-se que a agregação de habitat foi tão importante quanto a quantidade de habitat para explicar alguns processos, independente da quantidade de habitat, oposto do que tem sido sugerido na literatura. Isto sugere que as variáveis de paisagem são importantes ao longo de todo o processo de conversão do habitat, e devem ser cuidadosamente consideradas na tomada de decisão voltada ao manejo para a conservação de espécies. / Effective conservation actions depend on a clear understanding of how species respond to environmental factors, particularly to the amount of habitat and the spatial arrangement and quality of this habitat. However, landscape structure information is not always available to the extent and scale needed to promote effective conservation planning. Additionally, acquiring biological information of how species respond to landscape structure is particularly expensive in time and money. This thesis has two main goals: i. to generate updated information about the amount and spatial distribution of the remnants of the Brazilian Atlantic Forest, combining information on the remaining forest and landscape relief; ii. untangle the effects of landscape structure, habitat quality, and species traits on ecological processes related to the movements of Atlantic Forest bird species, using simulation models. The Atlantic Forest is one of the most biodiverse regions on the planet, but is also among the most threatened because of the high degree of habitat loss and fragmentation, which confer the status of biodiversity \"hotspot\" on the region. In the first part of the thesis, I estimated that the remaining Brazilian Atlantic Forest occupies between 12-16% of its original extent (considering mapping errors), which is an intermediate estimate compared to previous ones (7-8%, or 22-23%). The spatial distribution of this forest indicates poor conditions for species conservation. More than 80% of the remaining forest is distributed in patches smaller than 50 ha, which is extremely reduced in size and incapable of preserving most of the forest species. Additionally, half of the remaining forest is less than 100 m distant from any edge, and the farthest point within any forest is about 12 km from the surrounding matrix. Another critical point is the high degree of isolation between patches (mean 1 440 m), which impedes the movement of individuals between forest fragments. Protected areas are extremely small, approximately 1% of the original extent, which is below the 10% suggested as the minimum amount for species maintenance. Higher-altitude areas (> 1200 m) retain more than 20% of the original cover; whereas in lower altitudes, such as from 400 to 800 m, only about 10% of the original forest still exists. Some conservation and restoration measures for the entire region and within biogeographical sub-regions are suggested, but I consider the subregions too extensive for defining appropriate management actions. Thus, I refined the subdivision of the entire region into 55 new sub-regions, considering climate and relief characteristics, as well as biogeographical aspects. In the second part of this thesis I developed a program called BioDIM (Biologically scaled dispersal model), an individual-based model calibrated to simulate the movement of Atlantic Forest bird species in fragmented landscapes. Five species profiles (i.e., species sensitivity) are already available in BioDIM, which allows us to simulate movements from highly sensitive species (which avoid forest edges), to moderately generalist ones (capable of crossing 120 m of open matrix). Home-range size (a surrogate for habitat amount requirement) and maximum routine and explorative distances per day can also be set. I generated 10 000 simulated landscapes, varying in habitat amount (5 to 70%), aggregation, and quality, which made it possible to evaluate landscape variability to a degree that would not be possible in real conditions. The results suggest that species traits and landscape structure were both important to explain the ecological processes, but habitat quality contributed relatively little. Species sensitivity was the prime factor in explaining dispersal rate and mortality, and had a secondary effect on movement cost and encounter rate. Habitat amount was the most influential factor to explain movement cost, and home-range size was the prime factor for encounter rate. Astonishingly, we observed that, within species profiles, habitat aggregation was as important as habitat amount to explain several ecological processes, independently of the percentage of forest amount. This is the opposite of what has been observed in the literature. These results indicate that landscape variables are important for all habitat conversion processes, and that they must be carefully considered in decision-making for species conservation management.
55

Mathematical Models for Mosquito-borne Infectious Diseases of Wildlife

Kyle J Dahlin (8787935) 01 May 2020 (has links)
<div>Wildlife diseases are an increasingly growing concern for public health managers, conservation biologists, and society at large. These diseases may be zoonotic -- infective wildlife are able to spread pathogens to human populations. Animal or plant species of conservation concern may also be threatened with extinction or extirpation due to the spread of novel pathogens into their native ranges. In this thesis, I develop some mathematical methods for understanding the dynamics of vector-borne diseases in wildlife populations which include several elements of host and vector biology. </div><div><br></div><div>We consider systems where a vector-borne pathogen is transmitted to a host population wherein individuals either die to disease or recover, remaining chronically infective. Both ordinary differential equations (ODE) and individual based (IBM) models of such systems are formulated then applied to a specific system of wildlife disease: avian malaria in Hawaiian honeycreeper populations -- where some species endure disease-induced mortality rates exceeding 90\%. The ODE model predicts that conventional management methods cannot fully stop pathogen transmission.</div><div><br></div><div>Vector dispersal and reproductive biology may also play a large role in the transmission of vector-borne diseases in forested environments. Using an IBM which models dispersal and mosquito reproductive biology, we predict that reducing larval habitat at low elevations is much more effective than at higher elevations. The ODE model is extended to include distinct populations of sensitive and tolerant hosts. We find that the form which interaction between the hosts takes has a significant impact on model predictions.</div>
56

The Evolutionary Effects of Fishing: Implications for Stock Management and Rebuilding

Leaf, Robert Thomas 25 August 2010 (has links)
Recent empirical studies have demonstrated inter-generational morphological and life-history changes in fish stocks that have been impacted by size-selective harvest. Evolutionary processes in biological populations occur through differential survival and reproductive success based, in part, upon individual phenotypic variability. Fishing is a source of directional selection resulting in the directed removal of some phenotypes; however, many aspects of the evolutionary effects of fishing remain have yet to be described. In order to better understand the life-history and morphological changes that occur as a result of size-selective fishing, and their effect on fishery dynamics, I first determined the suitability of Japanese medaka (Oryzias latipes) for selection experiments. I performed selection experiments using Japanese medaka and report how morphology and life-history characteristics changed over multiple generations of selection. I then used these patterns of change in life-history and morphology to validate individual-based simulation candidate models to test general mechanisms of life-history relationships. Finally, I applied the individual-based simulation modeling approach in order to describe how biological and fishery characteristics change in a large, age-structured population exposed to size-selective fishing over multiple generations. I found that the Japanese medaka has attractive characteristics for biological investigation. The selection experiments indicated large changes in the age-atmaturity, including a nearly 50% decrease over four generations in the most intense sizeselective removal regimes. However, I did not observe significant changes in length-at-age or weight-at-age over the course of the experiment. Candidate simulation models were poor at predicting some aspects of the life-history characteristics of Japanese medaka. The simulation model to determine fishery characteristics predicted large decreases in yield and egg production as a result of decreases in length-at-age. Understanding the relationships of life-history characteristics and their role in determining population resilience is a step toward understanding the importance of evolutionary processes in fishery management. / Ph. D.
57

Optimization and Optimal Control of Agent-Based Models

Oremland, Matthew Scott 18 May 2011 (has links)
Agent-based models are computer models made up of agents that can exist in a finite number of states. The state of the system at any given time is determined by rules governing agents' interaction. The rules may be deterministic or stochastic. Optimization is the process of finding a solution that optimizes some value that is determined by simulating the model. Optimal control of an agent-based model is the process of determining a sequence of control inputs to the model that steer the system to a desired state in the most efficient way. In large and complex models, the number of possible control inputs is too large to be enumerated by computers; hence methods must be developed for use with these models in order to find solutions without searching the entire solution space. Heuristic algorithms have been applied to such models with some success. Such algorithms are discussed; case studies of examples from biology are presented. The lack of a standard format for agent-based models is a major issue facing the study of agent-based models; presentation as polynomial dynamical systems is presented as a viable option. Algorithms are adapted and presented for use in this framework. / Master of Science
58

Simulating cognitive models of individuals : How collective behavior emerges from distributions of phenotypes in public goods games

Pavlov, Kirill, Sik, Erik January 2024 (has links)
Predicting the behavior of groups and how it emerges from the behaviours of individuals is a difficult task. Not only are individuals and their behaviors affected by the group and vice versa, but the way individuals are affected by and react to various conditions is difficult to predict due to the complex nature of human beings. However, if one could build models that sufficiently capture the behavior of individuals, it would be possible to simulate groups and make a prediction for the emergent behavior that way. Public Goods Games (PGGs) are a type of economic game that explores how individuals engage in cooperation and where different types of collective behaviors emerge. In group-based settings such as PGGs, there is a high level behavior pattern belonging to the group as a whole. In this work, we study how the group behavior emerges from the collection of behaviors belonging to individuals in the group. To this end, we create a model that predicts the emergent collective behavior in a PGG given a set of individual behaviors present within the group. We devise a classification scheme that groups individuals into a small set of phenotypes based on the behavior they exhibit in a PGG. We then create a model that simulates the long term behavior of groups playing a PGG based on the relative distribution of these phenotypes. Our simulation uses cognitive modeling with ACT-R to individually simulate each participant in a game. We find that our model is able to simulate group behavior that resembles what is seen with human participants given only the relative distribution of phenotypes. However, the model is not able to generalize to a PGG where the rules of the game are slightly changed. In modifying the distribution of phenotypes present in simulations, we found that increasing the number of cooperative individuals resulted in a stronger upward trend in group average contribution, while increasing the number of non-cooperative individuals had the opposite effect. Increasing the number of conditional cooperative individuals resulted in slowing the movement of group average contribution trend. / Att förutspå gruppers beteenden och hur dessa uppstår från individernas beteenden är svårt av flera skäl. Dels påverkar individernas beteende gruppen och vice versa, och dels är det svårt att förutspå hur individer påverkas av och reagerar på olika situationer och förhållanden på grund av människans komplexa natur. Om man kunde bygga modeller som fångar individers beteenden tillräckligt väl skulle det vara möjligt att genom simulering kunna ge förutsägelser på gruppens beteende. Public Goods Games (PGGs) är en typ av ekonomiskt spel som utforskar hur individer väljer att sammarbeta och där kollektiva beteenden kan uppstå. Inom gruppbaserade miljöer, som till exempel PGGs, finns det beteenden som tillhör gruppen i sig. I detta arbete studerar vi hur det gruppbeteendet härstammar från samlingen av individuella beteenden inom gruppen. För det skapar vi en modell som ger förutsägelser om det framväxande kollektiva beteendet i en PGG, givet kunskap om fördelningen av olika typer av individuella beteenden som finns i gruppen. För att göra detta utvecklar vi ett klassificeringssystem som grupperar individer i olika fenotyper baserat på deras uppvisade beteende i ett PGG. Vi skapar sedan en modell som simulerar detta PGG med en given grupp av individer. Våran simulering använder kognitiv modellering med ACT-R för att simulera varje enskild deltagare i ett PGG. Vi finner att vår modell simulerar gruppbeteenden som liknar det som syns med mänskliga deltagare, givet att man vet fördelningen av fenotyper i grupper. Modellen kan dock inte generalisera till ett PGG där reglerna är ändrade. När vi ändrade distributionen av fenotyper i simuleringen fann vi att ett ökat nummer av sammarbetsvilliga individer gjorde så att trenden av gruppen genomsnittliga bidrag rörde sig uppåt, medans ett ökat nummer av ej sammarbetsvilliga individer hade motsatt effekt. Då vi ökade antalet vilkorligt sammarbetsvilliga individer fann vi att det saktade ner förändringar av gruppen genomsnittliga bidrag.
59

Spatial patterns and processes in a regenerating mangrove forest

Pranchai, Aor 13 July 2015 (has links) (PDF)
The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates which exceed the average pace of global deforestation by three to five times. Our knowledge of the underlying processes of mangrove forest regeneration is too limited in order to find suitable techniques for the restoration of degraded mangrove areas. The general objective of my dissertation was to improve mangrove restoration by understanding regeneration processes and local plant-plant interaction in a regenerating Avicennia germinans forest. The study was conducted in a high-shore mangrove forest area on the Ajuruteua peninsula, State of Para, Northern Brazil. The dwarf forest consisting of shrub-like trees is recovering from a stand-replacing event caused by a road construction in 1974 which interrupted the tidal inundation of the study area. Consequently, infrequent inundation and high porewater salinity limit tree growth and canopy closure. All trees and seedlings were stem-mapped in six 20 m x 20 m plots which were located along a tree density gradient. Moreover, height, crown extent, basal stem diameter of trees were measured. The area of herbaceous ground vegetation and wood debris were mapped as well. The mapped spatial distribution of trees, seedlings and covariates was studied using point pattern analysis and point process models, such as Gibbs and Thomas point process, in order to infer underlying ecological processes, such as seed dispersal, seedling establishment, tree recruitment and tree interaction. In the first study (chapter 2), I analyzed the influence of abiotic and biotic factors on the seedling establishment and tree recruitment of A. germinans during the recolonization of severely degraded mangrove sites using point process modeling. Most seedlings established adjacent to adult trees especially under their crown cover. Moreover, seedling density was higher within patches of the herbaceous salt-marsh plants Blutaparon portulacoides and Sesuvium portulacastrum than in uncovered areas. The higher density of recruited A. germinans trees in herb patches indicated that ground vegetation did not negatively influence tree development of A. germinans. In addition, tree recruitment occurred in clusters. Coarse wood debris had no apparent effect on either life stage. These results confirm that salt-marsh vegetation acts as the starting point for mangrove recolonization and indicate that the positive interaction among trees accelerates forest regeneration. In the second study (chapter 3), I analyzed how intraspecific interaction among A. germinans trees determines their growth and size under harsh environmental conditions. Interaction among a higher number of neighboring trees was positively related to the development of a focal tree. However, tree height, internode length and basal stem diameter were only positively associated in low-density forest stands (1.2 trees m-2) and not in forest stands of higher tree density (2.7 trees m-2). These results indicated a shift from facilitation, i.e. a positive effect of tree interaction, towards a balance between facilitation and competition. In the third study (chapter 4), I used point process modeling and the individual-based model mesoFON to disentangle the impact of regeneration and interaction processes on the spatial distribution of seedlings and trees. In this infrequently inundated area, propagules of A. germinans are only dispersed at a maximum distance of 3 m from their parent tree. Furthermore, there is no evidence that the following seedling establishment is influenced by trees. I was able to differentiate positive and negative tree interactions simulated by the mangrove model mesoFON regardless of dispersal processes based on static tree size information using the mark-correlation function. The results of this dissertation suggest that mangrove forest regeneration in degraded areas is a result of facilitative and not competitive interactions among mangrove trees, seedling and herbaceous vegetation. This has important implications for the restoration of degraded mangrove forest. Degraded mangrove areas are usually restored by planting a high number of evenly spaced seedlings. However, high costs constrain this approach to small areas. Assisting natural regeneration could be a less costly alternative. Herbaceous vegetation plays a crucial role in forest recolonization by entrapping propagules and possibly ameliorating harsh environmental conditions. So far only competition among mangrove trees has been considered during restoration. However, facilitative tree interactions could be utilized by planting seedling clusters in order to assist natural regeneration instead of planting seedlings evenly-spaced over large areas. This dissertation also showed that point pattern analysis and point process modeling can enable forest ecologists to describe the spatial distribution of trees as well as to infer underlying ecological processes.
60

The Influence of Behavior on Active Subsidy Distribution

Daniel K. Bampoh (5929490) 12 August 2019 (has links)
<p>This dissertation investigates the influence of spatially explicit animal behavior active subsidy distribution patterns. Active subsidies are animal-transported consumption and resources transfers from donor to recipient ecosystems. Active subsidies influence ecosystem structure, function and services in recipient ecosystems. Even though active subsidies affect ecosystem dynamics, most ecosystem models consider the influence of spatially-explicit animal behavior on active subsidy distributions, limiting the ability to predict corresponding spatial impacts across ecosystems. Spatial subsidy research documents the need for systematic models and analyses frameworks to provide generally insights into the relationship between animal space use behavior and active subsidy patterns, and advance knowledge of corresponding ecosystem impacts for a variety of taxa and ecological scenarios.</p> <p> </p> <p>To advance spatial subsidy research, this dissertation employs a combined individual-based and movement ecology approach in abstract modeling frameworks to systematically investigate the influence of 1) animal movement behavior given mortality (chapter 2), 2) animal sociality (chapter 3) and 3) landscape heterogeneity (chapter 4) on active subsidy distribution. This dissertation shows that animal movement behavior, sociality and landscape heterogeneity influence the extent and intensity of active distribution and impacts in recipient ecosystems. Insights from this dissertation demonstrate that accounting for these factors in the development of ecosystem models will consequentially enhance their utility for predicting active subsidy spatial patterns and impacts. This dissertation advances spatial subsidy research by providing a road map for developing a comprehensive, unifying framework of the relationship between animal behavior and active subsidy distributions.</p>

Page generated in 0.0636 seconds